Assessing and Quantifying the Surface Texture of Milk Powder Using Image Processing
Abstract
:1. Introduction
2. Methodology
2.1. Milk Powder Samples and Preparation
2.2. Image Acquisition
2.3. Image Analysis
2.4. Surface Normal Analysis
2.4.1. Comparing the Area of Triangle Formed by the 3 Adjacent Surface Normals
2.4.2. Comparing the Angle between the Adjacent Surface Normals
2.5. Data Analysis
2.5.1. Principal Component Analysis (PCA)
2.5.2. Support Vector Machine (SVM)
3. Results and Discussion
3.1. The Comparison of Areas of Triangles
3.2. The Comparison of Angles between the Adjacent Surface Normals
3.3. Classification of the Surface Smoothness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, H.; Li, B.; Boiarkina, I.; Wilson, D.I.; Yu, W.; Young, B.R. Effects of morphology on the bulk density of instant whole milk powder. Foods 2020, 9, 1024. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Yu, W.; Boiarkina, I.; Depree, N.; Young, B.R. Effects of morphology on the dispersibility of instant whole milk powder. J. Food Eng. 2020, 276, 109841. [Google Scholar] [CrossRef]
- Písecký, J. Handbook of Milk Powder Manufacture; GEA Process Engineering A/S: Søborg, Denmark, 2012. [Google Scholar]
- Crowley, S.V.; Desautel, B.; Gazi, I.; Kelly, A.L.; Huppertz, T.; O’Mahony, J.A. Rehydration characteristics of milk protein concentrate powders. J. Food Eng. 2015, 149, 105–113. [Google Scholar] [CrossRef]
- Bharati, M.H.; Liu, J.J.; MacGregor, J.F. Image texture analysis: Methods and comparisons. Chemom. Intell. Lab. Syst. 2004, 72, 57–71. [Google Scholar] [CrossRef]
- Massot-Campos, M.; Oliver-Codina, G.; Ruano-Amengual, L.; Miró-Juliá, M. Texture analysis of seabed images: Quantifying the presence of posidonia oceanica at palma bay. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Norway, 10–14 June 2013; pp. 1–6. [Google Scholar]
- Al-Kindi, G.; Baul, R.; Gill, K. An application of machine vision in the automated inspection of engineering surfaces. Int. J. Prod. Res. 1992, 30, 241–253. [Google Scholar] [CrossRef]
- Gupta, M.; Raman, S. Machine vision assisted characterization of machined surfaces. Int. J. Prod. Res. 2001, 39, 759–784. [Google Scholar] [CrossRef]
- Kiran, M.; Ramamoorthy, B.; Radhakrishnan, V. Evaluation of surface roughness by vision system. Int. J. Mach. Tools Manuf. 1998, 38, 685–690. [Google Scholar] [CrossRef]
- Lee, B.; Juan, H.; Yu, S. A study of computer vision for measuring surface roughness in the turning process. Int. J. Adv. Manuf. Technol. 2002, 19, 295–301. [Google Scholar] [CrossRef]
- Garcıa, P.; Petrou, M.; Kamata, S.-I. The use of Boolean model for texture analysis of grey images. Comput. Vis. Image Underst. 1999, 74, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Tsai, D.-M.; Hsieh, C.-Y. Automated surface inspection for directional textures. Image Vis. Comput. 1999, 18, 49–62. [Google Scholar] [CrossRef]
- Weszka, J.S.; Rosenfeld, A. An application of texture analysis to materials inspection. Pattern Recognit. 1976, 8, 195–200. [Google Scholar] [CrossRef]
- Pathak, B.; Barooah, D. Texture analysis based on the gray-level co-occurrence matrix considering possible orientations. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 4206–4212. [Google Scholar]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Xu, L.; Liang, Z.; Wang, S.; Cao, J.; Ma, C.; Cui, X. Sketch-then-edit generative adversarial network. Knowl. -Based Syst. 2020, 203, 106102. [Google Scholar] [CrossRef]
- Su, W.-H.; Xue, H. Imaging Spectroscopy and Machine Learning for Intelligent Determination of Potato and Sweet Potato Quality. Foods 2021, 10, 2146. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Chen, P.; Yu, L.; Cui, X.; Li, Y.; Cheng, F.; Ouyang, W. NIA-Network: Towards improving lung CT infection detection for COVID-19 diagnosis. Artif. Intell. Med. 2021, 117, 102082. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Al-Janobi, A. Performance evaluation of cross-diagonal texture matrix method of texture analysis. Pattern Recognit. 2001, 34, 171–180. [Google Scholar] [CrossRef]
- Baraldi, A.; Panniggiani, F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans. Geosci. Remote Sens. 1995, 33, 293–304. [Google Scholar] [CrossRef]
- Davis, L.S.; Johns, S.A.; Aggarwal, J. Texture analysis using generalized co-occurrence matrices. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 251–259. [Google Scholar] [CrossRef]
- Kovalev, V.; Petrou, M. Multidimensional co-occurrence matrices for object recognition and matching. Graph. Models Image Processing 1996, 58, 187–197. [Google Scholar] [CrossRef]
- Munir, M.; Wilson, D.I.; Yu, W.; Young, B. An evaluation of hyperspectral imaging for characterising milk powders. J. Food Eng. 2018, 221, 1–10. [Google Scholar] [CrossRef]
- Torroba, P.; Rabal, H.; Arizaga, R. Correction of defocusing using the co-occurrence matrix and the structure function. J. Mod. Opt. 2000, 47, 69–80. [Google Scholar] [CrossRef]
- Mohanaiah, P.; Sathyanarayana, P.; GuruKumar, L. Image texture feature extraction using GLCM approach. Int. J. Sci. Res. Publ. 2013, 3, 1–5. [Google Scholar]
- Liang, J.; Gu, X.; Deng, H.; Ni, F. Detecting device and technology of pavement texture depth based on high precision 3D laser scanning technology. IOP Conf. Ser. Mater. Sci. Eng. 2019, 652, 012063. [Google Scholar] [CrossRef]
- Hoła, J.; Sadowski, Ł.; Reiner, J.; Stach, S. Usefulness of 3D surface roughness parameters for nondestructive evaluation of pull-off adhesion of concrete layers. Constr. Build. Mater. 2015, 84, 111–120. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Qi, D. Damage Diagnosis of Reactive Powder Concrete under Fatigue Loading Using 3D Laser Scanning Technology. Algorithms 2019, 12, 260. [Google Scholar] [CrossRef] [Green Version]
- Ohno, K.; Date, H.; Kanai, S. Study on Real-Time Point Cloud Superimposition on Camera Image to Assist Environmental Three-Dimensional Laser Scanning. Int. J. Autom. Technol. 2021, 15, 324–333. [Google Scholar] [CrossRef]
- Waltenberger, L.; Rebay-Salisbury, K.; Mitteroecker, P. Three-dimensional surface scanning methods in osteology: A topographical and geometric morphometric comparison. Am. J. Phys. Anthropol. 2021, 174, 846–858. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Processes Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Abadie, A.; Boissery, P.; Viala, C. Georeferenced underwater photogrammetry to map marine habitats and submerged artificial structures. Photogramm. Rec. 2018, 33, 448–469. [Google Scholar] [CrossRef]
- Stathopoulou, E.; Remondino, F. Semantic photogrammetry: Boosting image-based 3D reconstruction with semantic labeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, W9. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, G.; Le Mouélic, S.; Rapin, W.; Dromart, G.; Gasnault, O.; Fau, A.; Newsom, H.E.; Mangold, N.; Le Deit, L.; Maurice, S. Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars). Remote Sens. 2021, 13, 4068. [Google Scholar] [CrossRef]
- Bertin, S.; Friedrich, H. Field application of close-range digital photogrammetry (CRDP) for grain-scale fluvial morphology studies. Earth Surface Processes Landf. 2016, 41, 1358–1369. [Google Scholar] [CrossRef]
- Peter Heng, B.; Chandler, J.H.; Armstrong, A. Applying close range digital photogrammetry in soil erosion studies. Photogramm. Rec. 2010, 25, 240–265. [Google Scholar] [CrossRef] [Green Version]
- Rieke-Zapp, D.H.; Nearing, M.A. Digital close range photogrammetry for measurement of soil erosion. Photogramm. Rec. 2005, 20, 69–87. [Google Scholar] [CrossRef]
- Merel, A.; Farres, P. The monitoring of soil surface development using analytical photogrammetry. Photogramm. Rec. 1998, 16, 331–345. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; Latorre, B.; Peña, C.; González-Cebollada, C.; López, M. Applicability of the photogrammetry technique to determine the volume and the bulk density of small soil aggregates. Soil Res. 2016, 54, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Bertin, S.; Friedrich, H.; Delmas, P.; Chan, E.; Gimel’farb, G. Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation. ISPRS J. Photogramm. Remote Sens. 2015, 101, 193–208. [Google Scholar] [CrossRef]
- Belmonte, A.; Biong, M.; Macatulad, E. DEM Generation from close-range photogrammetry using extended python photogrammetry toolbox. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.; Mahdjoubi, L.; Kheder, G. Towards an automated photogrammetry-based approach for monitoring and controlling construction site activities. Comput. Ind. 2018, 98, 172–182. [Google Scholar] [CrossRef]
- Fabris, M.; Pesci, A. Automated DEM extraction in digital aerial photogrammetry: Precisions and validation for mass movement monitoring. Ann. Geophys. 2005, 48, 973–988. [Google Scholar] [CrossRef]
- Pugliese, A.; Cabassi, G.; Chiavaro, E.; Paciulli, M.; Carini, E.; Mucchetti, G. Physical characterization of whole and skim dried milk powders. J. Food Sci. Technol. 2017, 54, 3433–3442. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jana, A.H.; Chavan, R.S. Functionality of milk powders and milk-based powders for end use applications—A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 518–528. [Google Scholar] [CrossRef]
- Lee, J.; Chai, C.; Park, D.J.; Lim, K.; Imm, J.Y. Novel Convenient Method to Determine Wettability and Dispersibility of Dairy Powders. Korean J. Food Sci. Anim. Resour. 2014, 34, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Nijdam, J.; Langrish, T. An investigation of milk powders produced by a laboratory-scale spray dryer. Dry. Technol. 2005, 23, 1043–1056. [Google Scholar] [CrossRef]
- Davenel, A.; Schuck, P.; Mariette, F.; Brulé, G. NMR relaxometry as a non-invasive tool to characterize milk powders. Le Lait 2002, 82, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Traill, R.M.; Luckman, M.S.; Fisk, N.A.; Peng, M. Application of the Rate-All-That-Apply (RATA) method to differentiate the visual appearance of milk powders using trained sensory panels. Int. Dairy J. 2019, 97, 230–237. [Google Scholar] [CrossRef]
- Traill, R.; Thomasen, L.; Turnbull, R.; Coolbear, T. The visual measurement of the degree of clumping of dairy powders using photo standards. Int. Dairy J. 2022, 127, 105198. [Google Scholar] [CrossRef]
- Lille, M.; Kortekangas, A.; Heiniö, R.-L.; Sozer, N. Structural and textural characteristics of 3D-printed protein-and dietary fibre-rich snacks made of milk powder and wholegrain rye flour. Foods 2020, 9, 1527. [Google Scholar] [CrossRef]
- Gosselin, R.; Duchesne, C.; Rodrigue, D. On the characterization of polymer powders mixing dynamics by texture analysis. Powder Technol. 2008, 183, 177–188. [Google Scholar] [CrossRef]
- Jeon, S.-S.; Ganesan, P.; Lee, Y.-S.; Yoo, S.-H.; Kwak, H.-S. Texture and sensory properties of cream cheese and cholesterol-removed cream cheese made from whole milk powder. Food Sci. Anim. Resour. 2012, 32, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Hong, G.; Kattawar, G.W.; Minnis, P.; Hu, Y. Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1948–1957. [Google Scholar] [CrossRef]
- Gemmi, M.; Voltolini, M.; Ferretti, A.M.; Ponti, A. Quantitative texture analysis from powder-like electron diffraction data. J. Appl. Crystallogr. 2011, 44, 454–461. [Google Scholar] [CrossRef]
- Oghazi, P.; Pålsson, B.; Tano, K. Applying traceability to grinding circuits by using Particle Texture Analysis (PTA). Miner. Eng. 2009, 22, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Deeth, H.; Sopade, P.; Sharma, R.; Bansal, N. Rheology, texture and microstructure of gelatin gels with and without milk proteins. Food Hydrocoll. 2014, 35, 484–493. [Google Scholar] [CrossRef]
- De Knegt, R.; Van Den Brink, H. Improvement of the drying oven method for the determination of the moisture content of milk powder. Int. Dairy J. 1998, 8, 733–738. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Peng, J.; Shi, J. Rapid determination of the moisture content of milk powder by microwave sensor. Measurement 2016, 87, 83–86. [Google Scholar] [CrossRef]
- Reljić, I.; Dunđer, I. Application of photogrammetry in 3D scanning of physical objects. TEM J. 2019, 8, 94. [Google Scholar]
- Fritsch, D.; Klein, M. 3D preservation of buildings–Reconstructing the past. Multimed. Tools Appl. 2018, 77, 9153–9170. [Google Scholar] [CrossRef]
- Hellmuth, R.; Wehner, F.; Giannakidis, A. Datasets of captured images of three different devices for photogrammetry calculation comparison and integration into a laserscan point cloud of a built environment. Data Brief 2020, 33, 106321. [Google Scholar] [CrossRef] [PubMed]
- Reljić, I.; Dunđer, I.; Seljan, S. Photogrammetric 3D scanning of physical objects: Tools and workflow. TEM J. 2019, 8, 383. [Google Scholar]
- Chen, X.; Samson, E.; Tocqueville, A.; Aubin, J. Environmental assessment of trout farming in France by life cycle assessment: Using bootstrapped principal component analysis to better define system classification. J. Clean. Prod. 2015, 87, 87–95. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Pavithra, S.; Janakiraman, S. Enhanced polynomial kernel (EPK)-based support vector machine (SVM)(EPK-SVM) classification technique for speech recognition in hearing-impaired listeners. Concurr. Comput. Pract. Exp. 2021, 33, e5210. [Google Scholar]
- Huang, M.-W.; Chen, C.-W.; Lin, W.-C.; Ke, S.-W.; Tsai, C.-F. SVM and SVM ensembles in breast cancer prediction. PLoS ONE 2017, 12, e0161501. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ding, H.; Wilson, D.I.; Yu, W.; Young, B.R. An investigation of the relative impact of process and shape factor variables on milk powder quality. Food Bioprod. Processing 2021, 126, 62–72. [Google Scholar] [CrossRef]
- Khan, A.; Munir, M.T.; Yu, W.; Young, B. Wavelength selection for rapid identification of different particle size fractions of milk powder using hyperspectral imaging. Sensors 2020, 20, 4645. [Google Scholar] [CrossRef]
- Rabbani, T.; Van Den Heuvel, F.; Vosselmann, G. Segmentation of point clouds using smoothness constraint. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 248–253. [Google Scholar]
- Mehlum, E.; Tarrou, C. Invariant smoothness measures for surfaces. Adv. Comput. Math. 1998, 8, 49–63. [Google Scholar] [CrossRef]
Moisture | Instant Trim Milk Powder | Instant Whole Milk Powder |
---|---|---|
Class 0 (original) | 5.91 ± 0.27% | 5.18 ± 0.23% |
Class 1 | 8.19 ± 0.45% | 7.74 ± 0.51% |
Class 2 | 9.79 ± 0.66% | 9.44 ± 0.64% |
Class 3 | 11.98 ± 0.96% | 11.02 ± 0.87% |
Class | Sensitivity | Specificity |
---|---|---|
Class 0 | 50 % | 100 % |
Class 1 | 100 % | 83 % |
Class 2 | 100 % | 100 % |
Class 3 | 100 % | 100 % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Wilson, D.I.; Yu, W.; Young, B.R. Assessing and Quantifying the Surface Texture of Milk Powder Using Image Processing. Foods 2022, 11, 1519. https://doi.org/10.3390/foods11101519
Ding H, Wilson DI, Yu W, Young BR. Assessing and Quantifying the Surface Texture of Milk Powder Using Image Processing. Foods. 2022; 11(10):1519. https://doi.org/10.3390/foods11101519
Chicago/Turabian StyleDing, Haohan, David I. Wilson, Wei Yu, and Brent R. Young. 2022. "Assessing and Quantifying the Surface Texture of Milk Powder Using Image Processing" Foods 11, no. 10: 1519. https://doi.org/10.3390/foods11101519
APA StyleDing, H., Wilson, D. I., Yu, W., & Young, B. R. (2022). Assessing and Quantifying the Surface Texture of Milk Powder Using Image Processing. Foods, 11(10), 1519. https://doi.org/10.3390/foods11101519