The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Material
2.2. Starter Culture Preparation
2.3. Fermentation of Apple Juice
2.4. Analytical Methods
2.4.1. Viable Yeast Cells and pH Analysis
2.4.2. Analysis of Reducing Sugar, Ethanol, GABA, and Organic Acids
2.4.3. Analysis of Volatile Compounds
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Viable Cell Growth and pH Profiles during Fermentation
3.2. Changes in Ethanol and Organic Acid Profiles during Fermentation
3.3. Volatile Compounds Analysis
3.4. Changes in GABA Production during Fermentation
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.Y.; Zhou, J.C.; Fan, L.Q.; Qin, Z.; Chen, Q.M.; Zhao, L.M. Antioxidant Properties of a Vegetable–Fruit Beverage Fermented with Two Lactobacillus plantarum Strains. Food Sci. Biotechnol. 2018, 27, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Kantachote, D.; Ratanaburee, A.; Hayisama-ae, W.; Sukhoom, A.; Nunkaew, T. The Use of Potential Probiotic Lactobacillus plantarum DW12 for Producing a Novel Functional Beverage from Mature Coconut Water. J. Funct. Foods. 2017, 32, 401–408. [Google Scholar] [CrossRef]
- Sánchez-Martínez, M.; da Silva, E.G.P.; Pérez-Corona, T.; Cámara, C.; Ferreira, S.L.C.; Madrid, Y. Selenite Biotransformation During Brewing. Evaluation by HPLC–ICP-MS. Talanta 2012, 88, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.T.M.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic Beverage from Pineapple Juice Fermented With Lactobacillus and Bifidobacterium Strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, J.Y.; Lu, Y.Y.; Liu, S.Q. Biotransformation of Soy Whey into Soy Alcoholic Beverage by Four Commercial Strains of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2017, 262, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Freire, A.L.; Ramos, C.L.; da Costa Souza, P.N.; Cardoso, M.G.B.; Schwan, R.F. Nondairy Beverage Produced by Controlled Fermentation with Potential Probiotic Starter Cultures of Lactic Acid Bacteria and Yeast. Int. J. Food Microbiol. 2017, 248, 39–46. [Google Scholar] [CrossRef]
- Al-Manhel, A.J.; Niamah, A.K. Mannan Extract from Saccharomyces cerevisiae Used as Prebiotic in Bio-Yogurt Production from Buffalo Milk. Int. Food Res. J. 2017, 24, 2259–2264. [Google Scholar]
- Ando, A.; Nakamura, T. Prevention of GABA Reduction during Dough Fermentation Using a Baker’s Yeast dal81 Mutant. J. Biosci. Bioeng. 2016, 122, 441–445. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, M.Y.; Ji, G.E.; Lee, Y.S.; Hwang, K.T. Production of γ-Aminobutyric Acid in Black Raspberry Juice During Fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 2009, 130, 12–16. [Google Scholar] [CrossRef]
- Gharehyakheh, S.; Elhami Rad, A.H.; Nateghi, L.; Varmira, K. Production of GABA-Enriched Honey Syrup Using Lactobacillus Bacteria Isolated From Honey Bee Stomach. J. Food Process. Preserv. 2019, 43, e14054. [Google Scholar] [CrossRef]
- Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C.G. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perricone, M.; Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Technological Characterization and Probiotic Traits of Yeasts Isolated from Altamura Sourdough to Select Promising Microorganisms as Functional Starter Cultures for Cereal-Based Products. Food Microbiol. 2014, 38, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.L.; Yan, J.L.; Chen, C.; Zhao, J.W.; Liu, S.L.; Zhao, K.; Chen, S.J.; He, L. Isolation and Identification of the Spoilage Microorganisms in Sichuan Homemade Paocai and Their Impact on Quality and Safety. Food Sci. Nutr. 2019, 7, 2939–2947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Sun, Q.; Tan, X.; Zhang, S.M.; Zeng, L.; Tang, J.; Xiang, W.L. Characterization of γ-Aminobutyric Acid (GABA)-Producing Saccharomyces cerevisiae and Coculture with Lactobacillus plantarum for Mulberry Beverage Brewing. J. Biosci. Bioeng. 2020, 129, 447–453. [Google Scholar] [CrossRef]
- Sun, S.; Xin, L.; Gao, H.J.; Wang, J.Y.; Li, P.M. Response of Phenolic Compounds in ‘Golden Delicious’ and ‘Red Delicious’ Apples Peel to Fruit Bagging and Subsequent Sunlight Re-Exposure. Sci. Hortic. 2014, 168, 161–167. [Google Scholar] [CrossRef]
- Zhang, T.J.; Wei, X.Y.; Miao, Z.; Hassan, H.; Song, Y.B.; Fan, M. Screening for Antioxidant and Antibacterial Activities of Phenolics from Golden Delicious Apple Pomace. Chem. Cent. J. 2016, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Sukhvir, S.; Kocher, G.S. Development of Apple Wine from Golden Delicious Cultivar Using a Local Yeast Isolate. J. Food Sci. Technol. 2019, 56, 2959–2969. [Google Scholar] [CrossRef]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Sarkar, D.; Shetty, K. Fermentation-Based Biotransformation of Bioactive Phenolics and Volatile Compounds from Cashew Apple Juice by Select Lactic Acid Bacteria. Process Biochem. 2017, 59, 141–149. [Google Scholar] [CrossRef]
- Liang, X.X.; Yoshida, T.; Uryu, T. Direct Saccharification and Ethanol Fermentation of Cello-Oligosaccharides with Recombinant Yeast. Carbohydr. Polym. 2013, 91, 157–161. [Google Scholar] [CrossRef]
- Yang, Y.D.; Li, M.; Zhang, Z.; Peng, B.Z. Correlation Analysis of Key Enzyme Activities and Aroma Compounds during Fermentation of Simulated Juice System with Saccharomyces cerevisiae. LWT 2019, 108, 214–220. [Google Scholar] [CrossRef]
- Ye, M.Q.; Yue, T.L.; Yuan, Y.H. Effects of Sequential Mixed Cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on Apple Cider Fermentation. FEMS Yeast Res. 2014, 14, 873–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes Ferreira, A.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Feehily, C.; Karatzas, K.A.G. Role of Glutamate Metabolism in Bacterial Responses towards Acid and Other Stresses. J. Appl. Microbiol. 2013, 114, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Tristezza, M.; Tufariello, M.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-Fermentation with Saccharomyces cerevisiae for Industrial Wine Production. Front. Microbiol. 2016, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Pickering, G.J. Low- and Reduced-Alcohol Wine: A Review. J. Wine Res. 2000, 11, 129–144. [Google Scholar] [CrossRef]
- Cao, J.; Barbosa, J.M.; Singh, N.; Locy, R.D. GABA Transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana Complement Function in Cytosol and Mitochondria. Yeast 2013, 30, 279–289. [Google Scholar] [CrossRef]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of Polyphenols and Organic Acids during the Fermentation of Apple Cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Wang, M.; Wang, L.; Liu, J. Effect of Mixed Fermentation with Pichia fermentans, Hanseniaspora uvarum, and Wickeramomyces anomala on the Quality of Fig (Ficus carica L.) Wines. J. Food Process. Preserv. 2021, 45, e15169. [Google Scholar] [CrossRef]
- Deng, Y.; Olson, D.G.; Zhou, J.L.; Herring, C.D.; Joe Shaw, A.J.; Lynd, L.R. Redirecting Carbon Flux Through Exogenous Pyruvate Kinase to Achieve High Ethanol Yields in Clostridium thermocellum. Metab. Eng. 2013, 15, 151–158. [Google Scholar] [CrossRef]
- Knop, D.R.; Draths, K.M.; Chandran, S.S.; Barker, J.L.; von Daeniken, R.; Weber, W.; Frost, J.W. Hydroaromatic Equilibration during Biosynthesis of Shikimic Acid. J. Am. Chem. Soc. 2001, 123, 10173–10182. [Google Scholar] [CrossRef]
- Jang, S.A.; Park, D.W.; Kwon, J.E.; Song, H.S.; Park, B.; Jeon, H.; Sohn, E.H.; Koo, H.J.; Kang, S.C. Quinic Acid Inhibits Vascular Inflammation in TNF-α-Stimulated Vascular Smooth Muscle Cells. Biomed. Pharmacother. 2017, 96, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Gambetta, J.M.; Jeffery, D.W.; Grbin, P.R.; Jiranek, V. Lower-Alcohol Wines Produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae Co-Fermentations: The Effect of Sequential Inoculation Timing. Int. J. Food Microbiol. 2020, 329, 108651. [Google Scholar] [CrossRef] [PubMed]
- Cousin, F.J.; Le Guellec, R.; Schlusselhuber, M.; Dalmasso, M.; Laplace, J.M.; Cretenet, M. Microorganisms in Fermented Apple Beverages: Current Knowledge and Future Directions. Microorganisms 2017, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Guo, W.; Xie, T.; Ai, L.; Tian, H.; Chen, C. Aroma Characteristics of Traditional Huangjiu Produced Around Winter Solstice Revealed by Sensory Evaluation, Gas Chromatography–mass Spectrometry and Gas Chromatography–ion Mobility Spectrometry. Food Res. Int. 2021, 145, 110421. [Google Scholar] [CrossRef] [PubMed]
- Junior, W.J.L.; Binati, R.L.; Felis, G.E.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Volatile Organic Compounds from Starmerella bacillaris to Control Gray Mold on Apples and Modulate Cider Aroma Profile. Food Microbiol. 2020, 89, 103446. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Jin, G.J.; Mei, W.C.; Li, T.; Tao, Y.S. Increase of Medium-Chain Fatty Acid Ethyl Ester Content in Mixed H. uvarum/S. cerevisiae Fermentation Leads to Wine Fruity Aroma Enhancement. Food Chem. 2018, 239, 495–501. [Google Scholar] [CrossRef]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of γ-Aminobutyric Acid (GABA) by Lactobacillus plantarum DSM19463: Functional Grape Must Beverage and Dermatological Applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef]
- Hirose, N.; Ujihara, K.; Teruya, R.; Maeda, G.; Yoshitake, H.; Wada, K.; Yoshimoto, M. Development of GABA-Enhanced Lactic Acid Beverage Usin Sugar cane and its functionality. J. Jpn. Soc. Food Sci. 2008, 55, 209–214. [Google Scholar] [CrossRef] [Green Version]
Compounds | Odor Threshold | Descriptors | Odor Content(μg/L) | OAV | ||
---|---|---|---|---|---|---|
SC125 | Control | SC125 | Control | |||
Esters | ||||||
Ethyl 11-hexadecenoate | nf | Buttery | 1.49 ± 0.09 a | 1.26 ± 0.08 b | - | - |
Ethyl 3-hydroxytridecanoate | nf | Nutty | 1.49 ± 0.02 a | - | - | - |
9-decenoic acid ethyl ester | nf | Fruity | 313.47 ± 2.21 a | 162.94 ± 3.01 b | - | - |
Ethyl benzoate | nf | Fruity | 4.48 ± 0.11 a | 1.26 ± 0.09 b | - | - |
Ethyl heptanoate | nf | Pineapple | 1.49 ± 0.21 a | 1.26 ± 0.09 b | ||
Ethyl decanoate | 200 | Fruity | 286.60 ± 2.24 a | 286.72 ± 2.29 a | >1 | >1 |
Hexyl hexanoate | nf | Raw fruit | 68.67 ± 1.89 b | 370.08 ± 3.24 a | - | - |
Hexyl formate | nf | Fruity | 5.97 ± 0.15 a | 2.53 ± 0.01 b | - | - |
Ethyl lactate | 14,000 | Wine | 152.26 ± 1.90 a | 98.52 ± 0.21 b | <0.1 | <0.1 |
Ethyl caprylate | 147 | Brandy | 1347.93 ± 7.65 a | 1139.30 ± 5.11 b | >1 | >1 |
Isobutyl acetate | 1600 | Pleasant fruity | 20.90 ± 0.99 a | 11.37 ± 0.23 b | <0.1 | <0.1 |
Heptyl acetate | nf | Rose | 2.99 ± 0.08 a | 1.26 ± 0.01 b | - | - |
Hexyl acetate | 1500 | Fruity | 108.97 ± 2.99 a | 73.26 ± 1.31 b | <0.1 | <0.1 |
Ethyl acetate | 7500 | Slightly fruity | 1916.66 ± 5.88 a | 1317.39 ± 5.28 b | <0.1 | <0.1 |
Isobutyl acetate | 1600 | Ripe fruit | 29.85 ± 2.29 a | 22.74 ± 2.22 b | <0.1 | <0.1 |
Isoamyl acetate | 30 | Banana, pear | 46.27 ± 3.21 a | 2.53 ± 0.01 b | >1 | <0.1 |
Ethyl laurate | 1500 | Flower, fruit | 798.61 ± 3.29 b | 924.57 ± 4.78 a | >0.1 | >0.1 |
Ethyl palmitate | 1000 | Weak waxy | 4.48 ± 0.11 a | 1.26 ± 0.01 b | <0.1 | <0.1 |
Alcohols | ||||||
N-pentanol | 200 | Mellow, astringent | 1.49 ± 0.09 a | 1.26 ± 0.01 a | <0.1 | <0.1 |
1-hexanol | 8000 | Grass flavor | 2.99 ± 0.11 a | 2.53 ± 0.02 b | <0.1 | <0.1 |
N-butanol | 5000 | Alcoholic | 64.19 ± 2.51 a | 64.42 ± 1.01 a | <0.1 | <0.1 |
Isoamyl alcohol | 30,000 | Bitter almond | 2268.95 ± 8.90 a | 1894.62 ± 9.01 b | <0.1 | <0.1 |
Isobutanol | 4000 | Fusel alcohol | 552.31 ± 2.29 a | 492.60 ± 2.11 b | >0.1 | >0.1 |
Lauryl alcohol | 1000 | Floral fragrance | 8.96 ± 0.91 b | 11.37 ± 0.09 a | <0.1 | <0.1 |
1-Heptanol | 200 | Lemon, orange | 28.36 ± 1.12 b | 37.89 ± 1.01 a | >0.1 | >0.1 |
Phenylethanol | 10,000 | Rose | 1792.77 ± 5.98 a | 1447.49 ± 5.21 b | >0.1 | >0.1 |
2-methyl n-propanol | nf | nf | 156.74 ± 2.91 a | 118.73 ± 0.91 b | <0.1 | <0.1 |
2,3-Butanediol | 30,000 | Cheese | 1.49 ± 0.02 b | 2.53 ± 0.01 a | <0.1 | <0.1 |
Acids | ||||||
2-methylpropionic acid | nf | nf | 52.25 ± 0.99 a | 42.94 ± 1.81 b | - | - |
2-methylbutyric acid | nf | - | 143.30 ± 3.01 a | 89.68 ± 1.71 b | - | - |
6-decenoic acid | 170 | Milk | 1.49 ± 0.08 a | - | <0.1 | - |
Hexanoic acid | 420 | Barbecue flavor | 210.47 ± 4.34 b | 272.82 ± 2.89 a | >0.1 | >0.1 |
Octanoic acid | 500 | Fruit flavor | 3673.60 ± 9.98 a | 2936.65 ± 9.01 b | >1 | >1 |
Acetic acid | 4740 | Sour | 406.02 ± 2.21 a | 397.87 ± 1.99 b | <0.1 | <0.1 |
Aldehydes and Ketones | ||||||
Acetaldehyde | 110 | Malt fragrance | 1.49 ± 0.01 b | 2.53 ± 0.01 a | <0.1 | <0.1 |
3-hydroxy−2-butanone | 800 | Creamy fragrance | 1.49 ± 0.11 a | - | <0.1 | - |
Phenols | ||||||
2,4-Di-tert-butylphenol | nf | Fruity | 43.29 ± 1.09 a | 20.21 ± 0.90 b | - | - |
Eugenol | 100 | Lilac | 16.42 ± 0.31 b | 60.63 ± 1.09 a | >0.1 | >0.1 |
TOTAL | 14540.66 | 12315.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Wang, J.; Li, C.; Zheng, M.; Zhang, Q.; Xiang, W.; Tang, J. The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods 2022, 11, 1202. https://doi.org/10.3390/foods11091202
Sun X, Wang J, Li C, Zheng M, Zhang Q, Xiang W, Tang J. The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods. 2022; 11(9):1202. https://doi.org/10.3390/foods11091202
Chicago/Turabian StyleSun, Xiangyang, Jie Wang, Chanyuan Li, Miaoxin Zheng, Qing Zhang, Wenliang Xiang, and Jie Tang. 2022. "The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice" Foods 11, no. 9: 1202. https://doi.org/10.3390/foods11091202
APA StyleSun, X., Wang, J., Li, C., Zheng, M., Zhang, Q., Xiang, W., & Tang, J. (2022). The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods, 11(9), 1202. https://doi.org/10.3390/foods11091202