Effect of Animal Age, Postmortem Calcium Chloride Marination, and Storage Time on Meat Quality Characteristics of M. longissimus thoracis et lumborum of Buffalo Bulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collections of Samples and Treatments
2.2. pH Measurement
2.3. Color Analysis
2.4. Cooking Loss and Shear Force Determination
2.5. Water-Holding Capacity
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. pH
3.2. Color
3.3. Shear Force and Cooking Loss
3.4. Water-Holding Capacity
3.5. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naveena, B.; Kiran, M. Buffalo meat quality, composition, and processing characteristics: Contribution to the global economy and nutritional security. Anim. Front. 2014, 4, 18–24. [Google Scholar] [CrossRef]
- Kandeepan, G.; Anjaneyulu, A.S.R.; Kondaiah, N.; Mendiratta, S.K.; Lakshmanan, V. Effect of age and gender on the processing characteristics of buffalo meat. Meat Sci. 2009, 83, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Neath, K.E.; Del Barrio, A.N.; Lapitan, R.M.; Herrera, J.R.V.; Cruz, L.C.; Fujihara, T.; Kanai, Y. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Sci. 2007, 75, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Jaspal, M.H.; Badar, I.H.; Amjad, O.B.; Yar, M.K.; Ijaz, M.; Manzoor, A.; Wara, U.U. Effect of Wet Aging on Color Stability, Tenderness, and Sensory Attributes of Longissimus lumborum and Gluteus medius Muscles from Water Buffalo Bulls. Animals 2021, 11, 2248. [Google Scholar] [CrossRef]
- Colle, M.J.; Nasados, J.A.; Rogers, J.M.; Kerby, D.M.; Colle, M.M.; Van Buren, J.B.; Doumit, M.E. Strategies to improve beef tenderness by activating calpain-2 earlier postmortem. Meat Sci. 2018, 135, 36–41. [Google Scholar] [CrossRef]
- Di Stasio, L.; Brugiapaglia, A. Current knowledge on river buffalo meat: A critical analysis. Animals 2021, 11, 2111. [Google Scholar] [CrossRef]
- Ijaz, M.; Li, X.; Zhang, D.; Hussain, Z.; Ren, C.; Bai, Y.; Zheng, X. Association between meat color of DFD beef and other quality attributes. Meat Sci. 2019, 161, 107954. [Google Scholar] [CrossRef]
- Malheiros, J.M.; Braga, C.P.; Grove, R.A.; Ribeiro, F.A.; Calkins, C.R.; Adamec, J.; Chardulo, L.A.L. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Sci. 2019, 148, 64–71. [Google Scholar] [CrossRef]
- Badar, I.H.; Jaspal, M.H.; Yar, M.K.; Khalique, A.; Zhang, L.; Husnain, F. Effect of strain and slaughter age on production performance, meat quality and processing characteristics of broilers reared under tropical climatic conditions. Eur. Poult. Sci. 2021, 85, 1–17. [Google Scholar]
- Behrends, J.M.; Goodson, K.J.; Koohmaraie, M.; Shackelford, S.D.; Wheeler, T.L.; Morgan, W.W.; Savell, J.W. Beef customer satisfaction: USDA quality grade and marination effects on consumer evaluations of top round steaks. J. Anim. Sci. 2005, 83, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Bekhit, A.E.D. Can information influence the value and quality perception of beef? Age 2013, 18, 13–19. [Google Scholar]
- Xiao, X.; Hou, C.; Zhang, D.; Li, X.; Ren, C.; Liu, D. Effect of pre-and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Sci. 2020, 169, 108220. [Google Scholar] [CrossRef] [PubMed]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between beef consumer tenderness perception and Warner–Bratzler shear force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Zhang, D.; Ren, C.; Bai, Y.; Ijaz, M.; Zhao, Y. Acetylation of sarcoplasmic and myofibrillar proteins were associated with ovine meat quality attributes at early postmortem. Food Sci. Anim. Resour. 2021, 41, 650–663. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.R.; Muthukumar, M.; Naveena, B.M.; Ramanna, D.B.V. Effects on colour characteristics of buffalo meat during blooming, retail display and using vitamin C during refrigerated storage. J. Food Sci. Technol. 2012, 51, 3515–3519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geesink, G.H.; Taylor, R.G.; Bekhit, A.E.D.; Bickerstaffe, R. Evidence against the non-enzymatic calcium theory of tenderization. Meat Sci. 2001, 59, 417–422. [Google Scholar] [CrossRef]
- Lana, A.; Zolla, L. Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J. Proteom. 2016, 147, 85–97. [Google Scholar] [CrossRef]
- Perez-Chabela, M.L.; Guerrero-Legarreta, L.I.; Gutierrez-Ruiz, M.C.; Betancourt-Rule, J.M.; Perez-Torres, A.; Ustarroz-Cano, M. Effect of calcium chloride marination on electrophoretical and structural characteristics of beef, horse, rabbit and chicken meat. Int. J. Food Prop. 2005, 8, 207–219. [Google Scholar] [CrossRef]
- Perez, M.L.; Escalona, H.; Guerrero, I. Effect of calcium chloride marination on calpain and quality characteristics of meat from chicken, horse, cattle and rabbit. Meat Sci. 1998, 48, 125–134. [Google Scholar] [CrossRef]
- Anonymous. Handbook of Australian Meat, 7th ed.; AUS-MEAT Limited: Brisbane, Australia, 2005; pp. 47–48. ISBN 0957879369. [Google Scholar]
- Ijaz, M.; Jaspal, M.H.; Hayat, Z.; Yar, M.K.; Badar, I.H.; Ullah, S.; Sardar, A. Effect of animal age, postmortem chilling rate, and aging time on meat quality attributes of water buffalo and humped cattle bulls. Anim. Sci. J. 2020, 91, 13354. [Google Scholar] [CrossRef]
- Jaspal, M.H.; Ijaz, M.; ul Haq, H.A.; Yar, M.K.; Asghar, B.; Manzoor, A.; Hussain, J. Effect of oregano essential oil or lactic acid treatments combined with air and modified atmosphere packaging on the quality and storage properties of chicken breast meat. LWT-Food Sci. Technol. 2021, 146, 111459. [Google Scholar] [CrossRef]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Morris, S.; Hopkins, D.L. The effect of whole carcase medium voltage electrical stimulation, tenderstretching and longissimus infusion with actinidin on alpaca meat quality. Meat Sci. 2020, 164, 108107. [Google Scholar] [CrossRef] [PubMed]
- Grau, R.; Hamm, R.A. A simple method for the determination of water binding in muscles. Sci. Nat. 1953, 40, 29–30. [Google Scholar] [CrossRef]
- Caine, W.R.; Aalhus, J.L.; Best, D.R.; Dugan, M.E.R.; Jeremiah, L.E. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 2003, 64, 333–339. [Google Scholar] [CrossRef]
- Dikeman, M.E.; Hunt, M.C.; Addis, P.B.; Schoenbeck, H.J.; Pullen, M.; Katsanidis, E.; Yancey, E.J. Effects of postexsanguination vascular infusion of cattle with a solution of saccharides, sodium chloride, and phosphates or with calcium chloride on quality and sensory traits of steaks and ground beef. J. Anim. Sci. 2003, 81, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf-life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- Stanisic, N.; Petricevic, M.; Zivkovic, D.; Petrovic, M.M.; Ostojic-Andric, D.; Aleksic, S.; Stajic, S. Changes of physical-chemical properties of beef during 14 days of chilling. Biotechnol. Anim. Husb. 2012, 28, 77–85. [Google Scholar] [CrossRef]
- Mancini, R.A.; Ramanathan, R. Effects of postmortem storage time on color and mitochondria in beef. Meat Sci. 2014, 98, 65–70. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Thirawong, P.; Leangwunta, V.; Kreuzer, M. Reducing toughness of beef from Bos indicus draught steers by injection of calcium chloride: Effect of concentration and time postmortem. Meat Sci. 2004, 68, 61–69. [Google Scholar] [CrossRef]
- Rajagopal, K.; Oommen, G.T.; Kuttinarayanan, P.; George, S.; SyamMohan, K.M. Effect of post rigor marination with calcium chloride on the tenderness, colour and palatability traits of buffalo meat. Nutr. Food Sci. 2015, 45, 20–38. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Ijaz, M.; Tian, G.; Chen, J.; Du, M. Colour characteristics of beef longissimus thoracis during early 72 h postmortem. Meat Sci. 2020, 170, 108245. [Google Scholar] [CrossRef]
- Naveena, B.M.; Muthukumar, M.; Sen, A.R.; Babji, Y.; Murthy, T.R.K. Improvement of shelf-life of buffalo meat using lactic acid, clove oil and vitamin C during retail display. Meat Sci. 2006, 74, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Kaur, K.; Shahi, A.K.; Kairam, N.; Tyagi, S.K. Antilisterial, antimicrobial and antioxidant effects of pediocin and Murraya koenigii berry extract in refrigerated goat meat emulsion. LWT-Food Sci. Technol. 2017, 79, 135–144. [Google Scholar] [CrossRef]
- Gerelt, B.; Ikeuchi, Y.; Nishiumi, T.; Suzuki, A. Meat tenderization by calcium chloride after osmotic dehydration. Meat Sci. 2002, 60, 237–244. [Google Scholar] [CrossRef]
- Schonfeldt, H.C.; Strydom, P.E. Effect of age and cut on tenderness of South African beef. Meat Sci. 2011, 87, 206–218. [Google Scholar] [CrossRef]
- Lansdell, J.L.; Miller, M.F.; Wheeler, T.L.; Koohmaraie, M.; Ramsey, C.B. Postmortem injection of calcium chloride effects on beef quality traits. J. Anim. Sci. 1995, 73, 1735–1740. [Google Scholar] [CrossRef]
- Farouk, M.M.; Price, J.F.; Salih, A.M. Post-exsanguination infusion of ovine carcasses: Effect on tenderness indicators and muscle microstructure. J. Food Sci. 1992, 57, 1311–1315. [Google Scholar] [CrossRef]
- Harris, S.E.; Huff-Lonergan, E.; Lonergan, S.M.; Jones, W.R.; Rankins, D. Antioxidant status affects color stability and tenderness of calcium chloride-injected beef. J. Anim. Sci. 2001, 79, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Yu, X.; Khan, M.A.; Shao, J.; Xiang, Y.; Zhou, G. The effect of calcium chloride injection on shear force and caspase activities in bovine longissimus muscles during postmortem conditioning. Animal 2012, 6, 1018–1022. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, T.E.; Dikeman, M.E.; Stephens, J.W.; Obuz, E.; Davis, J.R. In situ investigation of the calcium-induced proteolytic and salting-in mechanisms causing tenderization in calcium-enhanced muscle. Meat Sci. 2004, 66, 69–75. [Google Scholar] [CrossRef]
- Shimada, K.; Takahashi, K. Relationship between fragmentation of myofibrils and liberation of phospholipids from Z-disks induced by calcium ions at 0.1 mM: Mechanism of tenderization of pork and beef during postmortem aging. J. Food Sci. 2003, 68, 2623–2629. [Google Scholar] [CrossRef]
- Huang, C.; Hou, C.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci. Technol. 2020, 105, 416–432. [Google Scholar] [CrossRef]
- Purslow, P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005, 70, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.B.; Miller, R.K.; Mendez, F.M.; Hale, D.S.; Savell, J.W. Using calcium chloride injection to improve tenderness of beef from mature cows. J. Anim. Sci. 1991, 69, 4469–4476. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.; Purslow, P.P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins. Meat Sci. 2001, 58, 17–23. [Google Scholar] [CrossRef]
- Diles, J.J.B.; Miller, M.F.; Owen, B.L. Calcium chloride concentration, injection time, and aging period effects on tenderness, sensory, and retail color attributes of loin steaks from mature cows. J. Anim. Sci. 1994, 72, 2017–2021. [Google Scholar] [CrossRef]
- Carr, M.A.; Crockett, K.L.; Ramsey, C.B.; Miller, M.F. Consumer acceptance of calcium chloride-marinated top loin steaks. J. Anim. Sci. 2004, 82, 1471–1474. [Google Scholar] [CrossRef]
- Clare, T.L.; Jackson, S.P.; Miller, M.F.; Elliott, C.T.; Ramsey, C.B. Improving tenderness of normal and callipyge lambs with calcium chloride. J. Anim. Sci. 1997, 75, 377–385. [Google Scholar] [CrossRef]
pH | L* | a* | b* | C* | h* | ΔE | |
---|---|---|---|---|---|---|---|
Age groups | |||||||
Young | 5.77 a | 46.49 | 16.41 | 6.24 b | 17.58 b | 20.70 b | 2.40 |
Spent | 5.60 b | 45.92 | 16.47 | 7.92 a | 18.39 a | 25.40 a | 2.35 |
SE * | 0.01 | 0.22 | 0.23 | 0.10 | 0.22 | 0.35 | 0.12 |
Treatments | |||||||
Marinated | 5.70 | 46.78 a | 16.06 b | 7.20 | 17.76 | 24.05a | 2.38 a |
Non-Marinated | 5.68 | 45.64 b | 16.81 a | 6.96 | 18.21 | 22.05 b | 2.25 b |
SE * | 0.01 | 0.22 | 0.23 | 0.10 | 0.22 | 0.35 | 0.15 |
Storage time (days) | |||||||
0 | 5.62 c,d | 47.16 | 18.40 a | 7.41 | 19.95 a | 20.93 b | NA # |
2 | 5.60 d | 46.36 | 16.36 b | 7.05 | 18.01 b | 22.81 a,b | 2.22 c |
4 | 5.67 b,c | 46.31 | 16.62 b | 7.10 | 18.13 b | 23.07 a,b | 1.99 c |
6 | 5.71 b | 46.01 | 16.39 b | 7.04 | 17.82 b | 23.42 a,b | 2.35 c |
8 | 5.73 a,b | 45.59 | 16.21 b,c | 7.13 | 17.79 b,c | 23.24 a,b | 2.71 b,c |
10 | 5.79 a | 45.81 | 14.64 c | 6.74 | 16.20 c | 24.80 a | 4.05 a |
SE * | 0.02 | 0.38 | 0.40 | 0.18 | 0.39 | 0.62 | 0.22 |
ANOVA (p-value) | |||||||
Age groups | 0.000 | 0.072 | 0.865 | 0.000 | 0.014 | 0.000 | 0.061 |
Treatments | 0.086 | 0.000 | 0.027 | 0.105 | 0.170 | 0.000 | 0.012 |
Days | 0.000 | 0.080 | 0.000 | 0.241 | 0.000 | 0.002 | 0.031 |
pH | L* | a* | b* | C* | h* | ΔE | ||
---|---|---|---|---|---|---|---|---|
Age groups × Days | ||||||||
Young | Day 0 | 5.70 b,c,d | 47.07 | 15.08 b,c,d | 5.07 f | 16.00 d,e | 18.29 | 4.06 b,c |
Day 2 | 5.70 b,c,d | 46.92 | 15.59 b,c,d | 5.57 e,f | 16.59 c,d,e | 19.55 | 3.37 c,d | |
Day 4 | 5.80 a,b | 46.67 | 16.82 b,c | 6.46 d,e | 18.06 b,c,d | 20.95 | 1.91 e,f | |
Day 6 | 5.80 a,b | 45.98 | 17.18 b,c | 6.49 d,e | 18.29 b,c,d | 20.72 | 1.93 e,f | |
Day 8 | 5.78 a,b,c | 46.04 | 17.59 b | 7.20 c,d | 19.01 b,c | 22.28 | 1.40 f | |
Day 10 | 5.86 a | 46.29 | 16.22 b,c | 6.67 c,d,e | 17.53 b,c,d | 22.40 | 2.46 e | |
Spent | Day 0 | 5.55 e,f | 47.25 | 21.73 a | 9.76 a | 23.90 a | 23.65 | 4.08 b,c |
Day 2 | 5.49 f | 45.80 | 17.14 b,c | 8.53 a,b | 19.42 b | 26.06 | 2.17 e | |
Day 4 | 5.55 e,f | 45.96 | 16.43 b,c | 7.73 b,c | 18.19 b,c,d | 25.19 | 2.33 e | |
Day 6 | 5.62 d,e | 46.05 | 15.60 b,c,d | 7.59 b,c,d | 17.35 b,c,d,e | 26.12 | 3.02 d,e | |
Day 8 | 5.69 c,d | 45.15 | 14.83 c,d | 7.06 c,d | 16.57 c,d,e | 24.20 | 4.11 b,c | |
Day 10 | 5.72 b,c,d | 45.33 | 13.07 d | 6.81 c,d | 14.87 e | 27.19 | 5.66 a | |
SE * | 0.02 | 0.54 | 0.57 | 0.26 | 0.55 | 0.87 | 0.16 | |
ANOVA (p-value) | ||||||||
Age groups × Treatments | 0.188 | 0.747 | 0.106 | 0.902 | 0.152 | 0.090 | 0.325 | |
Age groups × Days | 0.011 | 0.765 | 0.000 | 0.000 | 0.000 | 0.174 | 0.021 | |
Treatment × Days | 0.968 | 0.261 | 0.458 | 0.224 | 0.307 | 0.137 | 0.264 | |
Age groups × Treatment × Days | 0.464 | 0.239 | 0.184 | 0.238 | 0.146 | 0.806 | 0.159 |
SF (N) | CL% | EW% # | |
---|---|---|---|
Age groups | |||
Young | 30.83 b | 40.30 | 13.58 |
Spent | 37.84 a | 40.41 | 13.31 |
SE * | 0.10 | 0.24 | 0.20 |
Treatments | |||
Marinated | 32.87 b | 41.87 a | 16.26 a |
Non-Marinated | 35.80 a | 38.84 b | 10.63 b |
SE * | 0.10 | 0.24 | 0.20 |
Storage time (days) | |||
0 | 39.44 a | 40.18 | 13.13 b |
2 | 37.27 b | 40.86 | 15.25 a |
4 | 34.91 c | 39.95 | 13.70 b |
6 | 33.11 d | 40.78 | 12.93 b |
8 | 31.33 e | 40.25 | 13.26 b |
10 | 29.89 f | 40.09 | 12.39 b |
SE * | 0.18 | 0.43 | 0.34 |
ANOVA (p-value) | |||
Age groups | 0.000 | 0.764 | 0.341 |
Treatments | 0.000 | 0.000 | 0.000 |
Days | 0.000 | 0.580 | 0.000 |
SF (N) | CL% | EW% # | ||
---|---|---|---|---|
Age groups × Treatments | ||||
Young | Marinated | 29.37 | 41.45 a | 16.56 |
Non-Marinated | 32.29 | 39.15 b | 10.60 | |
Spent | Marinated | 36.37 | 42.29 a | 15.96 |
Non-Marinated | 39.31 | 38.52 b | 10.65 | |
SE * | 0.14 | 0.35 | 0.28 | |
Age groups × Days | ||||
Young | Day 0 | 35.21 d,e | 39.25 | 13.81 |
Day 2 | 33.72 f,g | 41.13 | 15.56 | |
Day 4 | 31.61 h | 41.24 | 13.80 | |
Day 6 | 29.92 i | 40.11 | 13.06 | |
Day 8 | 28.11 j | 39.96 | 13.13 | |
Day 10 | 26.44 k | 40.13 | 12.12 | |
Spent | Day 0 | 43.67 a | 41.12 | 12.46 |
Day 2 | 40.81 b | 40.58 | 14.95 | |
Day 4 | 38.22 c | 38.67 | 13.59 | |
Day 6 | 36.31 d | 41.46 | 12.80 | |
Day 8 | 34.66 e,f | 40.55 | 13.39 | |
Day 10 | 33.35 g | 40.06 | 12.66 | |
SE * | 0.28 | 0. 66 | 0. 58 | |
Treatment × Days | ||||
Marinated | Day 0 | 38.68 b | 42.69 a | 15.29 |
Day 2 | 36.20 c | 42.31 a | 18.24 | |
Day 4 | 33.40 e | 42.25 a,b | 16.81 | |
Day 6 | 31.45 f | 41.48 a,b,c | 15.70 | |
Day 8 | 29.45 g | 41.31 a,b,c | 16.22 | |
Day 10 | 28.04 h | 41.18 a,b,c | 15.31 | |
Non-Marinated | Day 0 | 40.20 a | 37.68 d | 10.97 |
Day 2 | 39.33 b | 39.40 b,c,d | 12.27 | |
Day 4 | 36.43 c | 37.65 d | 10.58 | |
Day 6 | 34.78 d | 40.09 a,b,c,d | 10.16 | |
Day 8 | 33.31 e | 39.19 c,d | 10.30 | |
Day 10 | 31.74 f | 39.01 c,d | 9.46 | |
SE * | 0.25 | 0. 70 | 0.49 | |
Age groups × Treatment × Days | ||||
Young Marinated | Day 0 | 34.34 h | 42.20 | 16.88 |
Day 2 | 32.75 i,j | 42.25 | 18.87 | |
Day 4 | 30.12 l | 42.82 | 16.86 | |
Day 6 | 28.10 m | 40.28 | 15.72 | |
Day 8 | 26.17 n | 40.23 | 16.08 | |
Day 10 | 24.80 o | 40.94 | 14.97 | |
Young Non-Marinated | Day 0 | 36.09 f,g | 36.30 | 10.74 |
Day 2 | 34.71 h | 40.01 | 12.26 | |
Day 4 | 33.11 i | 39.66 | 10.75 | |
Day 6 | 31.75 j,k | 39.95 | 10.41 | |
Day 8 | 30.05 l | 39.70 | 10.18 | |
Day 10 | 28.08 m | 39.33 | 9.28 | |
Spent Marinated | Day 0 | 43.03 b | 43.18 | 13.71 |
Day 2 | 39.67 b | 42.38 | 17.62 | |
Day 4 | 36.68 f | 41.69 | 16.76 | |
Day 6 | 34.81 h | 42.69 | 15.70 | |
Day 8 | 32.74 i,j | 42.41 | 16.36 | |
Day 10 | 31.29 k | 41.42 | 15.66 | |
Spent Non-Marinated | Day 0 | 44.33 a | 39.07 | 11.22 |
Day 2 | 41.96 c | 38.80 | 12.29 | |
Day 4 | 39.77 b | 35.65 | 10.43 | |
Day 6 | 37.81 e | 40.24 | 9.92 | |
Day 8 | 36.58 f | 38.69 | 10.44 | |
Day 10 | 35.41 g,h | 38.71 | 9.66 | |
SE * | 0.36 | 0.86 | 0.69 | |
ANOVA (p-value) | ||||
Age groups × Treatments | 0.945 | 0.038 | 0.256 | |
Age groups × Days | 0.001 | 0.027 | 0.469 | |
Treatment × Days | 0.000 | 0.017 | 0.439 | |
Age groups × Treatment × Days | 0.000 | 0.369 | 0.257 |
Odor | Flavor | Texture | Juiciness | |
Age groups | ||||
Young | 5.80 b | 5.90 | 5.95 a | 5.79 |
Spent | 6.29 a | 6.05 | 5.62 b | 5.63 |
SE * | 0.07 | 0.06 | 0.05 | 0.06 |
Treatments | ||||
Marinated | 6.17 a | 6.14 a | 6.25 a | 5.85 a |
Non-Marinated | 5.91 b | 5.81 b | 5.41 b | 5.56 b |
SE * | 0.07 | 0.06 | 0.05 | 0.06 |
Storage time (days) | ||||
2 | 6.10 | 6.07 a | 5.79 | 5.65 |
10 | 5.99 | 5.88 b | 5.88 | 5.76 |
SE * | 0.07 | 0.06 | 0.05 | 0.06 |
ANOVA (p-value) | ||||
Age groups | 0.000 | 0.104 | 0.037 | 0.098 |
Treatments | 0.014 | 0.001 | 0.000 | 0.003 |
Days | 0.298 | 0.050 | 0.617 | 0.257 |
Odor | Flavor | Texture | Juiciness | ||
---|---|---|---|---|---|
Age groups × Treatments | |||||
Young | Marinated | 5.70 b | 5.88 b | 6.43 a | 5.86 |
Non-Marinated | 5.90 b | 5.91 b | 5.41 c | 5.71 | |
Spent | Marinated | 6.65 a | 6.40 a | 6.08 b | 5.85 |
Non-Marinated | 5.93 b | 5.71 b | 5.41 c | 5.41 | |
SE | 0.10 | 0.09 | 0.08 | 0.09 | |
Treatment × Days | |||||
Marinated | Day 2 | 6.35 a | 6.30 | 6.18 | 5.88 |
Day 10 | 6.00 a,b | 5.98 | 6.33 | 5.83 | |
Non-Marinated | Day 2 | 5.85 b | 5.85 | 5.38 | 5.43 |
Day 10 | 5.98 a,b | 5.78 | 5.45 | 5.70 | |
SE | 0.10 | 0.09 | 0.08 | 0.09 | |
Age groups × Treatment x Days | |||||
Young Marinated | Day 2 | 5.76 b,c | 5.96 | 6.06 | 5.86 |
Day 10 | 5.63 c | 5.80 | 6.10 | 5.86 | |
Young Non-Marinated | Day 2 | 6.00 b,c | 5.90 | 5.43 | 5.63 |
Day 10 | 5.80 b,c | 5.93 | 5.40 | 5.80 | |
Spent Marinated | Day 2 | 6.93 a | 6.63 | 6.60 | 5.90 |
Day 10 | 6.36 a,b | 6.16 | 6.26 | 5.80 | |
Spent Non-Marinated | Day 2 | 5.70 c | 5.80 | 5.33 | 5.23 |
Day 10 | 6.16 b,c | 5.63 | 5.50 | 5.60 | |
SE | 0.14 | 0.13 | 0.11 | 0.13 | |
ANOVA (p-value) | |||||
Age groups × Treatments | 0.000 | 0.000 | 0.037 | 0.139 | |
Age groups × Days | 0.575 | 0.199 | 0.617 | 0.794 | |
Treatment × Days | 0.021 | 0.199 | 0.194 | 0.098 | |
Age groups × Treatment x Days | 0.009 | 0.797 | 0.090 | 0.433 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijaz, M.; Jaspal, M.H.; Akram, M.U.; Badar, I.H.; Yar, M.K.; Suleman, R.; Manzoor, A.; Farooq, M.; Ali, S.; Hussain, Z.; et al. Effect of Animal Age, Postmortem Calcium Chloride Marination, and Storage Time on Meat Quality Characteristics of M. longissimus thoracis et lumborum of Buffalo Bulls. Foods 2022, 11, 3193. https://doi.org/10.3390/foods11203193
Ijaz M, Jaspal MH, Akram MU, Badar IH, Yar MK, Suleman R, Manzoor A, Farooq M, Ali S, Hussain Z, et al. Effect of Animal Age, Postmortem Calcium Chloride Marination, and Storage Time on Meat Quality Characteristics of M. longissimus thoracis et lumborum of Buffalo Bulls. Foods. 2022; 11(20):3193. https://doi.org/10.3390/foods11203193
Chicago/Turabian StyleIjaz, Muawuz, Muhammad Hayat Jaspal, Muhammad Usman Akram, Iftikhar Hussain Badar, Muhammad Kashif Yar, Raheel Suleman, Adeel Manzoor, Muhammad Farooq, Sher Ali, Zubair Hussain, and et al. 2022. "Effect of Animal Age, Postmortem Calcium Chloride Marination, and Storage Time on Meat Quality Characteristics of M. longissimus thoracis et lumborum of Buffalo Bulls" Foods 11, no. 20: 3193. https://doi.org/10.3390/foods11203193
APA StyleIjaz, M., Jaspal, M. H., Akram, M. U., Badar, I. H., Yar, M. K., Suleman, R., Manzoor, A., Farooq, M., Ali, S., Hussain, Z., Mahmood, M., Rahman, A., & Ali, R. S. (2022). Effect of Animal Age, Postmortem Calcium Chloride Marination, and Storage Time on Meat Quality Characteristics of M. longissimus thoracis et lumborum of Buffalo Bulls. Foods, 11(20), 3193. https://doi.org/10.3390/foods11203193