Digestion Profiles of Protein in Edible Pork By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Simulated Digestion
2.3. Fluorescamine Assay
2.4. SDS-PAGE
2.5. Confocal Laser Scanning Microscopy (CLSM) Measurement
2.6. Peptidomics Analysis
2.7. Determination of Free Amino Acid
2.8. Statistics Analysis
3. Results and Discussion
3.1. Release of –NH2 Residues during Simulated Digestion
3.2. SDS-PAGE and CLSM Analysis of Digests
3.3. Release of Free Amino Acids and Peptides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, X.; Zhang, M.; Bhandari, B.; Gao, Z. Novel technologies in utilization of byproducts of animal food processing: A review. Crit. Rev. Food Sci. 2019, 59, 3420–3430. [Google Scholar] [CrossRef] [PubMed]
- Lecrenier, M.C.; Veys, P.; Fumière, O.; Berben, G.; Saegerman, C.; Baeten, V. Official feed control linked to the detection of animal byproducts: Past, present, and future. J. Agric. Food Chem. 2020, 68, 8093–8103. [Google Scholar] [CrossRef] [PubMed]
- Caires, C.M.I.; Fernandes, E.A.; Fagundes, N.S.; Carvalho, A.P.; Maciel, M.P.; Oliveira, B.R. The use of animal byproducts in broiler feeds: Use of animal co-products in broilers diets. Braz. J. Poultry Sci. 2010, 12, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Mariod, A.A.; Adam, H. Review: Gelatin, source, extraction and industrial applications. Acta Sci. Polon. Technol. 2013, 12, 135–147. [Google Scholar]
- Lu, J.; Wang, Y.; Chen, B.; Xie, Y.; Nie, W.; Zhou, H.; Xu, B. Effect of pigskin gelatin hydrolysate on the porcine meat quality during freezing. Meat Sci. 2022, 192, 108907. [Google Scholar] [CrossRef] [PubMed]
- Gorskaja, I.; Kotel’Nikova, A.; Drizovskaja, S. Coenzyme A in some materials of microbiological and animal origin. Biohimija 1964, 29, 566–569. [Google Scholar]
- Bechaux, J.; Gatellier, P.; Le Page, J.F.; Drillet, Y.; Sante-Lhoutellier, V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct. 2019, 10, 6244–6266. [Google Scholar] [CrossRef]
- Fu, Y.; Young, J.F.; Rasmussen, M.K.; Dalsgaard, T.K.; Lametsch, R.; Aluko, R.E.; Therkildsen, M. Angiotensin I–converting enzyme–inhibitory peptides from bovine collagen: Insights into inhibitory mechanism and transepithelial transport. Food Res. Int. 2016, 89, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Therkildsen, M.; Aluko, R.E.; Lametsch, R. Exploration of collagen from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit. Rev. Food Sci. 2018, 59, 2011–2027. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.; Adriano, D.; Mahimairaja, S. Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol. 2004, 34, 291–338. [Google Scholar] [CrossRef]
- Wang, Y.; Xin, Q.; Miao, Y.; Zeng, X.; Li, H.; Shan, K.; Nian, Y.; Zhao, D.; Wu, J.; Li, C. Interplay between transglutaminase treatment and changes in digestibility of dietary proteins. Food Chem. 2022, 373, 131446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xu, Y.; Gu, T.; Wang, H.; Yin, Y.; Sheng, B.; Li, Y.; Nian, Y.; Wang, C.; Li, C.; et al. Peptidomic investigation of the interplay between enzymatic tenderization and the digestibility of beef semimembranosus proteins. J. Agric. Food Chem. 2019, 68, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Huang, Z.; Jin, Z.; Zhou, C.; Wu, J.; Zhao, D.; Shan, K.; Ke, W.; Zhang, M.; Nian, Y.; et al. The effect of fat content in food matrix on the structure, rheological properties and digestive properties of protein. Food Hydrocoll. 2022, 126, 107464. [Google Scholar] [CrossRef]
- Allen, A.; Flemström, G.; Garner, A.; Kivilaakso, E. Gastroduodenal mucosal protection. Physiol. Rev. 1993, 73, 823–857. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.; Gupta, N.; Smith, R.D.; Pevzner, P.A. Does trypsin cut before proline? J. Proteome Res. 2008, 7, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Aprahamian, M.; Damgé, G.; Kerr-Conte, J.; Mutter, D.; Evard, S.; Marescaux, J. In vitro resistance of artificial connective tissues to human bile and pancreatic juice. Biomaterials 1992, 13, 697–703. [Google Scholar] [CrossRef]
- Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tome, D. Re-print of “Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host”. Pharmacol. Res. 2013, 69, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sheng, B.; Wu, Y.; Li, H.; Xu, D.; Nian, Y.; Mao, S.; Li, C.; Xu, X.; Zhou, G. Comparison of free and bound advanced glycation end products (ages) in food: A review on the possible influence on human health. J. Agric. Food Chem. 2019, 67, 14007–14018. [Google Scholar] [CrossRef]
- Hauri, H.P.; Sterchi, E.E.; Bienz, D.; Marxer, F.A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 1985, 101, 838–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moe, A.; Pocius, P.; Polan, C. Transport of L-amino acids by brush-border membrane vesicles from bovine small intestine. Dairy Sci. 1987, 70, 290–297. [Google Scholar] [CrossRef]
- Webb, K.; Bergman, E. Amino acid and peptide absorption and transport across the intestine. In Proceedings of the Seventh International Symposium on Ruminant Physiology; Academic Press: Cambridge, MA, USA, 1991; pp. 111–128. [Google Scholar]
- Mashima, Y.; Horibe, K.; Oshiba, I.; Yamasaki, K. Studies on the absorption of ‘small peptides’ and free amino acids in elemental diets. Clin. Nutr. 1984, 3, 17–21. [Google Scholar] [CrossRef]
- Le, T.T.; Deeth, H.C.; Larsen, L.B. Proteomics of major bovine milk proteins: Novel insights. Int. Dairy J. 2017, 67, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, D.; Zhu, S.; Nian, Y.; Xu, X.; Zhou, G.; Li, C. Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Res. Int. 2020, 134, 109225. [Google Scholar] [CrossRef] [PubMed]
- Reutersward, A.L.; Fabiansson, S. In vivo digestibility of insoluble collagen from bovine tendon as influenced by the inhibition of gastric acid secretion. J. Food Sci. 2010, 50, 1523–1525. [Google Scholar] [CrossRef]
- Pohl, J.; Dunn, B.M. Secondary enzyme-substrate interactions: Kinetic evidence for ionic interactions between substrate side chains and the pepsin active site. Biochemistry 1988, 27, 4827–4834. [Google Scholar] [CrossRef] [PubMed]
- Boudier, C.; Jung, M.L.; Stambolieva, N.; Bieth, J.G. Importance of secondary enzyme-substrate interactions in human cathepsin G and chymotrypsin II catalysis. Arch. Biochem. Biophys. 1981, 210, 790–793. [Google Scholar] [CrossRef]
- Hou, R.; Liu, Y.; Li, W.; Zhao, W.; Wang, C.; Li, Y.; Yan, Q.; Zhu, W.; Dong, J. Effect of high pressure processing on the microstructure, myofibrillar protein oxidation, and volatile compounds of sauce lamb tripe. Int. J. Food Eng. 2020, 16, 20190132. [Google Scholar] [CrossRef]
- Cheftel, J.C.; Culiolo, J. Effects of high pressure on meat: A review. Meat Sci. 1997, 46, 211–236. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.; Jiang, S.; Zhang, M.; Shan, K.; Ke, W.; Zhao, D.; Nian, Y.; Li, C. The effects of high pressure treatment on the structural and digestive properties of myoglobin. Food Res. Int. 2022, 156, 111193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; He, J.; Zou, X.; Nian, Y.; Li, C.; Xu, X.; Zhou, G. Influence of salting process on the structure and in vitro digestibility of actomyosin. J. Food Sci. Technol. 2019, 57, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, M.; Liu, H.; Li, Q.; Xue, D.; Nian, Y.; Zhao, D.; Shan, K.; Dai, C.; Li, C. Ultrasound treatment can increase digestibility of myofibrillar protein of pork with modified atmosphere packaging. Food Chem. 2022, 377, 131811. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Concentration (μmol/g Protein) | |||
---|---|---|---|---|
G15 | G120 | I15 | I120 | |
Tenderloin | 1.60 ± 0.02 B | 6.70 ± 0.33 A | 16.20 ± 2.99 A | 37.90 ± 3.71 A |
Liver | 1.58 ± 0.80 B | 3.34 ± 0.20 B | 8.73 ± 0.23 C | 11.53 ± 0.38 E |
Heart | 0.92 ± 0.08 C | 3.74 ± 0.10 B | 14.62 ± 0.16 B | 24.35 ± 2.11 B |
Tripe | 1.01 ± 0.14 C | 1.90 ± 0.24 C | 7.35 ± 1.84 D | 21.31 ± 1.38 C |
Skin | 3.28 ± 0.25 A | 6.84 ± 0.53 A | 7.40 ± 0.29 D | 14.94 ± 0.93 D |
AAs | Concentration of Free Amino Acids (μg/mL) | ||||
---|---|---|---|---|---|
Tenderloin | Liver | Heart | Tripe | Skin | |
Ala | 84.3 ± 6.5 A | 22.0 ± 3.4 B | 0.9 ± 0.2 E | 8.2 ± 1.5 D | 15.3 ± 2.4 C |
Glu | 841.6 ± 53.7 A | 115.7 ± 9.3 D | 509.1 ± 45.1 B | 108.0 ± 8.4 D | 394.9 ± 41.0 C |
His | 303.0 ± 26.9 A | 54.3 ± 4.8 B | 8.8 ± 1.1 C | 9.3 ± 0.4 C | 4.7 ± 0.6 C |
Lys | 892.5 ± 78.5 A | 126.4 ± 11.7 C | 495.7 ± 53.6 B | 117.6 ± 10.7 C | 461.3 ± 52.7 B |
Trp | 140.5 ± 16.1 A | 80.7 ± 5.2 C | 122.3 ± 10.5 B | 126.4 ± 13.9 B | 16.0 ± 2.4 D |
Tyr | 63.1 ± 4.9 A | 16.4 ± 3.2 D | 51.4 ± 4.4 B | 42.5 ± 6.0 C | 13.9 ± 3.1 D |
Carnosine | 398.9 ± 33.7 A | 11.5 ± 2.0 B | 7.7 ± 1.1 C | 1.4 ± 0.2 C | ND |
Anserine | 21.9 ± 3.3 | ND | ND | ND | ND |
Leu | 219.1 ± 18.6 D | 595.4 ± 49.5 C | 1129.7 ± 98.2 A | 934.1 ± 84.4 B | 138.5 ± 11.0 E |
Met | 14.5 ± 1.8 C | 38.0 ± 3.5 B | 116.4 ± 14.0 A | 109.6 ± 9.3 A | 15.4 ± 2.6 C |
Arg | 274.2 ± 21.7 B | 115.7 ± 12.8 C | 429.8 ± 42.7 A | 26.5 ± 2.9 D | 123.3 ± 14.1 C |
Asp | 21.6 ± 1.4 C | 19.7 ± 2.9 C | 6.2 ± 0.7 D | 415.4 ± 37.2 A | 32.9 ± 2.5 B |
Gln | 139.17 ± 10.4 B | 4.0 ± 0.4 D | 3.7 ± 0.4 D | 373.1 ± 37.4 A | 70.6 ± 4.8 C |
Cys | 1.2 ± 0.1 C | 6.2 ± 0.5 B | ND | 41.8 ± 6.6 A | 7.2 ± 1.2 B |
Val | 21.9 ± 2.7 C | 7.1 ± 0.6 D | 99.2 ± 8.4 B | 205.2 ± 22.0 A | 91.5 ± 5.1 B |
Phe | 17.6 ± 2.0 D | 217.5 ± 17.2 B | 445.6 ± 36.1 A | 470.3 ± 42.8 A | 169.8 ± 14.5 C |
Pro | 4.8 ± 0.7 D | 5.1 ± 0.8 D | 88.6 ± 5.3 B | 188.6 ± 19.3 A | 66.0 ± 4.9 C |
Ser | 2.4 ± 0.4 D | 2.5 ± 0.7 D | 22.3 ± 1.3 B | 132.5 ± 14.2 A | 10.8 ± 2.0 C |
Thr | 13.2 ± 1.9 D | 10.0 ± 1.4 D | 63.4 ± 7.6 B | 367.2 ± 31.7 A | 39.7 ± 5.1 C |
Ile | 89.1 ± 5.8 D | 299.3 ± 24.2 C | 565.6 ± 47.3 B | 777.6 ± 68.4 A | 81.0 ± 6.5 D |
Asn | 94.3 ± 10.8 B | ND | 7.2 ± 1.1 C | 334.2 ± 41.0 A | ND |
Hydroxyproline | 7.4 ± 5.1 C | 1.1 ± 0.4 D | 1.3 ± 0.5 D | 21.7 ± 3.1 B | 157.9 ± 12.4 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Lv, B.; Zhang, K.; Zhu, Z.; Li, Q.; Sheng, B.; Zhao, D.; Li, C. Digestion Profiles of Protein in Edible Pork By-Products. Foods 2022, 11, 3191. https://doi.org/10.3390/foods11203191
Zeng X, Lv B, Zhang K, Zhu Z, Li Q, Sheng B, Zhao D, Li C. Digestion Profiles of Protein in Edible Pork By-Products. Foods. 2022; 11(20):3191. https://doi.org/10.3390/foods11203191
Chicago/Turabian StyleZeng, Xianming, Bowen Lv, Kexin Zhang, Zhe Zhu, Qiuyue Li, Bulei Sheng, Di Zhao, and Chunbao Li. 2022. "Digestion Profiles of Protein in Edible Pork By-Products" Foods 11, no. 20: 3191. https://doi.org/10.3390/foods11203191
APA StyleZeng, X., Lv, B., Zhang, K., Zhu, Z., Li, Q., Sheng, B., Zhao, D., & Li, C. (2022). Digestion Profiles of Protein in Edible Pork By-Products. Foods, 11(20), 3191. https://doi.org/10.3390/foods11203191