Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MCI, WPI and Lactose for Model Studies
2.3. Acid Hydrolysis Prior to MRM
2.4. MRM Transition Optimization
2.5. MRM Quantification
2.6. Statistical Analysis
3. Results and Discussion
3.1. Absolute Quantification of Processing-Induced Protein Modifications Using MRM
3.2. Impact of Milk Matrix Components on the Level of Processing-Induced Protein Modifications
3.2.1. Development in Sugar-Independent Processing Markers in Relation to Milk Protein Matrix
3.2.2. Development in Sugar-Dependent Processing Markers in Relation to Milk Protein Matrix
3.2.3. DHA-Mediated Protein Cross-Linking and Maillard Reaction Can Be Competing Pathways
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gaucher, I.; Mollé, D.; Gagnaire, V.; Gaucheron, F. Effects of storage temperature on physico-chemical characteristics of semi-skimmed uht milk. Food Hydrocoll. 2008, 22, 130–143. [Google Scholar] [CrossRef]
- Jansson, T.; Clausen, M.R.; Sundekilde, U.K.; Eggers, N.; Nyegaard, S.; Larsen, L.B.; Ray, C.; Sundgren, A.; Andersen, H.J.; Bertram, H.C. Lactose-hydrolyzed milk is more prone to chemical changes during storage than conventional ultra-high-temperature (uht) milk. J. Agric. Food Chem. 2014, 62, 7886–7896. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.D.; Jansson, T.; Le, T.T.; Jensen, S.; Eggers, N.; Rauh, V.; Sundekilde, U.K.; Sørensen, J.; Andersen, H.J.; Bertram, H.C.; et al. Correlation between sensory properties and peptides derived from hydrolysed-lactose uht milk during storage. Int. Dairy J. 2017, 68, 23–31. [Google Scholar] [CrossRef]
- Sunds, A.V.; Rauh, V.M.; Sørensen, J.; Larsen, L.B. Maillard reaction progress in uht milk during storage at different temperature levels and cycles. Int. Dairy J. 2018, 77, 56–64. [Google Scholar] [CrossRef]
- Friedman, M.; Gumbmann, M.R.; Masters, P.M. Protein-alkali reactions: Chemistry, toxicology, and nutritional consequences. Adv. Exp. Med. Biol. 1984, 177, 367–412. [Google Scholar] [PubMed]
- Anema, S.G. Age gelation, sedimentation, and creaming in uht milk: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 140–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, H.B.; Wierenga, P.A.; Gruppen, H.; Schols, H.A. Maillard induced aggregation of individual milk proteins and interactions involved. Food Chem. 2019, 276, 652–661. [Google Scholar] [CrossRef]
- Naranjo, G.B.; Pereyra Gonzales, A.S.; Leiva, G.E.; Malec, L.S. The kinetics of maillard reaction in lactose-hydrolysed milk powder and related systems containing carbohydrate mixtures. Food Chem. 2013, 141, 3790–3795. [Google Scholar] [CrossRef]
- BAXTER, J.H. Free amino acid stability in reducing sugar systems. J. Food Sci. 1995, 60, 405–408. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [Green Version]
- Krause, R.; Knoll, K.; Henle, T. Studies on the formation of furosine and pyridosine during acid hydrolysis of different amadori products of lysine. Eur. Food Res. Technol. 2003, 216, 277–283. [Google Scholar] [CrossRef]
- Poojary, M.M.; Zhang, W.; Greco, I.; De Gobba, C.; Olsen, K.; Lund, M.N. Liquid chromatography quadrupole-orbitrap mass spectrometry for the simultaneous analysis of advanced glycation end products and protein-derived cross-links in food and biological matrices. J. Chromatogr. A 2020, 1615, 460767. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J. Agric. Food Chem. 1999, 47, 1295–1319. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, S.; Masotti, F.; Pellegrino, L. Chemical modifications of casein occurring during industrial manufacturing of milk protein powders. Eur. Food Res. Technol. 2012, 235, 315–323. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Le, T.T.; Knudsen, L.J.; Rauh, V.; Poulsen, N.A.; Larsen, L.B. Development and application of a multiple reaction monitoring mass spectrometry method for absolute quantification of lysinoalanine and lanthionine in dairy products. Int. Dairy J. 2020, 105, 104693. [Google Scholar] [CrossRef]
- Hailu, Y.; Hansen, E.B.; Seifu, E.; Eshetu, M.; Ipsen, R.; Kappeler, S. Functional and technological properties of camel milk proteins: A review. J. Dairy Res. 2016, 83, 422–429. [Google Scholar] [CrossRef]
- Liu, J.; Klebach, M.; Visser, M.; Hofman, Z. Amino acid availability of a dairy and vegetable protein blend compared to single casein, whey, soy, and pea proteins: A double-blind, cross-over trial. Nutrients 2019, 11, 2613. [Google Scholar] [CrossRef] [Green Version]
- Rombouts, I.; Lagrain, B.; Brijs, K.; Delcour, J.A. Beta-elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline ph. J. Cereal Sci. 2010, 52, 362–367. [Google Scholar] [CrossRef]
- Snow, J.T.; Finley, J.W.; Friedman, M. Relative reactivities of sulfhydryl groups with n-acetyl dehydroalanine and n-acetyl dehydroalanine methyl ester. Int. J. Pept. Protein Res. 1976, 8, 57–64. [Google Scholar] [CrossRef]
- D’Agostina, A.; Boschin, G.; Rinaldi, A.; Arnoldi, A. Updating on the lysinoalanine content of commercial infant formulae and beicost products. Food Chem. 2003, 80, 483–488. [Google Scholar] [CrossRef]
- Al-Saadi, J.M.S.; Deeth, H.C. Cross-linking of proteins and other changes in uht milk during storage at different temperatures. Aust. J. Dairy Technol. 2008, 63, 93–99. [Google Scholar]
- Al-Saadi, J.M.S.; Easa, A.M.; Deeth, H.C. Effect of lactose on cross-linking of milk proteins during heat treatments. Int. J. Dairy Technol. 2013, 66, 1–6. [Google Scholar] [CrossRef]
- Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Smith, T.J.; Campbell, R.E.; Jo, Y.; Drake, M.A. Flavor and stability of milk proteins. J. Dairy Sci. 2016, 99, 4325–4346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zhong, Q. Glycation of whey protein to provide steric hindrance against thermal aggregation. J. Agric. Food Chem. 2012, 60, 9754–9762. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Okamoto, N.; Ozawa, H.; Kitajima, S.; Takado, Y. Limits and sites of lysinoalanine formation in lysozyme, α-lactalbumin and αs1- and β-caseins by alkali treatment. Agric. Biol. Chem. 1981, 45, 1645–1651. [Google Scholar] [CrossRef]
- Lowe, E.K.; Anema, S.G.; Bienvenue, A.; Boland, M.J.; Creamer, L.K.; Jiménez-Flores, R. Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-lactoglobulin and κ-casein. J. Agric. Food Chem. 2004, 52, 7669–7680. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Larsen, L.B.; Le, T.T.; Zhao, D. Digestibility of bovine serum albumin and peptidomics of the digests: Effect of glycation derived from α-dicarbonyl compounds. Molecules 2018, 23, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Lieshout, G.A.A.; Lambers, T.T.; Bragt, M.C.E.; Hettinga, K.A. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2422–2445. [Google Scholar] [CrossRef] [Green Version]
- Dalsgaard, T.K.; Nielsen, J.H.; Larsen, L.B. Proteolysis of milk proteins lactosylated in model systems. Mol. Nutr. Food Res. 2007, 51, 404–414. [Google Scholar] [CrossRef]
- Zhao, D.; Le, T.T.; Larsen, L.B.; Li, L.; Qin, D.; Su, G.; Li, B. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione. Food Res. Int. 2017, 102, 313–322. [Google Scholar] [CrossRef]
- Li, M.; Zeng, M.; He, Z.; Zheng, Z.; Qin, F.; Tao, G.; Zhang, S.; Chen, J. Increased accumulation of protein-bound nε-(carboxymethyl)lysine in tissues of healthy rats after chronic oral nε-(carboxymethyl)lysine. J. Agric. Food Chem. 2015, 63, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10–37. [Google Scholar] [CrossRef] [PubMed]
Fat (%) | Protein (%) | Lactose (%) | |
---|---|---|---|
MCI | 1.4 | 86.5 | 0.6 |
WPI | 0.1 | 89.3 | 0.1 |
Lactose | 0.0 | 0.2 | 99.0 |
Protein% (w/v) | Lactose% (w/v) | MCI–WPI Ratio (w/v) | |
---|---|---|---|
MCI | 3.3 | <0.1 | 100:0 |
WPI | 3.4 | <0.1 | 0:100 |
MCI/WPI | 3.4 | <0.1 | 80:20 |
MCI + Lac | 3.2 | 4.7 | 100:0 |
WPI + Lac | 3.5 | 4.7 | 0:100 |
MCI/WPI + Lac | 3.2 | 4.7 | 80:20 |
Compound | ISTD a | Molecular Weight (Da) | Ion b | Q1 (m/z) c | Q3 (m/z) c | Retention Time (Min) | FV d | CE e |
---|---|---|---|---|---|---|---|---|
Amino acids | ||||||||
Lysine | 146.2 | Target | 147.2 | 84 | 6.8 | 63 | 17 | |
Qualifier | 130 | 6.8 | 63 | 9 | ||||
Lysine-d4 f | Yes | 150.0 | Target | 151.0 | 88.0 | 6.8 | 67 | 14 |
Qualifier | 134.0 | 6.8 | 67 | 6 | ||||
Cystine-d4 f | Yes | 244.3 | Target | 245.3 | 153.9 | 1.9 | 77 | 10 |
Qualifier | 74.0 | 1.9 | 77 | 38 | ||||
Maillard reaction pathway reporters | ||||||||
Nε-(1-Carboxyethyl)-L-lysine | 218.1 | Target | 219.1 | 84 | 1.6 | 81 | 17 | |
Qualifier | 130 | 1.6 | 81 | 9 | ||||
Nε-(1-Carboxymethyl)-L-lysine | 204.1 | Target | 205.1 | 84 | 1.7 | 81 | 17 | |
Qualifier | 130 | 1.7 | 81 | 9 | ||||
Furosine | 254.1 | Target | 255.1 | 84.1 | 10.5 | 91 | 25 | |
Qualifier | 130 | 10.5 | 91 | 9 | ||||
Nε-(1-Carboxyethyl)-L-lysine-d4 f | Yes | 224.2 | Target | 223.2 | 88.1 | 1.6 | 100 | 22 |
Qualifier | 134.0 | 1.6 | 100 | 10 | ||||
Nε-(1-Carboxymethyl)-L-lysine–d2 f | Yes | 206.1 | Target | 207.1 | 84 | 1.7 | 73 | 17 |
Qualifier | 130 | 1.7 | 73 | 9 | ||||
Furosine-d4 f | Yes | 258.4 | Target | 259.4 | 134 | 10.5 | 81 | 9 |
Qualifier | 89 | 10.5 | 81 | 21 | ||||
DHA pathway reporters | ||||||||
Lanthionine | 208.2 | Target | 209.2 | 119.9 | 1.9 | 74 | 6 | |
Qualifier | 74.0 | 1.9 | 74 | 30 | ||||
Lysinoalanine | 233.3 | Target | 234.1 | 84.0 | 7.0 | 94 | 22 | |
Qualifier | 129.9 | 7.0 | 94 | 10 |
Compound | Linearity (R2) | LOD (ng/mL) | LOQ (ng/mL) | Recovery | |
---|---|---|---|---|---|
Low a | High b | ||||
Amino acid | |||||
Lysine 147.1 → 84.1 | 0.9908 | 1.0 | 3.9 | 94.0% | 103.4% |
Maillard reaction products | |||||
Nε-(1-Carboxyethyl)-L-lysine 219.1 → 84.1 | 0.9921 | 1.9 | 3.9 | 104.4% | 93.3% |
Nε-(1-Carboxymethyl)-L-lysine 205.1 → 84.1 | 0.9980 | 1.9 | 3.9 | 105.1% | 104.9% |
Furosine 255.1 → 84.1 | 0.9926 | 1.0 | 3.9 | 104.0% | 91.3% |
DHA-mediated cross-links | |||||
Lanthionine 209.2 → 119.9 | 0.9926 | 7.8 | 15.6 | 104.1% | 84.5% |
Lysinoalanine 234.1 → 84.0 | 0.9971 | 125.0 | 250.0 | 105.2% | 112.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, S.D.; Knudsen, L.J.; Bækgaard, L.T.; Rauh, V.; Larsen, L.B. Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey. Foods 2022, 11, 897. https://doi.org/10.3390/foods11070897
Nielsen SD, Knudsen LJ, Bækgaard LT, Rauh V, Larsen LB. Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey. Foods. 2022; 11(7):897. https://doi.org/10.3390/foods11070897
Chicago/Turabian StyleNielsen, Søren D., Lotte J. Knudsen, Line T. Bækgaard, Valentin Rauh, and Lotte B. Larsen. 2022. "Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey" Foods 11, no. 7: 897. https://doi.org/10.3390/foods11070897
APA StyleNielsen, S. D., Knudsen, L. J., Bækgaard, L. T., Rauh, V., & Larsen, L. B. (2022). Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey. Foods, 11(7), 897. https://doi.org/10.3390/foods11070897