Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Housing and Experimental Diets
2.2. Animal Slaughtering and Sampling
2.3. Proximate Chemical Composition, Cholesterol Level and Energy Value
2.4. Total Amino Acid Profile
2.5. Mineral Profiling
2.6. In Vitro Digestion
2.7. Protein’s Recovery after In Vitro Digestion and Digestibility
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition, Cholesterol Level, and Energy Value
3.2. Amino Acid Profile
3.3. Mineral Composition and Bioaccessibility
3.4. Proteins Recovery and Digestibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petracci, M.; Mudalal, S.; Babini, E.; Cavani, C. Effect of white striping on chemical composition and nutritional value of chicken breast meat. Ital. J. Anim. Sci. 2014, 13, 3138. [Google Scholar] [CrossRef]
- Kralik, G.; Zlata, K.; Grčević, M.; Hanžek, D. Quality of chicken meat. In Animal Husbandry and Nutrition; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinonen, I.; Kyriazakis, I. How can we improve the environmental sustainability of poultry production? Proc. Nutr. Soc. 2016, 75, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- de Medeiros, V.P.B.; Pimentel, T.C.; Sant’Ana, A.S.; Magnani, M. Microalgae in the meat processing chain: Feed for animal production or source of techno-functional ingredients. Curr. Opin. Food Sci. 2021, 37, 125–134. [Google Scholar] [CrossRef]
- Wild, K.J.; Trautmann, A.; Katzenmeyer, M.; Steingaß, H.; Posten, C.; Rodehutscord, M. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions. Algal. Res. 2019, 38, 101385. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Pestana, J.M.; Rodrigues, M.; Coelho, D.; Aires, M.J.; Ribeiro, D.M.; Prates, J.A.M. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult. Sci. 2021, 100, 926–937. [Google Scholar] [CrossRef]
- El-Bahr, S.; Shousha, S.; Shehab, A.; Khattab, W.; Ahmed-Farid, O.; Sabike, I.; Albosadah, K. Effect of dietary microalgae on growth performance, profiles of amino and fatty acids, antioxidant status, and meat quality of broiler chickens. Animals 2020, 10, 761. [Google Scholar] [CrossRef]
- Pestana, J.M.; Puerta, B.; Santos, H.; Madeira, M.S.; Alfaia, C.M.; Lopes, P.A.; Pinto, M.A.; Lemos, J.P.C.; Fontes, C.M.G.A.; Lordelo, M.M.; et al. Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits, and meat quality. Poult. Sci. 2020, 99, 2519–2532. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I.H. Effects of dietary ω-3 fatty acid-enriched microalgae supplementation on growth performance, blood profiles, meat quality, and fatty acid composition of meat in broilers. J. Appl. Anim. Res. 2013, 41, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Iaquinta, F.; Piston, M.; Machado, I. In vitro bioaccessibility of Cu and Zn in cooked beef cuts. LWT 2021, 150, 112027. [Google Scholar] [CrossRef]
- Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2019, 29, 751–760. [Google Scholar] [CrossRef]
- Pistón, M.; Suárez, A.; Bühl, V.; Tissot, F.; Silva, J.; Panizzolo, L. Influence of cooking processes on Cu, Fe, Mn, Ni, and Zn levels in beef cuts. J. Food Compos. Anal. 2020, 94, 103624. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Recio, I. INFOGEST static In Vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemist. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Prates, J.A.M.; Quaresma, M.A.G.; Bessa, R.J.B.; Fontes, C.M.A.; Alfaia, C.M.M. Simultaneous HPLC quantification of total cholesterol, tocopherols and β-carotene in Barrosã-PDO veal. Food Chem. 2006, 94, 469–477. [Google Scholar] [CrossRef]
- European Commission. Regulation of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004, 1169/2011/EU. In Official Journal L 304/18; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Tian, Z.; Cui, Y.; Lu, H.; Wang, G.; Ma, X. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef]
- Rieder, A.; Afseth, N.K.; Böcker, U.; Knutsen, S.H.; Kirkhus, B.; Mæhre, H.K.; Wubshet, S.G. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chem. 2021, 358, 129830. [Google Scholar] [CrossRef]
- Mirzaie, S.; Sharifi, S.D.; Zirak-Khattab, F. The effect of a Chlorella by-product dietary supplement on immune response, antioxidant status, and intestinal mucosal morphology of broiler chickens. J. Appl. Phycol. 2020, 32, 1771–1777. [Google Scholar] [CrossRef]
- Kang, H.K.; Park, S.B.; Kim, C.H. Effects of dietary supplementation with a chlorella by product on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 208–214. [Google Scholar] [CrossRef]
- Janczyk, P.; Halle, B.; Souffrant, W.B. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult. Sci. 2009, 88, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Kalbe, C.; Priepke, A.; Nürnberg, G.; Dannenberger, D. Effects of long term microalgae supplementation on muscle microstructure, meat quality and fatty acid composition in growing pigs. J. Anim. Physiol. Anim. 2019, 103, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.K.; Zhou, Y.; Jiang, S.; Tao, Y.X.; Sun, H.; Peng, J.; Jiang, S. Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: Association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br. J. Nutr. 2013, 110, 671–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldroup, P.W.; Si, J.; Fritts, C.A. Relationship of lysine and other essential amino acids on live performance and breast yield in broilers. In Proceedings of the 9th European Symposium on the Quality of Poultry Meat, Kusadasi, Turkey, 9–12 September 2001; pp. 109–115. [Google Scholar]
- Altmann, B.A.; Wigger, R.; Ciulu, M.; Mörlein, D. The effect of insect or microalga alternative protein feeds on broiler meat quality. J. Sci. Food Agric. 2020, 100, 4292–4302. [Google Scholar] [CrossRef]
- Banaszkiewicz, T. Nutritional value of soybean meal. Soybean and nutrition. In Nutritional Value of Soybean Meal; IntechOpen: London, UK, 2010; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M.; Geraert, P.A.; Liu, R.; Delgado, J.; Mercier, Y.; Zhang, W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks–Invited review. Meat Sci. 2020, 163, 108087. [Google Scholar] [CrossRef] [PubMed]
- Urdaneta-Rincon, M.; Leeson, S. Muscle (pectoralis major) protein turnover in young broiler chickens fed graded levels of lysine and crude protein. Poult. Sci. 2004, 83, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Millward, J.D. A protein-stat mechanism for regulation of growth and maintenance of the lean body mass. Nut. Res. Rev. 1995, 8, 93–120. [Google Scholar] [CrossRef] [Green Version]
- Food Advisory Committee. Report on Review of Food Labelling and Advertising; Her Majesty’s Stationery Office: London, UK, 1990. [Google Scholar]
- European Commission. COMMISSION REGULATION (EU) No 1047/2012. Off. J. Eur. Union 2012, 1047, 36–37. [Google Scholar]
- Šimkus, A.; Šimkienė, A.; Černauskienė, J.; Kvietkutė, N.; Černauskas, A.; Paleckaitis, M.; Kerzienė, S. The effect of blue algae Spirulina platensis on pig growth performance and carcass and meat quality. Vet. Ir Zootech. 2013, 61, 70–74. [Google Scholar]
- Kim, M.; Voy, B.H. Fighting Fat with Fat: N-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Front. Physiol. 2021, 12, 755317. [Google Scholar] [CrossRef]
- De Tonnac, A.; Labussière, E.; Vincent, A.; Mourot, J. Effect of α-linolenic acid and DHA intake on fatty lipogenesis and gene expression involved in acid metabolism in growing-finishing pigs. Br. J. Nutr. 2016, 116, 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chizzolini, R.; Zanardi, E.; Dorigoni, V.; Ghidini, S. Calorific value and cholesterol content of normal and low-fat meat and meat products. Trends Food Sci. Technol. 1999, 10, 119–128. [Google Scholar] [CrossRef]
- Bragagnolo, N. Cholesterol and cholesterol oxides in meat and meat products. In Handbook of Muscle Foods Analysis; CRC Press: Boca Raton, FL, USA, 2018; pp. 207–240. [Google Scholar]
- Dalle Zotte, A.; Ricci, R.; Cullere, M.; Serva, L.; Tenti, S.; Marchesini, G. Research Note: Effect of chicken genotype and white striping–wooden breast condition on breast meat proximate composition and amino acid profile. Poult. Sci. 2020, 99, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Straková, E.; Jelínek, P.; Suchy, P.; Antonínová, M. Specturm of amino acids in muscles of hybrid broilers during prolonged feeding. Czech J. Anim. Sci. 2002, 47, 519–526. [Google Scholar]
- Straková, E.; Suchý, P.; Vitula, F.; Večerek, V. Differences in the amino acid composition of muscles from pheasant and broiler chickens. Arch. Anim. Breed. 2006, 49, 508–514. [Google Scholar] [CrossRef] [Green Version]
- USDA. National Nutrient Database for Standard Reference, Release 20. 2007. Available online: http://www.nal.usda.gov/fnic/foodcomp/search (accessed on 1 December 2021).
- Kokoszyński, D.; Żochowska-Kujawska, J.; Kotowicz, M.; Sobczak, M.; Piwczyński, D.; Stęczny, K.; Majrowska, M.; Saleh, M. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. Anim. Sci. J. 2022, 93, e13709. [Google Scholar] [CrossRef]
- Tokuşoglu, Ö.; Ünal, M.K. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci. 2003, 68, 1144–1148. [Google Scholar] [CrossRef]
- Panahi, Y.; Pishgoo, B.; Jalalian, H.R.; Mohammadi, E.; Taghipour, H.R.; Sahebkar, A.; Abolhasani, E. Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open label clinical trial. Nutr. Diet. 2012, 69, 13–19. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sust. Energ. Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, I.; Williams, A.G.; Kyriazakis, I. The effects of welfare-enhancing system changes on the environmental impacts of broiler and egg production. Poult. Sci. 2014, 93, 256–266. [Google Scholar] [CrossRef]
- Czerwonka, M.; Tokarz, A. Iron in red meat–friend or foe. Meat Sci. 2017, 123, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Mau, L.; Kant, J.; Walker, R.; Kuchendorf, C.M.; Schrey, S.D.; Roessner, U.; Watt, M. Wheat can access phosphorus from algal biomass as quickly and continuously as from mineral fertilizer. Front. Plant Sci. 2021, 27, 631314. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, H.J.; Samuelsen, T.A.; Girons, A.; Kousoulaki, K. Different enzyme incorporation strategies in Atlantic salmon diet containing soybean meal: Effects on feed quality, fish performance, nutrient digestibility and distal intestinal morphology. Aquaculture 2018, 491, 302–309. [Google Scholar] [CrossRef]
- Anderson, R.L.; Wolf, W.J. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J. Nutr. 1995, 125, 581–588. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Roos, F.F. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol. 2016, 221, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Erdman, J.W. Oilseed phytates: Nutritional implications. J. Am. Oil Chem. Soc. 1979, 56, 736–741. [Google Scholar] [CrossRef]
- Lolas, G.M.; Markakis, P. Phytic acid and other phosphorus compounds of beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 1975, 23, 13–15. [Google Scholar] [CrossRef]
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef]
- Saeid, A.; Chojnacka, K.; Korczyński, M.; Korniewicz, D.; Dobrzański, Z. Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J. Appl. Phycol. 2013, 25, 667–675. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; MacGregor, G.A. Role of salt intake in prevention of cardiovascular disease: Controversies and challenges. Nat. Rev. Cardiol. 2018, 15, 371–377. [Google Scholar] [CrossRef]
- Tornberg, E. Effect of heat on meat proteins—implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Gerber, N.; Scheeder, M.R.L.; Wenk, C. The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Purchas, R.W.; Wilkinson, B.H.; Carruthers, F.; Jackson, F. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J. Food. Compost. Anal. 2014, 35, 75–82. [Google Scholar] [CrossRef]
- Goran, G.V.; Tudoreanu, L.; Rotaru, E.; Crivineanu, V. Comparative study of mineral composition of beef steak and pork chops depending on the thermal preparation method. Meat Sci. 2016, 118, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Tkacz, K.; Draszanowska, A.; Więk, A. Influence of sous vide and steam cooking on mineral contents, fatty acid composition and tenderness of semimembranosus muscle from Holstein-Friesian bulls. Meat Sci. 2009, 157, 107877. [Google Scholar] [CrossRef] [PubMed]
- Tomovic, V.; Jokanovic, M.; Sojic, B.; Skaljac, S.; Tasic, T.; Ikonic, P. Minerals in pork meat and edible offal. Procedia Food Sci. 2015, 5, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Higuera, J.M.D.; Santos, H.M.; Oliveira, A.F.D.; Nogueira, A.R.A. Bioaccessibility Assessment of Cu, Fe, K, Mg, P, and Zn in Thermally Treated Lamb Meat. J. Braz. Chem. Soc. 2021, 32, 2111–2119. [Google Scholar] [CrossRef]
- Fu, J.; Cui, Y. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives. Food Chem. Toxicol. 2013, 59, 215–221. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.; Hurrell, R.F. Bioavailability of minerals and trace elements: Members of EC flair concerted action no. 10: Measurements of micronutrient absorption and status. Nutr. Res. Rev. 1996, 9, 295–324. [Google Scholar] [CrossRef] [Green Version]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Ramos, A.; Cabrera, M.C.; Saadoun, A. Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci. 2012, 91, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Yeasmen, N.; Hendrickx, M.E.; & Grauwet, T. Zinc bioaccessibility is affected by the presence of calcium ions and degree of methylesterification in pectin-based model systems. Food Hydrocoll. 2019, 90, 206–215. [Google Scholar] [CrossRef]
- Muleya, M.; Young, S.D.; Bailey, E.H. A stable isotope approach to accurately determine iron and zinc bioaccessibility in cereals and legumes based on a modified INFOGEST static In Vitro digestion method. Food Res. Int. 2021, 139, 109948. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.D.N.; Leme, A.B.P.; Cidade, M.; Cadore, S. Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods. Talanta 2013, 117, 184–188. [Google Scholar] [CrossRef]
- Menezes, E.A.; Oliveira, A.F.; França, C.J.; Souza, G.B.; Nogueira, A.R.A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem. 2018, 240, 75–83. [Google Scholar] [CrossRef]
- Camara, F.; Amaro, M.A.; Barbera, R.; Clemente, G. Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods. Food Chem. 2005, 92, 481–489. [Google Scholar] [CrossRef]
- Bhutta, Z. Protein: Digestibility and availability. Encycl. Hum. Nutr. 1999, 2, 1646–1656. [Google Scholar]
- Lee, S.; Choi, Y.S.; Jo, K.; Yong, H.I.; Jeong, H.G.; Jung, S. Improvement of meat protein digestibility in infants and the elderly. Food Chem. 2021, 356, 129707. [Google Scholar] [CrossRef]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [Green Version]
- Bax, M.L.; Buffière, C.; Hafnaoui, N.; Gaudichon, C.; Savary-Auzeloux, I.; Dardevet, D.; Santé-Lhoutellier, V.; Rémond, D. Effects of meat cooking, and of ingested amount, on protein digestion speed and entry of residual proteins into the colon: A study in minipigs. PLoS ONE 2013, 8, e61252. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Zou, X.; He, J.; Xu, X.; Zhou, G.; Li, C. In vitro protein digestibility of pork products is affected by the method of processing. Food Res. Int. 2017, 92, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | |
---|---|
Dry matter | 93.1 |
Ash | 12.7 |
Crude Protein | 46 |
Crude fat | 9.4 |
Gross energy: | 4586 cal/g |
Dietary Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
Item | Starter | Grower | ||||||
C | CV10% | CV15% | CV20% | C | CV10% | CV15% | CV20% | |
Ingredients (%) | ||||||||
Premix | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Salt | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Corn | 43.00 | 45.36 | 46.13 | 46.51 | 50.18 | 52.00 | 52.71 | 53.42 |
Soybean Meal | 48.00 | 39.00 | 34.00 | 29.2 | 41.5 | 31.56 | 26.61 | 21.7 |
C. vulgaris powder | 0 | 10 | 15 | 20 | 0 | 10 | 15 | 20 |
Sunflower Oil | 3.5 | 1.64 | 0.75 | 0.00 | 4.80 | 2.89 | 1.99 | 1.10 |
DL-Methionine | 0.13 | 0.18 | 0.21 | 0.24 | 0.11 | 0.16 | 0.19 | 0.21 |
L-Lysine | 0.00 | 0.13 | 0.30 | 0.47 | 0.00 | 0.15 | 0.31 | 0.47 |
Calcium Carbonate | 1.2 | 1.5 | 1.65 | 1.8 | 1.06 | 1.37 | 1.53 | 1.67 |
Dicalcium Phosphate | 1.9 | 1.44 | 1.22 | 1.03 | 1.6 | 1.13 | 0.91 | 0.68 |
Amino Acids | Dietary Treatment | |||
---|---|---|---|---|
C | CV10% | CV15% | CV20% | |
Essential amino acids: | ||||
Histidine | 0.72 | 0.74 | 0.77 | 0.80 |
Isoleucine | 0.80 | 0.87 | 0.87 | 0.91 |
Leucine | 1.48 | 1.49 | 1.50 | 1.50 |
Lysine | 0.74 | 0.85 | 1.05 | 1.11 |
Methionine | 0.30 | 0.30 | 0.31 | 0.33 |
Phenylalanine | 0.69 | 0.85 | 0.93 | 1.02 |
Threonine | 0.75 | 0.76 | 0.81 | 0.85 |
Tryptophan | 0.35 | 0.36 | 0.37 | 0.38 |
Valine | 1.04 | 1.10 | 1.11 | 1.12 |
Nonessential amino acids: | ||||
Arginine | 1.62 | 1.65 | 1.67 | 1.69 |
Alanine | 1.21 | 1.26 | 1.28 | 1.29 |
Aspartic acid | 4.29 | 4.11 | 4.19 | 4.29 |
Cysteine | 0.25 | 0.29 | 0.29 | 0.30 |
Glutamic acid | 3.08 | 3.10 | 3.13 | 3.18 |
Glycine | 0.81 | 0.82 | 0.88 | 0.90 |
Proline | 1.25 | 1.22 | 1.26 | 1.26 |
Serine | 0.97 | 0.94 | 0.97 | 0.99 |
Tyrosine | 0.70 | 0.72 | 0.77 | 0.78 |
Total amino acid/Protein content | 21.05 | 21.40 | 22.19 | 22.7 |
Parameter | Dietary Treatment | SEM | p Value | |||
---|---|---|---|---|---|---|
C | CV10% | CV15% | CV20% | |||
Moisture (%) | 71.4 | 72.23 | 70.93 | 70.90 | 1.006 | 0.1620 |
Proteins (%) | 24.4 a | 25.56 ab | 27.1 b | 26.89 b | 1.116 | 0.0083 |
Fat (%) | 3.40 a | 1.95 b | 0.92 c | 1.22 bc | 0.786 | 0.0006 |
Ash (%) | 0.82 a | 1.04 b | 1.05 b | 0.99 b | 0.053 | 0.00002 |
Cholesterol (mg/100 g) | 37.5 | 40.67 | 43.00 | 39.00 | 0.059 | 0.597 |
Energy (kcal/100 g) | 128.1 | 119.79 | 116.68 | 118.54 | 7.905 | 0.139 |
Amino Acids (% of Total Amino Acids) | Dietary Treatment | SEM | p Value | |||
---|---|---|---|---|---|---|
C | CV10% | CV15% | CV20% | |||
Essential amino acids: | ||||||
Histidine | 4.30 | 4.26 | 4.15 | 4.22 | 0.241 | 0.8294 |
Isoleucine | 2.95 | 2.84 | 3.12 | 3.16 | 0.412 | 0.6654 |
Leucine | 6.10 | 5.86 | 5.94 | 6.04 | 0.318 | 0.7388 |
Lysine | 14.69 a | 14.14 ab | 13.58 bc | 13.11 c | 0.516 | 0.0021 |
Methionine | 2.69 | 2.82 | 2.97 | 2.88 | 0.161 | 0.1209 |
Phenylalanine | 3.51 | 3.56 | 3.47 | 3.53 | 0.052 | 0.1279 |
Threonine | 4.71 a | 5.10 b | 5.27 bc | 5.54 c | 0.143 | <0.0001 |
Valine | 3.43 | 3.42 | 3.69 | 3.64 | 0.433 | 0.7438 |
Nonessential amino acids: | ||||||
Alanine | 6.28 | 6.73 | 6.60 | 6.94 | 0.372 | 0.1165 |
Arginine | 11.40 a | 12.13 b | 12.19 b | 12.33 b | 0.273 | 0.0005 |
Aspartic acid | 8.26 | 8.32 | 8.25 | 8.22 | 0.140 | 0.8188 |
Cysteine | 2.75 a | 2.19 ab | 2.30 ab | 1.81 b | 0.442 | 0.0499 |
Glutamic acid | 13.18 | 13.20 | 12.99 | 12.68 | 0.746 | 0.1561 |
Glycine | 4.00 | 4.14 | 4.06 | 4.31 | 0.212 | 0.2206 |
Proline | 5.10 | 4.89 | 4.76 | 5.06 | 0.268 | 0.2796 |
Serine | 3.18 | 3.19 | 3.26 | 3.19 | 0.146 | 0.8728 |
Tyrosine | 3.49 | 3.22 | 3.42 | 3.36 | 0.263 | 0.5333 |
Sample | Minerals | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | P | Fe | Cu | Zn | Mn | |
Raw breast meat | |||||||||
Control | 69.9 a | 357.6 a | 4.70 a | 28.3 a | 223.7 a | 1.09 a | 0.053 | 1.26 | 0.01 |
CV10% | 59.7 ab | 370.1 ab | 4.7 a | 30.4 ab | 231.4 ab | 1.19 ac | 0.065 | 1.17 | 0.02 |
Increase/Decrease * (%) | −14.6 | +3.5 | / | +7.5 | +3.4 | +8.7 | +22.6 | −7.3 | +100 |
CV15% | 54.5 b | 398.9 ab | 6.7 b | 33.1 b | 254.0 b | 1.58 b | 0.065 | 1.03 | 0.023 |
Increase/Decrease * (%) | −22.0 | +11.5 | +41.7 | +8.9 | +13.5 | +45.1 | +22.6 | −18.7 | +133.3 |
CV20% | 58.8 ab | 402.6 b | 6.4 b | 31.6 ab | 249.8 ab | 1.45 bc | 0.065 | 1.02 | 0.025 |
Increase/Decrease * (%) | −15.9 | +12.6 | +35.3 | +11.6 | +11.6 | +33.2 | +22.6 | −19.9 | +150 |
SEM | 9.899 | 21.790 | 1.184 | 2.032 | 13.655 | 0.246 | 0.011 | 0.263 | 0.010 |
p value | 0.024 | 0.021 | 0.001 | 0.022 | 0.014 | 0.001 | 0.333 | 0.493 | 0.210 |
Cooked breast meat | |||||||||
Control | 65.1 a | 363.5 | 4.8 a | 30.8 a | 244 | 1.11 a | 0.126 a | 1.64 a | 0.024 a |
CV10% | 62.3 a | 361.3 | 5.8 b | 31.22 ab | 240 | 1.27 ab | 0.131 ab | 1.21 b | 0.026 ab |
Increase/Decrease * (%) | −4.4 | / | +20.4 | +1.36 | −1.6 | +14.2 | +3.97 | −26.0 | +8.3 |
CV15% | 50.3 ab | 388 | 6.2 bc | 34.93 bc | 258.9 | 1.60 ab | 0.149 b | 1.05 b | 0.025 ab |
Increase/Decrease * (%) | −22.8 | +6.7 | +29.2 | +13.4 | +6.1 | +43.5 | +18.25 | −35.8 | +4.2 |
CV20% | 47.6 b | 388.5 | 7.2 c | 35.8 c | 251.9 | 1.69 b | 0.150 b | 1.03 b | 0.029 b |
Increase/Decrease * (%) | −26.9 | +6.9 | +49.7 | +16.3 | +3.2 | +51.8 | +18.25 | −36.9 | +20.8 |
SEM | 6.329 | 20.45 | 0.311 | 1.929 | 13.99 | 0.255 | 0.011 | 0.127 | 0.002 |
p value | 0.002 | 0.115 | <0.00001 | 0.002 | 0.259 | 0.014 | 0.008 | <0.0001 | 0.037 |
Breast Meat | Protein Recovery [%] ± SE | ||
---|---|---|---|
Total protein | Soluble protein | Insoluble protein | |
Control | 96.66 ± 1.40 | 86.83 ± 1.56 | 9.83 ± 1.16 |
CV10% | 97.07 ± 1.19 | 87.24 ± 1.62 | 9.83 ± 0.58 |
CV15% | 97.48 ± 1.78 | 88.24 ± 1.92 | 9.25 ± 1.10 |
CV20% | 98.39 ± 1.58 | 90.08 ± 1.70 | 8.31 ± 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boskovic Cabrol, M.; Martins, J.C.; Malhão, L.P.; Alfaia, C.M.; Prates, J.A.M.; Almeida, A.M.; Lordelo, M.; Raymundo, A. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods 2022, 11, 1345. https://doi.org/10.3390/foods11091345
Boskovic Cabrol M, Martins JC, Malhão LP, Alfaia CM, Prates JAM, Almeida AM, Lordelo M, Raymundo A. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods. 2022; 11(9):1345. https://doi.org/10.3390/foods11091345
Chicago/Turabian StyleBoskovic Cabrol, Marija, Joana C. Martins, Leonardo P. Malhão, Cristina M. Alfaia, José A. M. Prates, André M. Almeida, Madalena Lordelo, and Anabela Raymundo. 2022. "Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris" Foods 11, no. 9: 1345. https://doi.org/10.3390/foods11091345
APA StyleBoskovic Cabrol, M., Martins, J. C., Malhão, L. P., Alfaia, C. M., Prates, J. A. M., Almeida, A. M., Lordelo, M., & Raymundo, A. (2022). Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods, 11(9), 1345. https://doi.org/10.3390/foods11091345