CaSO4 Increases Yield and Alters the Nutritional Contents in Broccoli (Brassica oleracea L. Var. italica) Microgreens under NaCl Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Determination of GS
2.3. Determination of Sulforaphane
2.4. Determination of Nitrate
2.5. Determination of Mineral Elements
2.6. Statistical Analysis
3. Results
3.1. Yield
3.2. Nutritional Characteristic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Montaser, A. Inductively Coupled Plasma Mass Spectrometry; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The Science behind Microgreens as an Exciting New Food for the 21st Century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.F. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems. Front. Nutr. 2017, 4. [Google Scholar] [CrossRef]
- Teng, J.; Liao, P.; Wang, M. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food. Funct. 2021, 12, 1914–1932. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Rausch, S.R.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. Food Sci. Technol. 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Rai, R.; Gong Essel, K.; Mangiaracina Benbrook, D.; Garland, J.; Daniel Zhao, Y.; Chandra, V. Preclinical Efficacy and Involvement of AKT, mTOR, and ERK Kinases in the Mechanism of Sulforaphane against Endometrial Cancer. Cancers 2020, 12, 1273. [Google Scholar] [CrossRef]
- Uddin, M.S.; Al Mamun, A.; Jakaria, M.; Thangapandiyan, S.; Ahmad, J.; Rahman, M.A.; Mathew, B.; Abdel-Daim, M.M.; Aleya, L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci. Total Environ. 2020, 707, 135624. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Cai, L. 470-P: Combined Use of Sulforaphane and Zinc Provides a Better Protection against Diabetic Cardiomyopathy than Either One Alone in Type 1 Diabetic OVE26 Mice. Diabetes 2019, 68, 470. [Google Scholar] [CrossRef]
- Yuan, G.; Wang, X.; Guo, R.; Wang, Q. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 2010, 121, 1014–1019. [Google Scholar] [CrossRef]
- Esfandiari, A.; Saei, A.; Mckenzie, M.J.; Matich, A.J.; Babalar, M.; Hunter, D.A. Preferentially enhancing anti-cancer isothiocyanates over glucosinolates in broccoli sprouts: How NaCl and salicylic acid affect their formation. Plant Physiol. Biochem. 2017, 115, 343–353. [Google Scholar] [CrossRef]
- Wang, M.; Cai, C.; Lin, J.; Tao, H.; Zeng, W.; Zhang, F.; Miao, H.; Sun, B.; Wang, Q. Combined treatment of epi-brassinolide and NaCl enhances the main phytochemicals in Chinese kale sprouts. Food Chem. 2020, 315, 126275. [Google Scholar] [CrossRef]
- European FSAE. Nitrate in vegetables-Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J. 2008, 6, 689. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Urrestarazu, M.U.O.A.; Postigo, A.; Salas, M.; Sanchez, A.; Carrasco, G. Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions. J. Plant Nutr. 1998, 21, 1705–1714. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Rubinigg, M.; Posthumus, F.; Ferschke, M.; Elzenga, J.M.; Stulen, I. Effects of NaCl salinity on 15N-nitrate fluxes and specific root length in the halophyte Plantago maritima L. Plant Soil 2003, 250, 201. [Google Scholar] [CrossRef]
- Jamshidi Goharrizi, K.; Riahi-Madvar, A.; Rezaee, F.; Pakzad, R.; Jadid Bonyad, F.; Ghazizadeh Ahsaei, M. Effect of Salinity Stress on Enzymes’ Activity, Ions Concentration, Oxidative Stress Parameters, Biochemical Traits, Content of Sulforaphane, and CYP79F1 Gene Expression Level in Lepidium draba Plant. J. Plant Growth Regul. 2020, 39, 1075–1094. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Bonilla, I.; El-Hamdaoui, A.; Bolaños, L. Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 2004, 267, 97–107. [Google Scholar] [CrossRef]
- Guimarães, F.V.A.; de Lacerda, C.F.; Marques, E.C.; de Miranda, M.R.A.; de Abreu, C.E.B.; Prisco, J.T.; Gomes-Filho, E. Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regul. 2011, 65, 55–63. [Google Scholar] [CrossRef]
- Tuna, A.L.; Kaya, C.; Ashraf, M.; Altunlu, H.; Yokas, I.; Yagmur, B. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Exp. Bot. 2007, 59, 173–178. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, Y.; Luo, Y. Effects of Sulfur Fertilization on the Accumulation of Health-Promoting Phytochemicals in Radish Sprouts. J. Agric. Food Chem. 2013, 61, 7552–7559. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhu, Y.; Wang, F. Calcium sulfate treatment enhances bioactive compounds and antioxidant capacity in broccoli sprouts during growth and storage. Postharvest Biol. Technol. 2018, 139, 12–19. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, J.; He, Y.; Zang, Y.; Zhu, Z. Glucosinolate Accumulation and Related Gene Expression in Pak Choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in Response to Insecticide Application. J. Agric. Food Chem. 2015, 63, 9683–9689. [Google Scholar]
- Guo, L.; Yang, R.; Wang, Z.; Guo, Q.; Gu, Z. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. J. Funct. Foods 2014, 9, 70–77. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Liu, Y.; Yu-Pei, C.; Li, F.; Yuan-Zhi, S. Study on the difference between cadmium absorption and accumulation in different tea varieties. J. Agric. Resour. Environ. 2021, 38, 401–410. [Google Scholar]
- Hokura, A.; Matsuura, H.; Katsuki, F.; Haraguchi, H. Multielement Determination of Major-to-Ultratrace Elements in Plant Reference Materials by ICP-AES/ICP-MS and Evaluation of Their Enrichment Factors. Anal. Sci. 2000, 16, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Baenas, N.; Gonzalez-Trujano, M.E.; Guadarrama-Enriquez, O.; Pellicer, F.; Garcia-Viguera, C.; Moreno, D.A. Broccoli sprouts in analgesia—Preclinical in vivo studies. Food Funct. 2017, 8, 167–176. [Google Scholar] [CrossRef]
- Guo, L.; Yang, R.; Wang, Z.; Guo, Q.; Gu, Z. Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. Int. J. Food Sci. Nutr. 2013, 65, 476–481. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compost. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Hassini, I.; Martinez-Ballesta, M.C.; Boughanmi, N.; Moreno, D.A.; Carvajal, M. Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci. Hortic. 2017, 226, 141–151. [Google Scholar] [CrossRef]
- Pantin, F.; Simonneau, T.; Muller, B. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012, 196, 349–366. [Google Scholar] [CrossRef]
- James, R.A.; Rivelli, A.R.; Munns, R.; Caemmerer, S.V. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct. Plant Biol. 2002, 29, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Moulia, B.; Fournier, M. The power and control of gravitropic movements in plants: A biomechanical and systems biology view. J. Exp. Bot. 2009, 60, 461–486. [Google Scholar] [CrossRef] [Green Version]
- Proseus, T.E.; Boyer, J.S. Tension required for pectate chemistry to control growth in Chara corallina. J. Exp. Bot. 2007, 58, 4283–4292. [Google Scholar] [CrossRef] [Green Version]
- Gholamnejad, S.; Haghighi, M.; Etemadi, N.; Shariatmadari, H. Fortification of tomato with Ca and its effects on the fruit quality, calcium status and nutraceutical values of tomato in different NO3:NH4 ratios. N. Z. J. Crop Hortic. Sci. 2020, 48, 228–243. [Google Scholar] [CrossRef]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic Assessment Reveals an Elevated Level of Glucosinolate Content in CaCl2 Treated Broccoli Microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef]
- Kudla, J.; Becker, D.; Grill, E.; Hedrich, R.; Hippler, M.; Kummer, U.; Parniske, M.; Romeis, T.; Schumacher, K. Advances and current challenges in calcium signaling. New Phytol. 2018, 218, 414–431. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, Q.; Xiao, Q. Effects of metal ions on myrosinase activity and the formation of sulforaphane in broccoli seed. J. Mol. Catal. B Enzym. 2006, 43, 19–22. [Google Scholar] [CrossRef]
- Xing, Y.; Zhu, Z.; Wang, F.; Zhang, X.; Li, B.; Liu, Z.; Wu, X.X.; Ge, S.F.; Jiang, Y.M. Role of calcium as a possible regulator of growth and nitrate nitrogen metabolism in apple dwarf rootstock seedlings. Sci. Hortic. 2021, 276, 109740. [Google Scholar] [CrossRef]
- Murphy, C.; Pill, W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
Treatments 1 | CK | Na | NaCa | Ca |
---|---|---|---|---|
Glucoiberin | 252.5 ± 14.6 ab | 70.97 ± 4.79 c | 195.7 ± 48.1 b | 324.0 ± 67.6 a |
Progoitrin | 1252 ± 252 b | 451.1 ± 16.2 c | 988.2 ± 180 b | 1887 ± 129 a |
Signirin | 246.2 ± 75.6 a | 89.74 ± 4.57 b | 200.8 ± 30.0 a | 310.1 ± 19.9 a |
Glucoraphanin | 1944 ± 7.46 a | 561.7 ± 25.5 c | 1203 ± 203 b | 2249 ± 167 a |
Gluconapin | 114.2 ± 8.44 b | 42.72 ± 2.50 c | 103.0 ± 23.1 b | 150.4 ± 4.55 a |
4-hydroxyglucobrassicin | 402.8 ±22.5 b | 227.7 ± 20.3 c | 576.0 ± 74.0 a | 522.0 ± 61.8 ab |
Glucoerucin | 1456 ± 34.2a | 562.6 ± 9.51 c | 1153 ± 118 b | 1671 ± 124 a |
Glucobrassicin | 532.2 ± 7.38 b | 166.7 ± 4.32 d | 352.2 ± 84.2 c | 664.9 ± 30.0 a |
4-methoxyglucobrassicin | 189.0 ± 5.49 a | 63.30 ± 0.70 c | 125.0 ± 17.8 b | 141.0 ± 8.83 b |
Neoglucobrassicin | 88.09 ± 6.64 ab | 52.58 ± 1.83 c | 69.30 ± 17.1 bc | 110.4 ± 8.95 a |
Total glucosinolates | 6478 ± 418 b | 2289 ± 43.2 d | 4966 ± 584 c | 8031 ± 539 a |
Treatments 1 | CK | Na | NaCa | Ca |
---|---|---|---|---|
Macroelements | ||||
P | 887.3 ± 15.9 a | 876.8 ± 20.0 a | 801.2 ± 18.9 b | 878.5 ± 11.2 a |
S | 263.9 ± 2.32 c | 262.5 ± 5.62 c | 310.9 ± 7.18 b | 368.1 ± 4.39 a |
Na | 127.8 ± 21.6 c | 4729 ± 331 b | 7514 ± 641 a | 52.80 ± 20.2 c |
K | 488.1 ± 14.1 c | 607.0 ± 10.7 a | 505.1 ± 30.5 bc | 581.1 ± 29.3 b |
Ca | 493.2 ± 20.3 c | 360.9 ± 6.77 d | 715.4 ± 16.1 b | 1678 ± 41.8 a |
Mg | 302.7 ± 6.66 a | 270.6 ± 8.23 b | 228.9 ± 12.2 c | 286.8 ± 3.43 ab |
Microelements | ||||
Zn | 7.54 ± 0.46 a | 6.61 ± 0.26 b | 6.96 ± 0.34 ab | 7.30 ± 0.07 ab |
Fe | 11.78 ± 1.32 a | 13.23 ± 3.17 a | 12.86 ± 2.58 a | 12.72 ± 0.90 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Yang, J.; Yan, G.; Zhu, Z. CaSO4 Increases Yield and Alters the Nutritional Contents in Broccoli (Brassica oleracea L. Var. italica) Microgreens under NaCl Stress. Foods 2022, 11, 3485. https://doi.org/10.3390/foods11213485
Zeng W, Yang J, Yan G, Zhu Z. CaSO4 Increases Yield and Alters the Nutritional Contents in Broccoli (Brassica oleracea L. Var. italica) Microgreens under NaCl Stress. Foods. 2022; 11(21):3485. https://doi.org/10.3390/foods11213485
Chicago/Turabian StyleZeng, Wenjing, Jing Yang, Guochao Yan, and Zhujun Zhu. 2022. "CaSO4 Increases Yield and Alters the Nutritional Contents in Broccoli (Brassica oleracea L. Var. italica) Microgreens under NaCl Stress" Foods 11, no. 21: 3485. https://doi.org/10.3390/foods11213485
APA StyleZeng, W., Yang, J., Yan, G., & Zhu, Z. (2022). CaSO4 Increases Yield and Alters the Nutritional Contents in Broccoli (Brassica oleracea L. Var. italica) Microgreens under NaCl Stress. Foods, 11(21), 3485. https://doi.org/10.3390/foods11213485