Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Treatments
2.2. Total Nutrient Composition Analysis
2.3. Vitamin E Content Determination in Seeds and Sprouts
2.4. Glucosinolate Content Determination in Seeds and Sprouts
2.5. Selenium Content Determination in Seeds and Sprouts
2.6. Statistical Analysis
3. Results
3.1. Statistical Analyses of Basic Nutrients in Rapeseed Sprouts and Bean Sprouts
3.1.1. Glucose, Crude Fiber, Crude Protein, and Fructose
3.1.2. Amino Acid Composition
3.1.3. Fatty Acids
3.1.4. Minerals
3.1.5. Vitamin E
3.1.6. Glucosinolates
3.2. Comparison of Dominant Nutrients in Different Varieties of Rapeseed Sprouts
3.2.1. Determination of Vitamin E Content
3.2.2. Determination of Glucosinolate Content
3.2.3. Determination of the Selenium Content
4. Discussion
4.1. Analysis of Basic Nutrients in Rapeseed and Bean Sprouts
4.2. Dominant Nutrients in Rapeseed Sprouts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, D.; Jing, J.; Snowdon, R.J.; Mason, A.S.; Shen, J.; Meng, J.; Zou, J. Exploring the gene pool of Brassica napus by genomics-based approaches. Plant Biotechnol. J. 2021, 19, 1693–1712. [Google Scholar] [CrossRef] [PubMed]
- Hangzhong, W. Rapeseed industry development strategy oriented by new demand. Chin. J. Oil Crop Sci. 2018, 40, 613–617. [Google Scholar]
- Cui, Y.; Zeng, X.; Xiong, Q.; Wei, D.; Liao, J.; Xu, Y.; Chen, G.; Zhou, Y.; Dong, H.; Wan, H.; et al. Combining quantitative trait locus and co-expression analysis allowed identification of new candidates for oil accumulation in rapeseed. J. Exp. Bot. 2021, 72, 1649–1660. [Google Scholar] [CrossRef]
- Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014, 20, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandacek, R.J. Linoleic acid: A nutritional quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, S.G.; Jefferis, B.J.; Lennon, L.; Papacosta, O.; Whincup, P.H.; Hingorani, A.D. Serum conjugated linoleic acid and risk of incident heart failure in older men: The British regional heart study. J. Am. Heart Assoc. 2018, 7, e006653. [Google Scholar] [CrossRef] [Green Version]
- Leikin-Frenkel, A.I. Is there a role for alpha-linolenic acid in the fetal programming of health? J. Clin. Med. 2016, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Møller, A.; Hammershøj, M.; Dos Passos, N.; Tanambell, H.; Stødkilde, L.; Ambye-Jensen, M.; Danielsen, M.; Jensen, S.; Dalsgaard, T. Biorefinery of green biomass—How to extract and evaluate high quality leaf protein for food? J. Agric. Food Chem. 2021, 69, 14341–14357. [Google Scholar] [CrossRef]
- Wu, J.; Xu, F.; Wu, Y.; Xiong, W.; Pan, M.; Zhang, N.; Zhou, Q.; Wang, S.; Ju, X.; Wang, L. Characterization and analysis of an oil-in-water emulsion stabilized by rapeseed protein isolate under pH and ionic stress. J. Sci. Food Agric. 2020, 100, 4734–4744. [Google Scholar] [CrossRef]
- Vallibhakara, S.A.; Nakpalat, K.; Sophonsritsuk, A.; Tantitham, C.; Vallibhakara, O. Effect of vitamin E supplement on bone turnover markers in postmenopausal osteopenic women: A double-blind, randomized, placebo-controlled trial. Nutrients 2021, 13, 4226. [Google Scholar] [CrossRef]
- Violi, F.; Nocella, C.; Loffredo, L.; Carnevale, R.; Pignatelli, P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic. Biol. Med. 2021, 178, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Bhuvanendran, S.; Magalingam, K.; Ramdas, P.; Kumari, M.; Radhakrishnan, A. Clinically relevant genes and proteins modulated by tocotrienols in human colon cancer cell lines: Systematic scoping review. Nutrients 2021, 13, 4056. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.; Hassanin, K.; Mahmoud, A.; Abdel-Badeea, W.; Abdel-Razik, A.; Attia, E.; Abdelmohsen, U.; Abdel Aziz, R.; Najda, A.; Alanazi, I.; et al. Physiological roles of red carrot methanolic extract and vitamin E to abrogate cadmium-induced oxidative challenge and apoptosis in rat testes: Involvement of the Bax/Bcl-2 ratio. Antioxidants 2021, 10, 1653. [Google Scholar] [CrossRef] [PubMed]
- Hafez, S.; Elbassuoni, E.; Abdelzaher, W.; Welson, N.; Batiha, G.; Alzahrani, K.; Abdelbaky, F. Efficacy of vitamin E in protection against methotrexate induced placental injury in albino rats. Biomed. Pharmacother. Biomed. Pharmacother. 2021, 139, 111637. [Google Scholar] [CrossRef] [PubMed]
- Merinas-Amo, T.; Lozano-Baena, M.; Obregón-Cano, S.; Alonso-Moraga, Á.; de Haro-Bailón, A. Brassica rapaRole of glucosinolates in the nutraceutical potential of selected cultivars of. Foods 2021, 10, 2720. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Yan, M.; Wang, P.; Wang, H.; Xin, Q.; Yang, L.; Hong, D.; Yang, G. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.). Theor. Appl. Genet. 2020, 133, 479–490. [Google Scholar] [CrossRef]
- Fahey, J.; Zalcmann, A.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Salem, A.; Medhat, D.; Fathy, S.; Mohamed, M.; El-Khayat, Z.; El-Daly, S. Indole glucosinolates exhibit anti-inflammatory effects on Ehrlich ascites carcinoma cells through modulation of inflammatory markers and miRNAs. Mol. Biol. Rep. 2021, 48, 6845–6855. [Google Scholar] [CrossRef]
- Almuhayawi, S.; Almuhayawi, M.; Al Jaouni, S.; Selim, S.; Hassan, A. BrassicaEffect of laser light on growth, physiology, accumulation of phytochemicals, and biological activities of sprouts of three cultivars. J. Agric. Food Chem. 2021, 69, 6240–6250. [Google Scholar] [CrossRef]
- Lee, Y.R.; Chen, M.; Lee, J.D.; Zhang, J.; Lin, S.Y.; Fu, T.M.; Chen, H.; Ishikawa, T.; Chiang, S.Y.; Katon, J.; et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 2019, 364, eaau0159. [Google Scholar] [CrossRef]
- Tan, Z.; Xie, Z.; Dai, L.; Zhang, Y.; Hu, Z.; Tang, S.; Wan, L.; Yao, X.; Guo, L.; Hong, D. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnol. J. 2022, 20, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Plummer, J.; Postnikoff, S.; Tyler, J.; Johnson, J. Selenium supplementation inhibits IGF-1 signaling and confers methionine restriction-like healthspan benefits to mice. eLife 2021, 10, e62483. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, W.; Hu, C.; Chen, X.; Wu, Z.; Zhao, X. Characteristics of selenium enrichment in rape and its relationship with soil selenium. Acta Sci. Circumst. 2018, 38, 336–342. [Google Scholar] [CrossRef]
- Le, L.; Gong, X.; An, Q.; Xiang, D.; Zou, L.; Peng, L.; Wu, X.; Tan, M.; Nie, Z.; Wu, Q.; et al. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chem. 2021, 357, 129752. [Google Scholar] [CrossRef]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Geng, J.; Li, J.; Zhu, F.; Chen, X.; Du, B.; Tian, H.; Li, J. Plant sprout foods: Biological activities, health benefits, and bioavailability. J. Food Biochem. 2021, 11, e13777. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Lou, H.; Deng, Z.; Zhan, X. Research progress of active ingredients in sprouts. Cereals Oils 2019, 32, 1–4. [Google Scholar]
- Li, J.; Lu, Y.; Chen, H.; Wang, L.; Wang, S.; Guo, X.; Cheng, X. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem. 2021, 358, 129915. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.; Singh, B. Characterization of in vitro antioxidant activity, bioactive components, and nutrient digestibility in pigeon pea (Cajanus cajan) as influenced by germination time and temperature. J. Food Biochem. 2019, 43, e12706. [Google Scholar] [CrossRef]
- Liu, H.K.; Kang, Y.F.; Zhao, X.Y.; Liu, Y.P.; Zhang, X.W.; Zhang, S.J. Effects of elicitation on bioactive compounds and biological activities of sprouts. J. Funct. Foods 2019, 53, 136–145. [Google Scholar] [CrossRef]
- Mir, S.A.; Farooq, S.; Shah, M.A.; Sofi, S.A.; Khaneghah, A.M. An overview of sprouts nutritional properties, pathogens and decontamination technologies. LWT Food Sci. Technol. 2021, 141, 110900. [Google Scholar] [CrossRef]
- Teixeira-Guedes, C.I.; Oppolzer, D.; Barros, A.I.; Pereira-Wilson, C. Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines. J. Funct. Foods 2019, 60, 103452. [Google Scholar] [CrossRef]
- Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, D.; Upadhyay, G.; Singh, B.N.; Singh, H.B. Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem. 2007, 104, 783–790. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, X.; Shao, X.; Xu, F.; Wang, H. Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts. Food Sci. Nutr. 2019, 7, 4037–4044. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, S.; Ma, G.; Chen, S.; Shi, Y.; Yang, Y. Comparative study of proximate composition and amino acid in farmed and wild Pseudobagrus ussuriensis muscles. Int. J. Food Sci. Technol. 2014, 49, 983–989. [Google Scholar] [CrossRef]
- Ouassou, M.; Mukhaimar, M.; El Amrani, A.; Kroymann, J.; Chauveau, O. Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways. Compt. Rend. Biol. 2019, 342, 58–80. [Google Scholar] [CrossRef]
- Park, M.H.; Arasu, M.V.; Park, N.Y.; Choi, Y.J.; Kim, S.J. Variation of glucoraphanin and glucobrassicin: Anticancer components in Brassica during processing. Food Sci. Technol. 2013, 33, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in china and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem. 2002, 50, 5128–5130. [Google Scholar] [CrossRef]
- You-Kai, X.U.; Liu, H.M.; Xiao, C.F.; Chan, Y.; Zhao-Lu, W.U.; Xiang-Sheng, D.; Cai, C.T. An analysis of selenium contents of wild vegetable in xishuangbanna. Acta Bot. Yunnanica 2004, 26, 668–672. [Google Scholar]
- Ma, C.; Li, X.; Ban, T.; Liang, D. Analysis and comparison of nutrient quality between organic and conventional vegetables. Crops 2021, 05, 166–171. [Google Scholar] [CrossRef]
- Zhou, Z. Determination of crude fiber content in 6 kinds of common vegetables. Mod. Hortic. 2019, 01, 13–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Z.; Venkitasamy, C.; Ma, H.; Li, Y. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. LWT Food Sci. Technol. 2015, 62, 1154–1161. [Google Scholar] [CrossRef]
- Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Chenopodium quinoa Quinoa (Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Wang, S.; Zhang, C.; Hu, X.; Zhou, L.; Li, Y.; Xu, L. Selenium ameliorates cadmium-induced mouse leydig TM3 cell apoptosis via inhibiting the ROS/JNK/c-jun signaling pathway. Ecotoxicol. Environ. Safety 2020, 192, 110266. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y. Diverse cytoprotective actions of vitamin E isoforms- role as peroxyl radical scavengers and complementary functions with selenoproteins. Free Rad. Biol. Med. 2021, 175, 121–129. [Google Scholar] [CrossRef]
- Fritsche, S. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front. Plant Sci. 2012, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Melchini, A.; Traka, M.H.; Catania, S.; Miceli, N.; Costa, C. Antiproliferative activity of the dietary isothiocyanate erucin, a bioactive compound from cruciferous vegetables, on human prostate cancer cells. Nutr. Cancer. Int. J. 2013, 65, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Sapone, A.; Affatato, A.; Canistro, D.; Pozzetti, L.; Broccoli, M.; Barillari, J.; Iori, R.; Paolini, M. Cruciferous vegetables and lung cancer. Mutat. Res. 2007, 635, 146–148. [Google Scholar] [CrossRef]
- Fahey, J.; Wehage, S.; Holtzclaw, W.; Kensler, T.; Egner, P.; Shapiro, T.; Talalay, P. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prev. Res. 2012, 5, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, K.; Foltz, C. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. 1951. Nutrition 1999, 15, 255. [Google Scholar] [PubMed]
- Bhatia, P.; Aureli, F.; D’Amato, M.; Prakash, R.; Cameotra, S.S.; Nagaraja, T.P.; Cubadda, F. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem. 2013, 140, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Wuryastuti, H.; Stowe, H.D.; Bull, R.W.; Miller, E.R. Effects of vitamin E and selenium on immune responses of peripheral blood, colostrum, and milk leukocytes of sows. J. Anim. Sci. 1993, 71, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
Amino Acid | V. Radiata S. | V. Angularis S. | G. Max Var S. | G. Max S. | P. Sativum S. | B. Napus L.S. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Asp | 3.76 | 1.32 | 3.60 | 0.91 | 8.24 | 1.31 | 6.58 | 1.84 | 2.90 | 0.36 | 1.81 | 0.22 |
Thr | 1.02 | 0.30 | 0.71 | 0.01 | 1.28 | 0.07 | 1.18 | 0.07 | 0.65 | 0.05 | 1.03 | 0.08 |
Ser | 1.32 | 0.37 | 0.84 | 0.10 | 1.59 | 0.14 | 1.54 | 0.13 | 0.86 | 0.04 | 0.89 | 0.07 |
Glu | 5.41 | 1.02 | 2.23 | 0.33 | 4.12 | 0.66 | 4.34 | 0.70 | 3.09 | 0.34 | 3.91 | 0.91 |
Gly | 0.97 | 0.32 | 0.61 | 0.06 | 1.17 | 0.12 | 1.15 | 0.13 | 0.65 | 0.05 | 0.93 | 0.08 |
Ala | 1.13 | 0.30 | 0.73 | 0.10 | 1.30 | 0.09 | 1.28 | 0.08 | 0.77 | 0.07 | 0.96 | 0.09 |
Val | 0.10 | 0.07 | 0.04 | 0.01 | 0.17 | 0.02 | 0.14 | 0.02 | 0.06 | 0.01 | 0.08 | 0.02 |
Met | 1.79 | 0.20 | 1.32 | 0.07 | 1.94 | 0.05 | 1.84 | 0.05 | 1.09 | 0.08 | 1.44 | 0.15 |
Ile | 0.20 | 0.04 | 0.17 | 0.03 | 0.25 | 0.04 | 0.21 | 0.04 | 0.10 | 0.02 | 0.25 | 0.04 |
Leu | 1.17 | 0.21 | 0.82 | 0.04 | 1.28 | 0.09 | 1.27 | 0.06 | 0.65 | 0.05 | 0.83 | 0.08 |
Trp | 0.64 | 0.23 | 0.68 | 0.10 | 1.14 | 0.08 | 1.09 | 0.09 | 0.47 | 0.04 | 0.75 | 0.12 |
Phe | 1.50 | 0.26 | 0.97 | 0.11 | 1.67 | 0.12 | 1.66 | 0.07 | 0.85 | 0.06 | 0.84 | 0.06 |
Lys | 1.77 | 0.35 | 1.24 | 0.13 | 2.02 | 0.15 | 1.97 | 0.18 | 1.18 | 0.09 | 1.56 | 0.10 |
His | 0.93 | 0.16 | 0.66 | 0.04 | 1.08 | 0.05 | 0.96 | 0.07 | 0.57 | 0.03 | 0.73 | 0.10 |
Arg | 1.92 | 0.45 | 1.13 | 0.11 | 2.42 | 0.17 | 2.31 | 0.15 | 1.45 | 0.26 | 1.48 | 0.29 |
Pro | 0.90 | 0.20 | 0.63 | 0.07 | 1.02 | 0.11 | 0.98 | 0.11 | 0.52 | 0.05 | 0.85 | 0.12 |
TAA | 24.54 | 5.72 | 16.38 | 0.33 | 30.69 | 0.46 | 28.51 | 0.85 | 15.87 | 1.25 | 18.34 | 2.28 |
EAA | 7.55 | 1.43 | 5.26 | 0.40 | 8.60 | 0.53 | 8.27 | 0.49 | 4.59 | 0.37 | 6.03 | 0.53 |
NEAA | 16.99 | 4.36 | 11.13 | 1.83 | 22.09 | 2.72 | 20.24 | 3.31 | 11.28 | 1.24 | 12.31 | 2.00 |
EAA/NEAA | 0.44 | 0.47 | 0.39 | 0.41 | 0.41 | 0.49 | ||||||
EAA/TAA | 0.31 | 0.32 | 0.28 | 0.29 | 0.29 | 0.33 |
Types of Sprouts | Saturated Fatty Acid (%) | Unsaturated Fatty Acids (%) | Oleic (%) | Linoleic (%) | Linolenic (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
V. radiata S. | 23.56 | 8.19 | 76.43 | 8.19 | 12.65 | 4.00 | 42.25 | 14.78 | 21.09 | 10.23 |
V. angularis S. | 40.47 | 7.60 | 59.85 | 7.60 | 4.83 | 1.67 | 30.90 | 2.88 | 22.77 | 7.31 |
G. max var S. | 16.67 | 0.26 | 83.33 | 0.26 | 16.15 | 0.64 | 52.50 | 0.55 | 14.30 | 0.90 |
G. max S. | 17.33 | 0.90 | 82.67 | 0.90 | 14.89 | 1.04 | 55.65 | 1.91 | 11.65 | 1.08 |
P. sativum S. | 24.25 | 4.23 | 75.83 | 4.23 | 9.42 | 3.03 | 52.47 | 5.27 | 12.88 | 4.79 |
B. napus L.S. | 9.66 | 1.80 | 90.34 | 1.80 | 48.11 | 7.90 | 21.39 | 3.50 | 15.02 | 2.25 |
Mean (mg/100 g) | Max (mg/100 g) | Mini (mg/100 g) | SD | CV% | ||
---|---|---|---|---|---|---|
Sprouts | α-T | 47.90 | 76.29 | 14.11 | 12.20 | 25.47 |
γ-T | 9.25 | 79.69 | 2.48 | 12.06 | 130.33 | |
VE | 48.83 | 76.55 | 15.31 | 12.29 | 25.17 | |
α-T/γ-T | 9.65 | 30.09 | 0.62 | 6.38 | 66.09 | |
Seeds | α-T | 25.76 | 61.61 | 0.47 | 13.84 | 53.71 |
γ-T | 47.37 | 111.51 | 3.59 | 23.31 | 49.22 | |
VE | 30.50 | 72.76 | 0.83 | 15.86 | 52.02 | |
α-T/γ-T | 0.53 | 0.86 | 0.13 | 0.15 | 26.61 |
Sprouts | Seeds | ||||||
---|---|---|---|---|---|---|---|
Mean (µmol/g) | Range (µmol/g) | SD | Mean (µmol/g) | Range (µmol/g) | SD | ||
Aliphatic Glucosinolates | Progoitrin (PRO) | 12.16 | 0~71.10 | 19.36 | 6.22 | 0~38.03 | 9.68 |
39.07% | 38.59% | ||||||
Epi-progoitrin (EPRO) | 0.27 | 0~4.30 | 0.72 | - | - | - | |
0.85% | |||||||
Glucoraphanin (RAA) | 0.50 | 0~3.19 | 0.20 | 0.17 | 0~1.53 | 0.53 | |
1.62% | 1.06% | ||||||
Gluconapoleiferin (GAL) | 0.44 | 0~1.64 | 0.37 | 0.14 | 0~0.75 | 0.22 | |
1.41% | 0.84% | ||||||
Gluconapin (NAP) | 6.36 | 0.90~19.03 | 3.90 | 3.59 | 0.25~19.62 | 5.19 | |
20.45% | 22.25% | ||||||
Glucobrassicanapin (GBN) | 0.60 | 0~1.90 | 0.51 | 0.20 | 0~1.88 | 0.66 | |
1.92% | 1.05% | ||||||
Indole glucosinolates | 4-hydroxyglucobrassicin (4OH) | 3.51 | 0~13.27 | 3.79 | 3.69 | 0~12.07 | 1.61 |
11.29% | 22.88% | ||||||
Neoglucobrassicin (NEO) | 0.10 | 0~1.50 | 0.35 | - | - | - | |
0.31% | |||||||
Glucobrassicin (GBC) | 0.43 | 0~3.20 | 0.63 | 0.27 | 0~5.45 | 1.12 | |
1.38% | 1.68% | ||||||
4-methoxyglucobrassicin (4ME) | 1.36 | 11.03 | 2.56 | 0.21 | 0~1.02 | 0.22 | |
4.36% | 1.32% | ||||||
Aromatic Glucosinolates | Glucotropaeolin (TRO) | 3.97 | 0~9.66 | 3.28 | 0.15 | 0~4.10 | 1.32 |
12.76% | 0.95% | ||||||
Gluconasturtiin (NAS) | 1.42 | 0~11.51 | 3.07 | 1.51 | 0.13~12.95 | 1.90 | |
4.57% | 9.38% | ||||||
Total | 31.11 | 100.11 | 20.34 | 16.11 | 64.22 | 14.87 |
Mean (μg/kg) | Mini (μg/kg) | Max (μg/kg) | Kurtosis | Skewness | |
---|---|---|---|---|---|
Sprouts | 52.86 | 33.25 | 78.62 | 0.48 | 0.70 |
Seeds | 42.00 | 23.99 | 67.44 | 1.00 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Pan, Y.; Wang, C.; Li, X.; Lu, Y.; Tian, Z.; Kuang, L.; Wang, X.; Dun, X.; Wang, H. Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts. Foods 2022, 11, 778. https://doi.org/10.3390/foods11060778
Xiao Z, Pan Y, Wang C, Li X, Lu Y, Tian Z, Kuang L, Wang X, Dun X, Wang H. Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts. Foods. 2022; 11(6):778. https://doi.org/10.3390/foods11060778
Chicago/Turabian StyleXiao, Zelin, Yuying Pan, Chao Wang, Xiongcai Li, Yiqing Lu, Ze Tian, Lieqiong Kuang, Xinfa Wang, Xiaoling Dun, and Hanzhong Wang. 2022. "Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts" Foods 11, no. 6: 778. https://doi.org/10.3390/foods11060778
APA StyleXiao, Z., Pan, Y., Wang, C., Li, X., Lu, Y., Tian, Z., Kuang, L., Wang, X., Dun, X., & Wang, H. (2022). Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts. Foods, 11(6), 778. https://doi.org/10.3390/foods11060778