Oxygen as a Possible Technological Adjuvant during the Crushing or the Malaxation Steps, or Both, for the Modulation of the Characteristics of Extra Virgin Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Fruits
2.2. Olive Oil Extraction and Treatments
2.3. Chemicals
2.4. Quality Parameters Analysis
2.5. Minor Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Quality Parameters
3.2. The Effect of the Treatments of Reduction of Oxygen on the Minor Fraction of Extra Virgin Olive Oil
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality avaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive oil and prevention of chronic diseases: Summary of an International conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin olive oil volatile compounds: Composition, sensory characteristics, analytical approaches, quality control, and authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor chemistry of virgin olive oil: An overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- 31991R2568; Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. European Union: Brussels, Belgium, 1991; p. 83.
- 32012R0432; Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health Text with EEA Relevance. European Union: Brussels, Belgium, 2012.
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- El Riachy, M.; Priego-Capote, F.; León, L.; Rallo, L.; Luque de Castro, M.D. Hydrophilic antioxidants of virgin olive oil. Part 1: Hydrophilic phenols: A key factor for virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2011, 113, 678–691. [Google Scholar] [CrossRef]
- Jiménez-López, C.; Carpena, M.; Lourenço-lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Food 2020, 9, 1014. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Bejaoui, M.A.; Herrera, M.P.A.; Márquez, A.J.; Maza, G.B. Application of oxygen during olive fruit crushing impacts on the characteristics and sensory profile of the virgin olive oil. Eur. J. Lipid Sci. Technol. 2016, 118, 1018–1029. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Romero, C.; Pérez, A.G.; Sanz, C. Oxygen concentration affects volatile compound biosynthesis during virgin olive oil production. J. Agric. Food Chem. 2008, 56, 4681–4685. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ortiz, A.; Pérez, A.G.; Sanz, C. Synthesis of aroma compounds of virgin olive oil: Significance of the cleavage of polyunsaturated fatty acid hydroperoxides during the oil extraction process. Food Res. Int. 2013, 54, 1972–1978. [Google Scholar] [CrossRef]
- Olías, J.M.; Pérez, A.G.; Rios, J.J.; Sanz, L.C. Aroma of virgin olive oil: Biogenesis of the “green” odor notes. J. Agric. food Chem. 1993, 41, 2368–2373. [Google Scholar] [CrossRef]
- Angerosa, F.; Camera, L.; d’Alessandro, N.; Mellerio, G. Characterization of Seven New Hydrocarbon Compounds Present in the Aroma of Virgin Olive Oils. J. Agric. Food Chem. 1998, 46, 648–653. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Sánchez-Ortiz, A.; Pérez, A.G. Role of polyphenol oxidase and peroxidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2011, 44, 629–635. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Zagaria, R.; Tamborrino, A. Development of a prototype malaxer to investigate the influence of oxygen on extra-virgin olive oil quality and yield, to define a new design of machine. Biosyst. Eng. 2014, 118, 95–104. [Google Scholar] [CrossRef]
- Catania, P.; Vallone, M.; Pipitone, F.; Inglese, P.; Aiello, G.; La Scalia, G. An oxygen monitoring and control system inside a malaxation machine to improve extra virgin olive oil quality. Biosyst. Eng. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Vezzaro, A.; Boschetti, A.; Dell’Anna, R.; Canteri, R.; Dimauro, M.; Ramina, A.; Ferasin, M.; Giulivo, C.; Ruperti, B. Influence of olive (cv Grignano) fruit ripening and oil extraction under different nitrogen regimes on volatile organic compound emissions studied by PTR-MS technique. Anal. Bioanal. Chem. 2011, 399, 2571–2582. [Google Scholar] [CrossRef] [PubMed]
- Masella, P.; Parenti, A.; Spugnoli, P.; Calamai, L. Malaxation of olive paste under sealed conditions. JAOCS J. Am. Oil Chem. Soc. 2011, 88, 871–875. [Google Scholar] [CrossRef]
- Tamborrino, A.; Clodoveo, M.L.; Leone, A.; Amirante, P.; Paice, A.G. The Malaxation Process: Influence on Olive Oil Quality and the Effect of the Control of Oxygen Concentration in Virgin Olive Oil. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2010; pp. 77–83. [Google Scholar]
- Servili, M.; Taticchi, A.; Esposto, S.; Urbani, S.; Selvaggini, R.; Montedoro, G. Influence of the decrease in oxygen during malaxation of olive paste on the composition of volatiles and phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2008, 56, 10048–10055. [Google Scholar] [CrossRef] [PubMed]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L. Influence of the extraction process on dissolved oxygen in olive oil. Eur. J. Lipid Sci. Technol. 2007, 109, 1180–1185. [Google Scholar] [CrossRef]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L. Carbon dioxide emission from olive oil pastes during the transformation process: Technological spin offs. Eur. Food Res. Technol. 2006, 222, 521–526. [Google Scholar] [CrossRef]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L.; Pantani, O.L. Improving olive oil quality using CO2 evolved from olive pastes during processing. Eur. J. Lipid Sci. Technol. 2006, 108, 904–912. [Google Scholar] [CrossRef]
- Migliorini, M.; Mugelli, M.; Cherubini, C.; Viti, P.; Zanoni, B. Influence of O2 on the quality of virgin olive oil during malaxation. J. Sci. Food Agric. 2006, 86, 2140–2146. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Air exposure time of olive pastes during the extraction process and phenolic and volatile composition of virgin olive oil. JAOCS J. Am. Oil Chem. Soc. 2003, 80, 685–695. [Google Scholar] [CrossRef]
- Veneziani, G.; García-González, D.L.; Esposto, S.; Nucciarelli, D.; Taticchi, A.; Boudebouz, A.; Servili, M. Effect of Controlled Oxygen Supply during Crushing on Volatile and Phenol Compounds and Sensory Characteristics in Coratina and Ogliarola Virgin Olive Oils. Foods 2023, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Iqdiam, B.M.; Abuagela, M.O.; Marshall, S.M.; Yagiz, Y.; Goodrich-Schneider, R.; Baker, G.L.; Welt, B.A.; Marshall, M.R. Combining high power ultrasound pre-treatment with malaxation oxygen control to improve quantity and quality of extra virgin olive oil. J. Food Eng. 2019, 244, 2289. [Google Scholar] [CrossRef]
- Vallone, M.; Aiello, G.; Bono, F.; De Pasquale, C.; Presti, G.; Catania, P. An Innovative Malaxer Equipped with SCADA Platform for Improving Extra Virgin Olive Oil Quality. Sensors 2022, 22, 2289. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Mangialardi, G.I.; Tamborrino, A. Modified atmosphere in head space of extra virgin olive oil tanks: Testing a prototype integrated storage system. Acta Hortic. 2015, 1071, 319–326. [Google Scholar] [CrossRef]
- Sanmartin, C.; Venturi, F.; Macaluso, M.; Nari, A.; Quartacci, M.F.; Sgherri, C.; Flamini, G.; Taglieri, I.; Ascrizzi, R.; Andrich, G.; et al. Preliminary Results About the Use of Argon and Carbon Dioxide in the Extra Virgin Olive Oil (EEVOO) Storage to Extend Oil Shelf Life: Chemical and Sensorial Point of View. Eur. J. Lipid Sci. Technol. 2018, 120, 1800156. [Google Scholar] [CrossRef]
- Angeloni, G.; Spadi, A.; Corti, F.; Guerrini, L.; Calamai, L.; Parenti, A.; Masella, P. Investigation of the Effectiveness of a Vertical Centrifugation System Coupled with an Inert Gas Dosing Device to Produce Extra Virgin Olive Oil. Food Bioprocess Technol. 2022, 15, 2456–2467. [Google Scholar] [CrossRef]
- COI/OH/Doc.No.1; Guide for the Determination of the Characteristics of Oil-Olives. International Olive Council: Madrid, Spain, 2011; p. 41.
- COI/T.15/NC.No.3/Rev.19; Trade Standard Applying to Olive Oils and Olive-Pomace Oils. International Olive Council: Madrid, Spain, 2022.
- IUPAC. Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th ed.; Elsevier: Amsterdam, The Netherlands, 1979; p. 151. [Google Scholar]
- Mínguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sánchez-Gómez, A.H.; Garrido-Fernández, J. Color-pigment correlation in virgin olive oil. J. Food Qual. 1991, 69, 332–336. [Google Scholar]
- Vázquez-Roncero, A.; Janer del Valle, C.; Janer del Valle, M.L. Determinación de polifenoles totales del aceite de oliva. Grasas Aceites 1973, 24, 350–357. [Google Scholar]
- Sánchez-Ortiz, A.; Bejaoui, M.A.; Quintero-Flores, A.; Jiménez, A.; Beltrán, G. Biosynthesis of volatile compounds by hydroperoxide lyase enzymatic activity during virgin olive oil extraction process. Food Res. Int. 2018, 111, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Sansone, S.A.; Fan, T.; Goodacre, R.; Griffin, J.L.; Hardy, N.W.; Kaddurah-Daouk, R.; Kristal, B.S.; Lindon, J.; Mendes, P.; Morrison, N.; et al. The metabolomics standards initiative. Nat. Biotechnol. 2007, 25, 844–848. [Google Scholar] [CrossRef]
- Molina, F.; Cano, J.; Navas, J.F.; De La Rosa, R.; León Moreno, L. Determinación del Momento Óptimo de Recolección En Olivo; Instituto de Investigación y Formación Agrária y Pesquera: Córdoba, Spain, 2021. [Google Scholar]
- Deiana, P.; Filigheddu, M.R.; Dettori, S.; Culeddu, N.; Dore, A.; Molinu, M.G.; Santona, M. The chemical composition of Italian virgin olive oils. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 51–62. ISBN 9780128195284. [Google Scholar]
- Fadda, C.; Del Caro, A.; Sanguinetti, A.M.; Urgeghe, P.P.; Vacca, V.; Arca, P.P.; Piga, A. Changes during storage of quality parameters and in vitro antioxidant activity of extra virgin monovarietal oils obtained with two extraction technologies. Food Chem. 2012, 134, 1542–1548. [Google Scholar] [CrossRef]
- Squeo, G.; Tamborrino, A.; Pasqualone, A.; Leone, A.; Paradiso, V.M.; Summo, C.; Caponio, F. Assessment of the Influence of the Decanter Set-up During Continuous Processing of Olives at Different Pigmentation Index. Food Bioprocess Technol. 2017, 10, 592–602. [Google Scholar] [CrossRef]
- Gandul-Rojas, B.; Gallardo-Guerrero, L.; Roca, M.; Aparicio-Ruiz, R. Chromatographic Methodologies: Compounds for Olive Oil Color Issues. In Handbook of Olive Oil: Analysis and Properties; Aparicio, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 219–259. ISBN 978-1-4614-7777-8. [Google Scholar]
Trial | HD | MI | WM (g) | FMO (%) | DMO (%) | Moisture (%) |
---|---|---|---|---|---|---|
A | 03/12/2021 | 3.76 | 3.09 | 19.45 | 56.82 | 43.18 |
B | 15/12/2021 | 3.36 | 2.40 | 18.58 | 52.20 | 47.80 |
Parameter * | A Trial | |||
---|---|---|---|---|
TC | T1 | T2 | T3 | |
Free acidity | 0.22 ± 0.03 | 0.20 ± 0.03 | 0.18 ± 0.00 | 0.20 ± 0.03 |
Peroxide value | 4.56 ± 0.52 | 4.73 ± 0.25 | 4.25 ± 0.29 | 4.24 ± 0.29 |
K232nm | 1.70 ± 0.11 | 1.64 ± 0.04 | 1.58 ± 0.01 | 1.65 ± 0.03 |
K270nm | 0.15 ± 0.04 | 0.11 ± 0.03 | 0.10 ± 0.01 | 0.13 ± 0.01 |
B Trial | ||||
TC | T1 | T2 | T3 | |
Free acidity | 0.24 ± 0.00 | 0.23 ± 0.00 | 0.22 ± 0.00 | 0.21 ± 0.00 |
Peroxide value | 5.56 ± 0.00 | 4.99 ± 0.02 | 5.17 ± 0.63 | 4.98 ± 0.02 |
K232nm | 1.75 ± 0.02 | 1.79 ± 0.06 | 1.76 ± 0.03 | 1.74 ± 0.02 |
K270nm | 0.15 ± 0.00 * | 0.16 ± 0.01 | 0.18 ± 0.01 | 0.18 ± 0.01 |
A Trial | ||||
---|---|---|---|---|
TC | T1 | T2 | T3 | |
α-tocopherol | 257.24 ± 8.11 bc | 254.93 ± 1.62 c | 268.74 ± 4.63 ab | 271.57 ± 4.33 a |
β-tocopherol | 6.34 ± 0.33 a | 6.05 ± 0.04 a | 6.19 ± 0.45 ab | 6.23 ± 017 a |
ɣ-tocopherol | 16.51 ± 0.68 a | 16.07 ± 0.07 a | 17.00 ± 0.44 ab | 16.95 ± 0.31 a |
Total | 280.10 ± 9.09 ab | 277.05 ± 1.65 b | 291.92 ± 4.72 ab | 294.75 ± 4.61 a |
B Trial | ||||
TC | T1 | T2 | T3 | |
α-tocopherol | 352.46 ± 2.62 a | 356.94 ± 1.84 a | 357.46 ± 2.41 a | 355.55 ± 2.54 a |
β-tocopherol | 6.81 ± 0.17 a | 6.84 ± 0.20 a | 6.77 ± 0.04 a | 6.96 ± 0.04 a |
ɣ-tocopherol | 14.39 ± 0.12 a | 14.80 ± 0.52 a | 14.58 ± 0.12 a | 14.14 ± 0.05 a |
Total | 373.66 ± 2.83 a | 378.59 ± 2.26 a | 378.82 ± 2.36 a | 376.66 ± 2.56 a |
A Trial | ||||
---|---|---|---|---|
TC | T1 | T2 | T3 | |
Carotenes | 2.16 ± 0.05 c | 2.98 ± 0.17 a | 2.93 ± 0.08 a | 2.52 ± 0.11 b |
Chlorophylls | 1.21 ± 0.10 a | 1.73 ± 0.20 a | 1.61 ± 0.23 a | 1.33 ± 0.26 a |
B Trial | ||||
TC | T1 | T2 | T3 | |
Carotenes | 7.94 ± 0.11 b | 8.36 ± 0.16 ab | 8.72 ± 0.14 a | 8.77 ± 0.36 a |
Chlorophylls | 6.39 ± 0.18 c | 7.32 ± 0.32 b | 8.15 ± 0.11 ab | 8.81 ± 0.54 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrán Maza, G.; Gila Beltrán, A.M.; Herrera, M.P.A.; Jiménez Márquez, A.; Sánchez-Ortiz, A. Oxygen as a Possible Technological Adjuvant during the Crushing or the Malaxation Steps, or Both, for the Modulation of the Characteristics of Extra Virgin Olive Oil. Foods 2023, 12, 2170. https://doi.org/10.3390/foods12112170
Beltrán Maza G, Gila Beltrán AM, Herrera MPA, Jiménez Márquez A, Sánchez-Ortiz A. Oxygen as a Possible Technological Adjuvant during the Crushing or the Malaxation Steps, or Both, for the Modulation of the Characteristics of Extra Virgin Olive Oil. Foods. 2023; 12(11):2170. https://doi.org/10.3390/foods12112170
Chicago/Turabian StyleBeltrán Maza, Gabriel, Abraham M. Gila Beltrán, María Paz Aguilera Herrera, Antonio Jiménez Márquez, and Araceli Sánchez-Ortiz. 2023. "Oxygen as a Possible Technological Adjuvant during the Crushing or the Malaxation Steps, or Both, for the Modulation of the Characteristics of Extra Virgin Olive Oil" Foods 12, no. 11: 2170. https://doi.org/10.3390/foods12112170
APA StyleBeltrán Maza, G., Gila Beltrán, A. M., Herrera, M. P. A., Jiménez Márquez, A., & Sánchez-Ortiz, A. (2023). Oxygen as a Possible Technological Adjuvant during the Crushing or the Malaxation Steps, or Both, for the Modulation of the Characteristics of Extra Virgin Olive Oil. Foods, 12(11), 2170. https://doi.org/10.3390/foods12112170