Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Estimation of Residue Generation
2.2. Analysis of Moisture and Crude Protein
2.3. Preparation of Enzymatic Protein Hydrolysate
2.4. Determination of PH and Brix
2.5. Determination of Amino Acid Nitrogen and Hydrolysis Degree
2.6. Organic Acid Treatment
2.7. Determination of Taste Using an Electronic Tongue
2.8. Analysis of Free Amino Acids
2.9. Data Analysis
3. Results and Discussion
3.1. The Generation of Residues and Their Protein Content
3.2. Enzyme Selection for Hydrolysis of the Residues
3.3. Elicitation of the Best Hydrolysis Condition
3.4. Organic Acid Treatment and Electronic Tongue-Based Taste Profile
3.5. Free Amino Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- KNBC. Korea National Biodiversity Center, Biological Resources Database. Available online: https://www.kbr.go.kr/home/rsc/rsc01002v.do?data_gbn_cd=BIO&ktsn_no=120000049015&menuKey=448 (accessed on 7 June 2022).
- Kim, B.M.; Jung, M.J.; Jun, J.Y.; Kim, D.S.; Jeong, I.H. The quality characteristics and processing of madeleine containing red snow crab Chionoecetes japonicus leg-meat powder, Korean. J. Fish Aquat. Sci. 2016, 49, 277–284. [Google Scholar]
- Park, J.H.; Min, J.G.; Kim, T.J.; Kim, J.H. Comparison of food components between red-tanner crab, Chionoecetes japonicus and Neodo-Daege, a new species of Chionoecetes sp. caught in the east sea of Korea. J. Korean Fish Soc. 2003, 36, 62–64. [Google Scholar]
- Jun, J.Y.; Jung, M.J.; Jeong, I.H.; Kim, D.S.; Kim, B.M. Effects of a freeze-thaw-pressing muscle separation on the biochemical quality and self-stability of leg meat from red snow crab (Chionoecetes japonicus). LWT Food Sci. Technol. 2019, 99, 276–282. [Google Scholar] [CrossRef]
- Jun, J.Y.; Jung, M.J.; Kum, J.S.; Kim, G.W.; Jung, J.H.; Sim, J.M.; Jeong, I.H.; Kim, B.M. Physiochemical changes in lipid-rich mackerel during the preparation of smoked mold ripened meat products. J. Aquat. Food Prod. Technol. 2020, 29, 520–530. [Google Scholar] [CrossRef]
- KAF&FTC. Korea Agro-Fisheries & Food Trade Corporation, The Total Sales of Seasoning Products in 2021. In Food Information Statistics System. Available online: https://www.atfis.or.kr/home/sales.do (accessed on 10 September 2022).
- Fernandes, P. Enzymes in fish and seafood processing. Front. Bioeng. Biotechnol. 2016, 4, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.H.; Doan, C.T.; Nguyen, A.D.; Wang, S.L. Reclamation of fishery processing waste: A mini-review. Molecules 2019, 24, 2234. [Google Scholar] [CrossRef] [Green Version]
- Valcarcel, J.; Sanz, N.; Vázquez, J.A. Optimization of the enzymatic protein hydrolysis of by-products from seabream (Sparus aurata) and Seabass (Dicentrachus labrax), chemical and functional characterization. Foods 2020, 9, 1503. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Sotelo Vázquez, J.A.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Rodríguez-Amado, I.; Valcarcel, J. Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar. Drugs 2019, 17, 676. [Google Scholar] [CrossRef] [Green Version]
- Phetchthumrongchai, T.; Tachapuripunya, V.; Chintong, S.; Roytrakul, S.; E-kobon, T.; Klaypradit, W. Properties of protein hydrolysates and bioinformatics prediction of peptides derived from thermal and enzymatic process of skipjack tuna (Katsuwonus pelamis) Roe. Fishes 2022, 7, 255. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Keskin Ulug, S.K.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S. Bitterness of fish protein hydrolysate and its debittering prospects. J. Food Biochem. 2019, 43, e12978. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, N.; Chen, F.; Zhang, J.; Sun, X.; Xu, L.; Fang, F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5153–5170. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Association of Official Analytical Chemists, official methods 950.46 and 976.05. In Official Methods of Analysis, 18th ed.; AOAC International Publishing: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Zhao, X.; Liu, Y.; Shu, L.; He, Y. Study on metabolites of Bacillus producing soy sauce-like aroma in Jiang-flavor Chinese spirits. Food Sci. Nutr. 2020, 8, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.M.; Park, J.H.; Kim, D.S.; Kim, Y.M.; Jun, J.Y.; Jeong, I.H.; Nam, S.; Chi, Y. Effects of rice koji inoculated with Aspergillus luchuensis on the biochemical and sensory properties of a sailfin sandfish (Arctoscopus japonicus) fish sauce. Int. J. Food Sci. Technol. 2016, 51, 1888–1899. [Google Scholar] [CrossRef]
- Factominer. Principal Components Analysis. In Classical Method. Available online: http://factominer.free.fr/factomethods/index.html (accessed on 7 June 2022).
- Factoextra. Extract and Visualize the Results of Multivariate Data Analyses. Available online: https://rpkgs.datanovia.com/factoextra/index.html (accessed on 7 June 2022).
- Arbia, W.; Arbia, L.; Adour, L.; Amrane, A. Chitin extraction from crustacean shells using biological methods—A review. Food Technol. Biotechnol. 2013, 51, 12–25. [Google Scholar]
- Baek, J.H.; Jeong, E.J.; Jeon, S.Y.; Cha, Y.J. Optimal condition for enzymatic hydrolysate of snow crab Coenocytes japonicus cooker effluent using response surface methodology. Korean Fish. Aquat. Sci. 2011, 44, 99–103. [Google Scholar]
- Noh, K.H.; Min, K.H.; Seo, B.Y.; Kim, S.H.; Seo, Y.W.; Song, Y.S. Characteristics of protein from red crab (Chionoecetes japonicus) shell by commercial proteases. Korean J. Nutr. 2012, 45, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.T.; Seo, W.H.; Baek, H.H. Enzymatic hydrolysis optimization of a snow crab processing by-product. Korean J. Food Sci. Technol. 2009, 41, 622–627. [Google Scholar]
- Fan, W.; Tan, X.; Xu, X.; Li, G.; Wang, Z.; Du, M. Relationship between enzyme, peptides, amino acids, ion composition, and bitterness of the hydrolysates of Alaska pollock frame. J. Food Biochem. 2019, 43, e12801. [Google Scholar] [CrossRef]
- Novozymes. Seafood Protein Hydrolysates. Available online: https://biosolutions.novozymes.com/en/animal-protein/seafood-protein-hydrolysates (accessed on 7 June 2022).
- Kim, M.R. Bitterness and solubility of soy protein, casein, gluten, and gelatin hydrolysates treated with various enzymes. J. Korean Soc. Food Sci. Nutr. 2010, 39, 587–594. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Idowu, A.T.; Benjakul, S.; Prodpran, T.; Yesilsu, A.F.; Kishimura, H. Effect of proteases and alcohols used for debittering on characteristics and antioxidative activity of protein hydrolysate from salmon frames. J. Food Sci. Technol. 2020, 57, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Kato, H. Taste of free amino acids and peptides. Food Rev. Int. 1988, 4, 175–194. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Sennewald, K.; Gagnon, J. Comparison of taste qualities and thresholds of D- and L-amino acids. Physiol. Behav. 1981, 27, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, M. Flavour Improvement of Water Solutions Comprising Bitter Amino Acids. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2010; p. 4. [Google Scholar]
- McGregor, R. Taste modification in the biotech area. Food Technol. 2004, 58, 24–30. [Google Scholar]
Proportion in the Total Body Weight (g 100 g−1 a Raw Crab, Wet) | Moisture Content (g 100 g−1) | Crude Protein Content (g 100 g−1, Wet) | Weight Ratio of Shells vs. Meats (%, Wet) |
---|---|---|---|
8.9 ± 1.0 | 66.2 ± 4.8 | 13.5 ± 1.4 | 68.7:31.3 |
Amino Acid | Control | Hydrochloric Acid | Citric Acid | Malic Acid | Succinic Acid | |||||
---|---|---|---|---|---|---|---|---|---|---|
mg 100 mL−1 | (%) * | mg 100 mL−1 | (%) | mg 100 mL−1 | (%) | mg 100 mL−1 | (%) | mg 100 mL−1 | (%) | |
Phosphoserine | 25.1 | (1.4) | 13.2 | (0.7) | 13.1 | (0.8) | 15.3 | (0.8) | 16.3 | (0.9) |
Taurine | 37.3 | (2.1) | 36.7 | (2.1) | 35.6 | (2.1) | 37.7 | (2.1) | 37.6 | (2.1) |
Aspartic acid | 22.6 | (1.3) | 25.3 | (1.4) | 23.1 | (1.3) | 22.8 | (1.3) | 22.0 | (1.2) |
Threonine | 65.6 | (3.8) | 78.7 | (4.4) | 76.6 | (4.4) | 79.6 | (4.4) | 78.2 | (4.3) |
Serine | 46.6 | (2.7) | 48.3 | (2.7) | 46.8 | (2.7) | 49.3 | (2.7) | 49.1 | (2.7) |
Glutamic acid | 128.6 | (7.4) | 137.6 | (7.8) | 133.1 | (7.7) | 140.3 | (7.7) | 139.3 | (7.7) |
Sarcosine | 14.1 | (0.8) | 14.2 | (0.8) | 13.6 | (0.8) | 14.2 | (0.8) | 14.2 | (0.8) |
α-aminoadionic acid | 24.5 | (1.4) | 25.3 | (1.4) | 24.6 | (1.4) | 26.0 | (1.4) | 25.9 | (1.4) |
Glycine | 123.7 | (7.1) | 124.8 | (7.0) | 121.3 | (7.0) | 128.1 | (7.0) | 127.6 | (7.1) |
Alanine | 143.6 | (8.2) | 142.3 | (8.0) | 138.8 | (8.0) | 146.6 | (8.1) | 146.4 | (8.1) |
Citrulline | 61.6 | (3.5) | 62.3 | (3.5) | 60.5 | (3.5) | 64.1 | (3.5) | 63.7 | (3.5) |
α-aminobutyric acid | 13.1 | (0.7) | 13.4 | (0.8) | 13.0 | (0.8) | 13.8 | (0.8) | 13.7 | (0.8) |
Valine | 115.6 | (6.6) | 115.9 | (6.5) | 113.0 | (6.5) | 119.3 | (6.6) | 119.0 | (6.6) |
Cysteine | 22.3 | (1.3) | 25.7 | (1.4) | 24.9 | (1.4) | 26.3 | (1.4) | 25.7 | (1.4) |
Methionine | 60.5 | (3.5) | 61.6 | (3.5) | 60.2 | (3.5) | 63.5 | (3.5) | 62.7 | (3.5) |
Isoleucine | 94.8 | (5.4) | 95.0 | (5.4) | 92.7 | (5.4) | 98.1 | (5.4) | 97.0 | (5.4) |
Leucine | 161.1 | (9.2) | 162.4 | (9.1) | 158.6 | (9.2) | 167.6 | (9.2) | 165.4 | (9.2) |
Tyrosine | 59.5 | (3.4) | 62.7 | (3.5) | 59.9 | (3.5) | 60.3 | (3.3) | 60.0 | (3.3) |
Phenylalanine | 117.7 | (6.7) | 117.2 | (6.6) | 114.4 | (6.6) | 121.0 | (6.7) | 118.6 | (6.6) |
β-alanine | 5.3 | (0.3) | 5.2 | (0.3) | 5.1 | (0.3) | 5.3 | (0.3) | 5.0 | (0.3) |
β-aminoisobutyric acid | 10.6 | (0.6) | 10.8 | (0.6) | 10.6 | (0.6) | 11.2 | (0.6) | 10.5 | (0.6) |
γ-aminobutyric acid | 2.5 | (0.1) | 2.4 | (0.1) | 2.4 | (0.1) | 2.5 | (0.1) | 2.3 | (0.1) |
Ammonia | 1.4 | (0.1) | 0.7 | (≤0.1) | 0.7 | (≤0.1) | 0.7 | (≤0.1) | 0.8 | (≤0.1) |
Hydroxylysine | 2.5 | (0.1) | 2.5 | (0.1) | 2.4 | (0.1) | 2.5 | (0.1) | 2.5 | (0.1) |
Ornithine | 128.9 | (7.4) | 132.2 | (7.4) | 128.8 | (7.5) | 136.1 | (7.5) | 135.6 | (7.5) |
Lysine | 154.2 | (8.8) | 155.3 | (8.7) | 151.5 | (8.8) | 160.0 | (8.8) | 159.4 | (8.8) |
Histidine | 41.9 | (2.4) | 43.6 | (2.5) | 42.4 | (2.5) | 44.9 | (2.5) | 44.6 | (2.5) |
3-methylhistidine | 4.3 | (0.2) | 3.4 | (0.2) | 3.3 | (0.2) | 3.5 | (0.2) | 3.5 | (0.2) |
Anserine | 19.6 | (1.1) | 20.5 | (1.2) | 20.1 | (1.2) | 21.1 | (1.2) | 21.1 | (1.2) |
Carnosine | 3.0 | (0.2) | 3.1 | (0.2) | 3.0 | (0.2) | 3.2 | (0.2) | 3.1 | (0.2) |
Arginine | 4.6 | (0.3) | 4.8 | (0.3) | 4.8 | (0.3) | 5.1 | (0.3) | 5.0 | (0.3) |
Proline | 27.6 | (1.6) | 28.3 | (1.6) | 27.3 | (1.6) | 28.6 | (1.6) | 28.5 | (1.6) |
EAA † | 745.7 | (42.8) | 751.0 | (42.3) | 732.9 | (42.5) | 774.4 | (42.6) | 766.8 | (42.5) |
BTAA ‡ | 809.8 | (46.4) | 818.6 | (46.1) | 797.7 | (46.2) | 839.8 | (46.2) | 831.8 | (46.1) |
Total | 1743.8 | (100.0) | 1775.4 | (100.0) | 1726.2 | (100.0) | 1818.8 | (100.0) | 1804.8 | (100.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-Y.; Jung, M.-J.; Nam, J.-W.; Han, A.-R.; Kim, B.-M.; Jun, J.-Y. Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound. Foods 2022, 11, 3911. https://doi.org/10.3390/foods11233911
Lee G-Y, Jung M-J, Nam J-W, Han A-R, Kim B-M, Jun J-Y. Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound. Foods. 2022; 11(23):3911. https://doi.org/10.3390/foods11233911
Chicago/Turabian StyleLee, Ga-Yang, Min-Jeong Jung, Jong-Woong Nam, Ah-Ram Han, Byoung-Mok Kim, and Joon-Young Jun. 2022. "Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound" Foods 11, no. 23: 3911. https://doi.org/10.3390/foods11233911
APA StyleLee, G. -Y., Jung, M. -J., Nam, J. -W., Han, A. -R., Kim, B. -M., & Jun, J. -Y. (2022). Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound. Foods, 11(23), 3911. https://doi.org/10.3390/foods11233911