Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Framework for YGAP Analysis and Application
2.3.2. Estimating the YP
2.3.3. Calculating YGAP and YGC
2.3.4. Exploring Spatiotemporal Variations of YGAP
2.3.5. Investigating Determinants of YGC
3. Results
3.1. Recent YGAP Trends in Hunan Province
3.1.1. Spatiotemporal Pattern of YGAP
3.1.2. Spatially Heterogeneity of YGC
3.2. Agglomeration of YGAP and YGC
3.2.1. Clustering Pattern of the YGAP and YGC
3.2.2. Spatial Autocorrelation of the YGC during the Different Periods
3.3. Determinants of the YGC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, R.A.; Connor, D.J. Issues for cropping and agricultural science in the next 20 years. Field Crop. Res. 2018, 222, 121–142. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, S.; Hasegawa, T.; Krey, V.; Riahi, K.; Bertram, C.; Bodirsky, B.L.; Bosetti, V.; Callen, J.; Després, J.; Doelman, J.; et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2019, 2, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Gu, B. Four steps to food security for swelling cities. Nature 2019, 566, 31–33. [Google Scholar] [CrossRef]
- El Bilali, H.; Strassner, C.; Ben Hassen, T. Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. Sustainability 2021, 13, 6260. [Google Scholar] [CrossRef]
- Jensen, P.D.; Orfila, C. Mapping the production-consumption gap of an urban food system: An empirical case study of food security and resilience. Food Secur. 2021, 13, 551–570. [Google Scholar] [CrossRef]
- Dogliotti, S.; Garcia, M.C.; Peluffo, S.; Dieste, J.P.; Pedemonte, A.J.; Bacigalupe, G.F.; Scarlato, M.; Alliaume, F.; Alvarez, J.; Chiappe, M.; et al. Co-innovation of family farm systems: A systems approach to sustainable agriculture. Agric. Syst. 2014, 126, 76–86. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Zhou, W.; Duan, F. Closing crop yield and efficiency gaps for food security and sustainable agriculture. J. Integr. Agric. 2021, 20, 343–348. [Google Scholar] [CrossRef]
- Global Network against Food Crises (GNAFC). 2021 Global Report on Food Crises. 2021. Available online: https://www.wfp.org/publications/global-report-food-crises-2021 (accessed on 14 July 2021).
- Fan, S.; Teng, P.; Ping, C.; Smith, G.; Copeland, L. Food system resilience and COVID-19–Lessons from the Asian experience. Glob. Food Secur. 2021, 28, 100501. [Google Scholar] [CrossRef]
- Meyer, M.A. The role of resilience in food system studies in low- and middle-income countries. Glob. Food Secur. 2020, 24, 100356. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, K. Building resilient food system amidst COVID-19: Responses and lessons from China. Agric. Syst. 2021, 190, 103102. [Google Scholar] [CrossRef]
- Amicarelli, V.; Bux, C. Food waste measurement toward a fair, healthy and environmental-friendly food system: A critical review. Br. Food J. 2020, 123, 2907–2935. [Google Scholar] [CrossRef]
- International Food Policy Research Institute (IFPRI). 2019 Global Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019. In Moving forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United States: Rome, Italy, 2019. [Google Scholar]
- Zhang, H. Establish a Policy System to Develop Agricultural Science and Technology, 2022. Available online: https://www.caas.cn/xwzx/yw/318630.html (accessed on 30 March 2022). (In Chinese).
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.G.; Peng, S. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Long, H.; Zou, J. Grain production driven by variations in farmland use in China: An analysis of security patterns. J. Resour. Ecol. 2010, 1, 60–67. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Song, W. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Jin, X. Assessing the effectiveness of land consolidation for improving agricultural productivity in China. Land Use Policy 2018, 70, 360–367. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Hou, P.; Wu, L.; Chen, X.; Cui, Z.; Zhang, F. Understanding production potentials and yield gaps in intensive maize production in China. Field Crop. Res. 2013, 143, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.A. Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crop. Res. 2015, 182, 9–18. [Google Scholar] [CrossRef]
- Haddad, L.; Hawkes, C.; Waage, J.; Webb, P.; Godfray, C.; Toulmin, C. Food Systems and Diets: Facing the Challenges of the 21st Century; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2016. [Google Scholar]
- Lombardi, G.V.; Parrini, S.; Atzori, R.; Stefani, G.; Liu, G. Sustainable agriculture, food security and diet diversity. The case study of tuscany, Italy. Ecol. Model. 2021, 458, 109702. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Niu, Y.; Xie, G.; Xiao, Y.; Liu, J.; Wang, Y.; Luo, Q.; Zou, H.; Gan, S.; Qin, K.; Huang, M. Spatiotemporal Patterns and Determinants of Grain Self-Sufficiency in China. Foods 2021, 10, 747. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- He, G.; Zhao, Y.; Wang, L.; Jian, S.; Zhu, Y. China’s food security challenge: Effects of food habit changes on requirements for arable land and water. J. Clean Prod. 2019, 229, 739–750. [Google Scholar] [CrossRef]
- Fresco, L.O. Issues in farming systems research. Neth. J. Agric. Sci. 1984, 32, 253–261. [Google Scholar] [CrossRef]
- de Bie, C.A.J.M. Comparative Performance an Analysis of Agro-Ecosystems; Wageningen Agricultural University: Wageningen, The Netherlands, 2000. [Google Scholar]
- Lobell, D.B.; Ortiz-Monasterio, J.I. Regional importance of crop yield constraints: Linking simulation models and geostatistics to interpret spatial patterns. Ecol. Model. 2006, 196, 173–182. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- van Ittersum, M.K.; Cassman, K.G. Yield gap analysis—Rationale, methods and applications—Introduction to the Special Issue. Field Crop. Res. 2013, 143, 1–3. [Google Scholar] [CrossRef] [Green Version]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Eash, L.; Fonte, S.J.; Sonder, K.; Honsdorf, N.; Schmidt, A.; Govaerts, B.; Verhulst, N. Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions. J. Agric. Sci. 2019, 157, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Nhamo, N.; Rodenburg, J.; Zenna, N.; Makombe, G.; Luzi-Kihupi, A. Narrowing the rice yield gap in East and Southern Africa: Using and adapting existing technologies. Agric. Syst. 2014, 131, 45–55. [Google Scholar] [CrossRef]
- Senapati, N.; Semenov, M.A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob. Food Sec. 2020, 24, 100340. [Google Scholar] [CrossRef]
- Stuart, A.M.; Pame, A.R.P.; Silva, J.V.; Dikitanan, R.C.; Rutsaert, P.; Malabayabas, A.J.B.; Lampayan, R.M.; Radanielson, A.M.; Singleton, G.R. Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crop. Res. 2016, 194, 43–56. [Google Scholar] [CrossRef] [Green Version]
- van Vugt, D.; Franke, A.C. Exploring the yield gap of orange-fleshed sweet potato varieties on smallholder farmers’ fields in Malawi. Field Crop. Res. 2018, 221, 245–256. [Google Scholar] [CrossRef]
- Zu, Q.; Mi, C.; Liu, D.; He, L.; Kuang, Z.; Fang, Q.; Ramp, D.; Li, L.; Wang, B.; Chen, Y.; et al. Spatio-temporal distribution of sugarcane potential yields and yield gaps in Southern China. Eur. J. Agron. 2018, 92, 72–83. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Cong, R.; Ren, T.; Li, X. Evaluating agroclimatic constraints and yield gaps for winter oilseed rape (Brassica napus L.)-A case study. Sci. Rep. 2017, 7, 7852. [Google Scholar] [CrossRef] [Green Version]
- Geerts, S.; Raes, D.; Garcia, M.; Taboada, C.; Miranda, R.; Cusicanqui, J.; Mhizha, T.; Vacher, J. Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agric. Water Manag. 2009, 96, 1652–1658. [Google Scholar] [CrossRef]
- Adiele, J.G.; Schut, A.G.T.; van den Beuken, R.P.M.; Ezui, K.S.; Pypers, P.; Ano, A.O.; Egesi, C.N.; Giller, K.E. Towards closing cassava yield gap in West Africa: Agronomic efficiency and storage root yield responses to NPK fertilizers. Field Crop. Res. 2020, 253, 107820. [Google Scholar] [CrossRef]
- Visses, F.D.; Sentelhas, P.C.; Pereira, A.B. Yield gap of cassava crop as a measure of food security-an example for the main Brazilian producing regions. Food Secur. 2018, 10, 1191–1202. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, C.; Li, X.; Yang, X.; Zhao, L.; Xia, S. Correlation of production constraints with the yield gap of apple cropping systems in Luochuan County, China. J. Integr. Agric. 2019, 18, 1714–1725. [Google Scholar] [CrossRef]
- Mayberry, D.; Ash, A.; Prestwidge, D.; Godde, C.M.; Henderson, B.; Duncan, A.; Blummel, M.; Reddy, Y.R.; Herrero, M. Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India. Agric. Syst. 2017, 155, 43–51. [Google Scholar] [CrossRef]
- Mayberry, D.; Ash, A.; Prestwidge, D.; Herrero, M. Closing yield gaps in smallholder goat production systems in Ethiopia and India. Livest. Sci. 2018, 214, 238–244. [Google Scholar] [CrossRef]
- Souza, P.; Farias, V.D.D.; Pinto, J.V.N.; Nunes, H.; Souza, E.B.D.; Fraisse, C.W. Yield gap in cowpea plants as function of water deficits during reproductive stage. Rev. Bras. Eng. Agric. Ambient. 2020, 24, 372–378. [Google Scholar] [CrossRef]
- Deines, J.M.; Patel, R.; Liang, S.Z.; Dado, W.; Lobell, D.B. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn. Remote Sens. Environ. 2021, 253, 112174. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Yao, F. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in Northeast China. Field Crop. Res. 2020, 246, 107682. [Google Scholar] [CrossRef]
- Rattalino Edreira, J.I.; Andrade, J.F.; Cassman, K.G.; van Ittersum, M.K.; van Loon, M.P.; Grassini, P. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2021, 2, 773–779. [Google Scholar] [CrossRef]
- Boling, A.A.; Tuong, T.P.; van Keulen, H.; Bouman, B.A.M.; Suganda, H.; Spiertz, J.H.J. Yield gap of rainfed rice in farmers’ fields in Central Java, Indonesia. Agric. Syst. 2010, 103, 307–315. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z. Advances in Research on Crop Yield Gaps. Sci. Agric. Sin. 2014, 47, 2731–2741. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Cui, Z.; Lobell, D.B. Using satellite remote sensing to understand maize yield gaps in the North China Plain. Field Crop. Res. 2015, 183, 31–42. [Google Scholar] [CrossRef]
- Lawes, R.; Chen, C.; Whish, J.; Meier, E.; Ouzman, J.; Gobbett, D.; Vadakattu, G.; Ota, N.; van Rees, H. Applying more nitrogen is not always sufficient to address dryland wheat yield gaps in Australia. Field Crop. Res. 2021, 262, 108033. [Google Scholar] [CrossRef]
- Egli, D.B. Comparison of corn and soybean yields in the United States: Historical trends and future prospects. Agron. J. 2008, 100, S79–S88. [Google Scholar] [CrossRef] [Green Version]
- Bryan, B.A.; King, D.; Zhao, G. Influence of management and environment on Australian wheat: Information for sustainable intensification and closing yield gaps. Environ. Res. Lett. 2014, 9, 044005. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, M.; Pan, J.; Shang, Y.; Wu, X.; Cui, Z. Increasing soil organic carbon sequestration while closing the yield gap in Chinese wheat production. Land Degrad. Dev. 2021, 32, 1274–1286. [Google Scholar] [CrossRef]
- Tseng, M.-C.; Roel, Á.; Macedo, I.; Marella, M.; Terra, J.; Zorrilla, G.; Pittelkow, C.M. Field-level factors for closing yield gaps in high-yielding rice systems of Uruguay. Field Crop. Res. 2021, 264, 108097. [Google Scholar] [CrossRef]
- Dehkordi, P.A.; Nehbandani, A.; Hassanpour-bourkheili, S.; Kamkar, B. Yield Gap Analysis Using Remote Sensing and Modelling Approaches: Wheat in the Northwest of Iran. Int. J. Plant Prod. 2020, 14, 443–452. [Google Scholar] [CrossRef]
- Djurfeldt, G.; Hall, O.; Jirstrom, M.; Bustos, M.A.; Holmquist, B.; Nasrin, S. Using panel survey and remote sensing data to explain yield gaps for maize in sub-Saharan Africa. J. Land Use Sci. 2018, 13, 344–357. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.V.; Reidsma, P.; Laborte, A.G.; van Ittersum, M.K. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modelling. Eur. J. Agron. 2017, 82, 223–241. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Debnath, S.; Mishra, A.; Mailapalli, D.R.; Raghuwanshi, N.S. Identifying most promising agronomic adaptation strategies to close rainfed rice yield gap in future: A model-based assessment. J. Water Clim. Change 2021, 12, 2854–2874. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Xu, X.; Wang, Y.; Li, S.; Fu, Y. Changes in production potential in China in response to climate change from 1960 to 2010. Adv. Meteorol. 2014, 2014, 640320. [Google Scholar] [CrossRef]
- Yu, D.; Hu, S.; Tong, L.; Xia, C. Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China. Land 2020, 9, 510. [Google Scholar] [CrossRef]
- Andrea, M.C.D.; Boote, K.J.; Sentelhas, P.C.; Romanelli, T.L. Variability and limitations of maize production in Brazil: Potential yield, water-limited yield and yield gaps. Agric. Syst. 2018, 165, 264–273. [Google Scholar] [CrossRef]
- Bai, H.; Wang, J.; Fang, Q.; Yin, H. Modeling the sensitivity of wheat yield and yield gap to temperature change with two contrasting methods in the North China Plain. Clim. Chang. 2019, 156, 589–607. [Google Scholar] [CrossRef]
- Khaliq, T.; Gaydon, D.S.; Ahmad, M.U.D.; Cheema, M.J.M.; Gull, U. Analyzing crop yield gaps and their causes using cropping systems modelling-A case study of the Punjab rice-wheat system, Pakistan. Field Crop. Res. 2019, 232, 119–130. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, F.L.; Zhou, G.S. Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China. Agric. Syst. 2019, 171, 100–112. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, S.; Li, W.; Zhang, C.; Qu, S. Modeling fine-scale residential land price distribution: An experimental study using open data and machine learning. Appl. Geogr. 2019, 129, 102442. [Google Scholar] [CrossRef]
- Jin, G.; Li, Z.; Deng, X.; Yang, J.; Chen, D.; Li, W. An analysis of spatiotemporal patterns in Chinese agricultural productivity between 2004 and 2014. Ecol. Indic. 2019, 105, 591–600. [Google Scholar] [CrossRef]
- Beza , E.; Silva, J.V.; Kooistra, L.; Reidsma, P. Review of yield gap explaining factors and opportunities for alternative data collection approaches. Eur. J. Agron. 2017, 82, 206–222. [Google Scholar] [CrossRef]
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Mengistu, S.B.; Mulder, H.A.; Benzie, J.A.H.; Komen, H. A systematic literature review of the major factors causing yield gap by affecting growth, feed conversion ratio and survival in Nile tilapia (Oreochromis niloticus). Rev. Aquac. 2010, 12, 524–541. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Feng, X. Light and temperature resources and climate production potential. Resour. Sci. 1980, 4, 11–16. (In Chinese) [Google Scholar]
- Huang, P.-W. Environmental factors and the potential agricultural productivity of China: An analysis of sunlight, temperature, and soil moisture. In The Environment: Chinese and American Views; Methuen: New York, NY, USA, 1981; pp. 45–70. [Google Scholar]
- Hou, G.; Liu, Y. Climate production potential and its zoning in China. Resour. Sci. 1985, 3, 52–59. (In Chinese) [Google Scholar]
- Yang, X.; Cheng, C.; Li, Y. Effect of cropland occupation and supplement on light-temperature potential productivity in China from 2000 to 2008. Chin. Geogr. Sci. 2010, 20, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Guo, C.; Zhu, Y. Average Soil Potential Productivity of Hunan Province, China, 1981–2010. Acta Geogr. Sin. 2020, 69, 90–94. [Google Scholar] [CrossRef]
- FAO. Reports of the agro-ecological zones project. In World Soil Resources Report; FAO: Rome, Italy, 1979; p. 48. [Google Scholar]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008. [Google Scholar]
- Albritton, E.C. Standard values in nutrition and metabolism. LWW 1955, 79, 80. [Google Scholar]
- Chu, C. Some characteristic features of Chinese climate and their effects on crop production. Acta Geogr. Sin. 1964, 30, 1–13. (In Chinese) [Google Scholar]
- Lee, S.I. Developing a bivariate spatial association measure: An integration of Pearson’s r and Moran’s I. J. Geogr. Syst. 2001, 3, 369–385. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Smirnov, O. Visualizing Multivariate Spatial Correlation with Dynamically Linked Windows; University of California Santa Barbara Cd Rom: Santa Barbara, CA, USA, 2002. [Google Scholar]
- Bone, C.; Wulder, M.A.; White, J.C.; Robertson, C.; Nelson, T.A. A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Local Moran’s I statistic. Appl. Geogr. 2013, 40, 161–170. [Google Scholar] [CrossRef]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, R.; Ma, W.; Zhou, D.; Wang, X.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- Jain, M.; Singh, B.; Srivastava, A.A.K.; Malik, R.K.; McDonald, A.J.; Lobell, D.B. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt. Environ. Res. Lett. 2017, 12, 094011. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Feng, Z.; Yang, Y.; Zhang, J.; Wang, X. A GIS-Based Study on the Grain Productivity and Potential Yield Increase at Multi-levels in China. J. Nat. Resour. 2007, 22, 747–756. (In Chinese) [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Wang, P. Management of trade-offs between cultivated land conversions and land productivity in Shandong province. J. Clean. Prod. 2017, 142, 767–774. [Google Scholar] [CrossRef]
- Hochman, Z.; Gobbett, D.; Holzworth, D.; McClelland, T.; van Rees, H.; Marinoni, O.; Garcia, J.N.; Horan, H. Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia. Field Crop. Res. 2013, 136, 85–96. [Google Scholar] [CrossRef]
- Guilpart, N.; Grassini, P.; Sadras, V.O.; Timsina, J.; Cassman, K.G. Estimating yield gaps at the cropping system level. Field Crop. Res. 2017, 206, 21–32. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, W.; You, L.; Zhu, T.; van Vliet, J.; Verburg, P.H.; Liu, Z.; Li, Z.; Yang, P.; Zhou, Q.; et al. Assessing the harvested area gap in China. Agric. Syst. 2017, 153, 212–220. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Shen, S.; Gao, P.; Zhu, D. Spatial pattern of arable land-use intensity in china. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
- Ray, D.K.; Foley, J.A. Increasing global crop harvest frequency: Recent trends and future directions. Environ. Res. Lett. 2013, 8, 044041. [Google Scholar] [CrossRef]
- Gou, F.; Yin, W.; Hong, Y.; van der Werf, W.; Chai, Q.; Heerink, N.; van Ittersum, M.K. On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China. Agric. Syst. 2017, 151, 96–105. [Google Scholar] [CrossRef]
- Guo, E.; Yang, X.; Wang, X.; Zhang, T.; Huang, W.; Liu, Z.; Tao, L. Spatial-Temporal Distribution of Double Cropping Rice’s Yield Gap in Hunan Province. Sci. Agric. Sin. 2017, 50, 399–412. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Wang, H.; Li, Y.; Ye, Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Glob. Chang. Biol. 2014, 20, 1289–1298. [Google Scholar] [CrossRef]
- Liao, L.; Long, H.; Gao, X.; Ma, E. Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry. Land Use Policy 2019, 88, 104152. [Google Scholar] [CrossRef]
- Chen, F.; Sushil, P.; Shijun, D. Changing rice cropping patterns: Evidence from the Yangtze River Valley, China. Outlook Agric. 2013, 42, 109–115. [Google Scholar] [CrossRef]
- Deng, N.; Ling, X.; Sun, Y.; Zhang, C.; Fahad, S.; Peng, S.; Cui, K.; Nie, L.; Huang, J. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. Eur. J. Agron. 2015, 64, 37–46. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Tu, S. Rural vitalization in China: A perspective of land consolidation. J. Geogr. Sci. 2019, 29, 517–530. [Google Scholar] [CrossRef] [Green Version]
Variable Category | Variables | Units | Data Sources |
---|---|---|---|
Dependent variable | Yield gap change (YGC) | tons per hectare | Calculated with Equation (7) |
Climatic factors | Sunshine hours (SH) | hours | China Meteorological Data Service Centre (http://data.cma.cn, accessed on 13 February 2021) and National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 13 February 2021) |
Solar mediation intensity (SMI) | watt per kilometers | ||
Temperature (Temp) | °C | ||
Precipitation (Prec) | mm | ||
Socioeconomic factors | Rural household population (RSP) | ten thousand people | Hunan Provincial Bureau of Statistics |
Land development degree (LDD) | % | Resource and Environmental Science Data Center (RESDC) | |
Population urbanization rate (UR) | % | Hunan Provincial Bureau of Statistics | |
Farm labor (FL) | ten thousand people | Hunan Provincial Bureau of Statistics | |
Gross domestic product (GDP) per capita (GDPPC) | CNY per capita | Hunan Provincial Bureau of Statistics | |
Ratio of the agricultural GDP (RAGDP) | % | Hunan Provincial Bureau of Statistics | |
Per capita annual net income of farmers (PCAI) | RMB per capita | Hunan Provincial Bureau of Statistics | |
Land use conditions | Elevation of cultivated land (DEM) | m | Advanced Land Observing Satellite-1 (ALOS), Japan Aerospace Exploration Agency |
Slope of cultivated land (Slope) | degree | ALOS, Japan Aerospace Exploration Agency | |
Area ratio of paddy fields (RPF) | % | Chinese Academy of Sciences | |
Number of patches (NP) | – | Chinese Academy of Sciences | |
Patch density (PD) | number per hectare | Chinese Academy of Sciences | |
Largest patch index (LPI) | – | Chinese Academy of Sciences | |
Cultivated land quality level (CLPL) | level | Department of Natural Resources of Hunan | |
Human investment | Proportion of the sown area of grain crops (PSAGC) | % | Hunan Provincial Bureau of Statistics |
Multiple cropping index of grain crops (MCI) | % | Hunan Provincial Bureau of Statistics | |
Agricultural practitioners per area (APPA) | person per hectare | Hunan Provincial Bureau of Statistics | |
Rural electricity consumption (REC) | ten thousand watt | Hunan Provincial Bureau of Statistics | |
Amount of fertilizer per area (FPA) | tons per hectare | Hunan Provincial Bureau of Statistics | |
Tractor-plowed area (TPA) | ha | Hunan Provincial Bureau of Statistics | |
Irrigated area (IA) | ha | Hunan Provincial Bureau of Statistics | |
Power of agricultural machinery per area (PAMPA) | kilowatt per hectare | Hunan Provincial Bureau of Statistics | |
Area of soil testing and formula fertilization (ASFF) | hectare | Hunan Provincial Bureau of Statistics |
Year | YGAP (t ha−1) | <3 t ha−1 | 3–6 t ha−1 | 6–9 t ha−1 | 9–12 t ha−1 | ≥12 t ha−1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Mean | Number | Ratio | Number | Ratio | Number | Ratio | Number | Ratio | Number | Ratio | |
1990 | 14.82 | 1.63 | 8.57 | 3 | 2.46% | 25 | 20.49% | 28 | 22.95% | 58 | 47.54% | 8 | 6.56% |
2000 | 13.54 | 0.11 | 5.95 | 23 | 18.85% | 37 | 30.33% | 43 | 35.25% | 16 | 13.11% | 3 | 2.46% |
2010 | 15.06 | 0.24 | 5.74 | 31 | 25.41% | 21 | 17.21% | 56 | 45.90% | 13 | 10.66% | 1 | 0.82% |
2018 | 17.28 | 0.15 | 5.84 | 25 | 20.49% | 38 | 31.14% | 43 | 35.25% | 14 | 11.48% | 2 | 1.64% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Hu, S.; Tong, L.; Xia, C.; Ran, P. Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China. Foods 2022, 11, 1122. https://doi.org/10.3390/foods11081122
Yu D, Hu S, Tong L, Xia C, Ran P. Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China. Foods. 2022; 11(8):1122. https://doi.org/10.3390/foods11081122
Chicago/Turabian StyleYu, De, Shougeng Hu, Luyi Tong, Cong Xia, and Penglai Ran. 2022. "Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China" Foods 11, no. 8: 1122. https://doi.org/10.3390/foods11081122
APA StyleYu, D., Hu, S., Tong, L., Xia, C., & Ran, P. (2022). Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China. Foods, 11(8), 1122. https://doi.org/10.3390/foods11081122