Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Yak Milk Composition Detection
2.3. Detection of Amino Acids in Yak Milk
2.4. Detection of Volatile Flavor Substances in Yak Milk
2.5. Statistical Analysis
3. Results
3.1. The Main Nutrient Composition of Yak Milk in Different Regions
3.2. Amino Acid Composition of Yak Milk in Different Regions
3.3. Composition of Volatile Substances in Yak Milk from Different Regions
3.3.1. Qualitative Analysis and Fingerprint of Volatile Substances
3.3.2. PCA Results of Yak Milk GC-IMS in Different Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Chu, M.; Bao, Q.; Bao, P.; Guo, X.; Liang, C.; Yan, P. Two different copy number variations of the SOX5 and SOX8 genes in yak and their association with growth traits. Animals 2022, 12, 1587. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hao, L.; Cao, X.; Yang, G.; Degen, A.A.; Xiao, L.; Liu, S.; Zhou, J. Effects of supplementary concentrate and/or rumen-protected lysine plus methionine on productive performance, milk composition, rumen fermentation, and bacterial population in Grazing, Lactating Yaks. Anim. Feed Sci. Technol. 2023, 297, 115591. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, S.; Ren, F.; Luo, Z.; Zeng, S.S. Yak Milk Casein as a Functional Ingredient: Preparation and Identification of Angiotensin-I-Converting Enzyme Inhibitory Peptides. J. Dairy Res. 2006, 74, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Li, X.; Ma, Y.; Li, D. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chem. 2017, 221, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Niang, M.; Yu, L.; Yang, L.; Yu, H.; Li, X.; Chen, X.; Li, Y. Grassland resources and distribution in Maqu county. China Herbiv. Sci. 2019, 39, 39–42. [Google Scholar]
- Xu, Z.; Yu, L.; Wang, R.; Ma, L.; Cao, G.; Yu, H.; Li, X.; Ren, Y. Natural grassland resources and distribution in Xiahe county. China Herbiv. Sci. 2020, 40, 42–46. [Google Scholar]
- Xi, B.; Li, W.; Gao, Y. Comparative analysis of nutrient components of yak milk from different regions. J. Anhui Agric. Sci. 2011, 39, 1045–1046. [Google Scholar]
- Lapthorn, C.; Pullen, F.; Chowdhry, B.Z. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: Separating and assigning structures to ions. Mass Spectrom. Rev. 2012, 32, 43–71. [Google Scholar] [CrossRef]
- Lloyd, M.A.; Hess, S.J.; Drake, M.A. Effect of nitrogen flushing and storage temperature on flavor and shelf-life of whole milk powder. J. Dairy Sci. 2009, 92, 2409–2422. [Google Scholar] [CrossRef]
- Li, H.; Xi, B.; Yang, X.; Wang, H.; He, X.; Li, W.; Gao, Y. Evaluation of change in quality indices and volatile flavor components in raw milk during refrigerated storage. LWT—Food Sci. Technol. 2022, 165, 113674. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, M.; Cai, D.; Hao, Y.; Zhao, X.; Zhu, Y.; Zhu, H.; Yang, Z. Composition, coagulation characteristics, and cheese making capacity of yak milk. J. Dairy Sci. 2019, 103, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Mamet, T.; Xu, B.-J.; Li, X.; Zhang, J.; Li, C.; Wang, L. Chemical and nutritional composition of Pamir yak milk from Xinjiang. J. Anim. Physiol. Anim. Nutr. 2022, 107, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.X.; Yuan, F.; Degen, A.A.; Liu, S.M.; Zhou, J.W.; Shang, Z.H.; Ding, L.M.; Mi, J.D.; Wei, X.H.; Long, R.J. Composition of the milk of yaks raised at different altitudes on the Qinghai–Tibetan Plateau. Int. Dairy J. 2016, 59, 29–35. [Google Scholar] [CrossRef]
- Elobied, A.A.; Osman, A.M.; Kashwa, S.; Ali, A.S.; Salih, M.M. Effect of parity and breed on some physico-chemical components of Sudanese camel milk. Res. Opin. Anim. Vet. Sci. 2015, 5, 20–24. [Google Scholar]
- He, J.; Xiao, Y.; Orgoldol, K.; Ming, L.; Yi, L.; Ji, R. Effects of geographic region on the composition of bactrian camel milk in mongolia. Animals 2019, 9, 890. [Google Scholar] [CrossRef]
- Sheng, Q.; Li, J.; Alam, M.S.; Fang, X.; Guo, M. Gross Composition and Nutrient Profiles of Chinese Yak (Maiwa) Milk; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; Volume 43, pp. 568–572. [Google Scholar]
- Davis, T.A.; Nguyen, H.V.; Garcia-Bravo, R.; Fiorotto, M.L.; Jackson, E.M.; Lewis, D.S.; Rick Lee, D.; Reeds, P.J. Amino acid composition of human milk is not unique. J. Nutr. 1994, 124, 1126–1132. [Google Scholar] [CrossRef]
- Ha, E.; Zemel, M.B. Functional properties of whey, whey components, and essential amino acids: Mechanisms underlying health benefits for active people (review). J. Nutr. Biochem. 2003, 14, 251–258. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef]
- Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M.I. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australas. J. Anim. Sci. 2016, 29, 1022–1028. [Google Scholar] [CrossRef]
- Csapó-Kiss, Z.; Stefler, J.; Martin, T.G.; Makray, S.; Csapó, J. Composition of mares’ colostrum and milk. Protein content, amino acid composition and contents of macro and micro-elements. Int. Dairy J. 1995, 5, 403–415. [Google Scholar] [CrossRef]
- Shamsia, S.M. Nutritional and therapeutic properties of camel and human milks. Int. J. Genet. Mol. Biol. 2009, 1, 52–58. [Google Scholar]
- Moro, J.; Tomé, D.; Schmidely, P.; Demersay, T.-C.; Azzout-Marniche, D. Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Flynn, N.E.; Meininger, C.J.; Haynes, T.E.; Wu, G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharm. 2002, 56, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jaeger, L.A.; Bazer, F.W.; Rhoads, J.M. Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. J. Nutr. Biochem. 2004, 15, 442–451. [Google Scholar] [CrossRef]
- Arce, L.; Gallegos, J.; Garrido-Delgado, R.; Medina, L.M.; Sielemann, S.; Wortelmann, T. Ion mobility spectrometry a versatile analytical tool for metabolomics applications in food science. Curr. Metab. 2015, 2, 264–271. [Google Scholar] [CrossRef]
- Pan, D.D.; Wu, Z.; Peng, T.; Zeng, X.Q.; Li, H. Volatile organic compounds profile during milk fermentation by Lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism. J. Dairy Sci. 2013, 97, 624–631. [Google Scholar] [CrossRef]
- Vazquez-Landaverde, P.A.; Velazquez, G.; Torres, J.A.; Qian, M.C. Quantitative determination of thermally derived off-flavor compounds in milk using solid-phase microextraction and gas chromatography. J. Dairy Sci. 2005, 88, 3764–3772. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wang, W. Formation of aldehyde and ketone compounds during production and storage of milk powder. Molecules 2012, 17, 9900–9911. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, K. Far-infrared and microwave drying of peach. LWT—Food Sci. Technol. 2006, 39, 247–255. [Google Scholar] [CrossRef]
- Licón, C.C.; Hurtado de Mendoza, J.; Maggi, L.; Berruga, M.I.; Martín Aranda, R.M.; Carmona, M. Optimization of headspace sorptive extraction for the analysis of volatiles in pressed ewes’ milk cheese. Int. Dairy J. 2012, 23, 53–61. [Google Scholar] [CrossRef]
- Mason, M.E.; Johnson, B.; Hamming, M.C. Volatile components of roasted peanuts. Major monocarbonyls and some noncarbonyl components. J. Agric. Food Chem. 1967, 15, 66–73. [Google Scholar] [CrossRef]
- Wang, W.; Mu, Z. Effect of UHT treatment on volatile compounds in milk. China Dairy Ind. 2012, 40, 36–38+50. [Google Scholar]
- Østlie, H.M.; Helland, M.H.; Narvhus, J.A. Growth and metabolism of selected strains of probiotic bacteria in milk. Int. J. Food Microbiol. 2003, 87, 17–27. [Google Scholar] [CrossRef]
- Zhang, L.; Mi, S.; Liu, R.-B.; Sang, Y.-X.; Wang, X.-H. Evaluation of volatile compounds during the fermentation process of yogurts by streptococcus thermophilus based on odor activity value and heat map analysis. Int. J. Anal. Chem. 2020, 2020, 3242854. [Google Scholar] [CrossRef] [PubMed]
- Majcher, M.; Jeleń, H.H. Comparison of suitability of SPME, SAFE and SDE methods for isolation of flavor compounds from extruded potato snacks. J. Food Compost. Anal. 2009, 22, 606–612. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, Z. Research progress on yak milk and lts flavor substances. J. Dairy Sci. Technol. 2022, 45, 53–58. [Google Scholar]
- Niu, J.; Gan, B.; Qiao, H.; Liu, X. Analysis of volatile compounds in yak’s milk soft cheese during ripening. Food Sci. 2010, 31, 278–282. [Google Scholar]
- Li, T.; Wang, M.; Lei, J. Volatile flavor compounds of semi-wild-blood Aba Tibetan pork. Food Sci. Technol. 2015, 40, 124–130. [Google Scholar]
- Mohan, M.S.; O’Callaghan, T.F.; Kelly, P.; Hogan, S.A. Milk fat: Opportunities, challenges and innovation. Crit. Rev. Food Sci. Nutr. 2020, 61, 2411–2433. [Google Scholar] [CrossRef]
- Molinari, C.E.; Casadio, Y.S.; Hartmann, B.T.; Livk, A.; Bringans, S.; Arthur, P.G.; Hartmann, P.E. Proteome mapping of human skim milk proteins in term and preterm milk. J. Proteome Res. 2012, 11, 1696–1714. [Google Scholar] [CrossRef]
- Grant, J.D.; Bezerra, J.A.; Thompson, S.H.; Lemen, R.J.; Koldovsky, O.; Udall, J.N. Assessment of lactose absorption by measurement of urinary galactose. Gastroenterology 1989, 97, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Vionnet, N.; Münger, L.H.; Freiburghaus, C.; Burton, K.J.; Pimentel, G.; Pralong, F.P.; Badertscher, R.; Vergères, G. Assessment of lactase activity in humans by measurement of galactitol and galactonate in serum and urine after milk intake. Am. J. Clin. Nutr. 2019, 109, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Selvaggi, M.; Laudadio, V.; Dario, C.; Tufarelli, V. Investigating the genetic polymorphism of sheep milk proteins: A useful tool for dairy production. J. Sci. Food Agric. 2014, 94, 3090–3099. [Google Scholar] [CrossRef] [PubMed]
- Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Bonazza, F.; Palmieri, G.F.; Pucciarelli, S.; Polzonetti, V.; Attarian, L.; Polidori, P.; Vincenzetti, S. A comparison among β-caseins purified from milk of different species: Self-assembling behaviour and immunogenicity potential. Colloids Surf. B Biointerfaces 2018, 173, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, W.; Kong, F.; Kang, S.; Liang, X.; Han, H.; Wu, J.; Zheng, Y.; Li, Q.; Yue, X.; et al. Metabolomics methods to analyze full spectrum of amino acids in different domains of bovine colostrum and mature milk. Eur. Food Res. Technol. 2020, 246, 213–224. [Google Scholar] [CrossRef]
- Zhang, Z.; Adelman, A.S.; Rai, D.; Boettcher, J.; Lőnnerdal, B. Amino acid profiles in term and preterm human milk through lactation: A systematic review. Nutrients 2013, 5, 4800–4821. [Google Scholar] [CrossRef]
- Hu, C.J.; Jiang, Q.Y.; Zhang, T.; Yin, Y.L.; Li, F.N.; Deng, J.P.; Wu, G.Y.; Kong, X.F. Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs. J. Anim. Sci. 2017, 95, 2680–2689. [Google Scholar] [CrossRef]
- Teichert, J.; Cais-Sokolińska, D.; Bielska, P.; Danków, R.; Chudy, S.; Kaczyński, Ł.K.; Biegalski, J. Milk fermentation affects amino acid and fatty acid profile of mare milk from Polish Coldblood mares. Int. Dairy J. 2021, 121, 105137. [Google Scholar] [CrossRef]
- Garattini, S. Glutamic acid, twenty years later. J. Nutr. 2000, 130, 901S–909S. [Google Scholar] [CrossRef]
- Layman, D.K. The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 2003, 133, 261–267. [Google Scholar] [CrossRef]
- Matthews, D.E. Review of Lysine metabolism with a focus on humans. J. Nutr. 2020, 150, 2548S–2555S. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, Y.; Han, H.; Zheng, J.; Wang, L.; Ren, W.; Chen, S.; Wu, F.; Fang, R.; Huang, X.; et al. Effects of Lysine deficiency and Lys-Lys dipeptide on cellular apoptosis and amino acids metabolism. Mol. Nutr. Food Res. 2017, 61, 1600754. [Google Scholar] [CrossRef] [PubMed]
- Flodin, N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997, 16, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Shi, M. The research progress of the physiologic functions of lysine. J. Res. Diet. Sci. Cult. 2014, 31, 60–64. [Google Scholar]
- WHO. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2007; pp. 1–265. [Google Scholar]
- Lv, Z.; Zhang, J.; Yang, Y.; Yang, J.; Li, F.; Liu, H.; Bu, D. Comparative study on the content and composition of amino acids in milk form different species. China Anim. Husb. Vet. Med. 2013, 40, 106–110. [Google Scholar]
- Ding, W. Biodiversity and Probiotic Properties of Lactic Acid Bacteria from Spontaneously Fermented Yak Milk in the Qinghai-Tibetan Plateau. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2014. [Google Scholar]
- Valero, E.; Villamiel, M.; Miralles, B.; Sanz, J.; Martínez-Castro, I. Changes in flavour and volatile components during storage of whole and skimmed UHT milk. Food Chem. 2001, 72, 51–58. [Google Scholar] [CrossRef]
- Yang, P.; Liu, C.; Song, H.; Wang, L.; Wang, X.; Hua, J. Sensory-directed flavor analysis of off-flavor compounds in infant formula with deeply hydrolyzed milk protein and their possible sources. LWT—Food Sci. Technol. 2020, 199, 108861. [Google Scholar] [CrossRef]
- Holland, R.; Liu, S.Q.; Crow, V.L.; Delabre, M.L.; Lubbers, M.; Bennett, M.; Norris, G. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. Int. Dairy J. 2005, 15, 711–718. [Google Scholar] [CrossRef]
Item (%) | Region 1 | ||
---|---|---|---|
MR | XH | MQ | |
Casein | 3.97 ± 0.15 b | 4.06 ± 0.17 b | 4.40 ± 0.10 a |
Fat | 6.43 ± 0.32 a | 4.20 ± 0.15 c | 5.22 ± 0.40 b |
Lactose | 5.06 ± 0.05 a | 5.18 ± 0.04 a | 5.13 ± 0.07 a |
Protein | 5.45 ± 0.12 a | 4.90 ± 0.23 b,c | 5.20 ± 0.21 a,b |
SNF 2 | 9.57 ± 0.18 b | 11.50 ± 0.27 a | 11.63 ± 0.23 a |
Total Solids | 13.97 ± 0.36 c | 15.45 ± 0.39 b | 18.57 ± 0.39 a |
AA 2 (g/100 g) | Region 1 | ||
---|---|---|---|
MR | XH | MQ | |
Histidine | 0.11 ± 0.006 a | 0.11 ± 0.006 a | 0.12 ± 0.000 a |
Isoleucine | 0.22 ± 0.006 a | 0.23 ± 0.012 a | 0.23 ± 0.006 a |
Leucine | 0.45 ± 0.023 b | 0.47 ± 0.010 a | 0.48 ± 0.006 a |
Valine | 0.30 ± 0.010 a | 0.30 ± 0.006 a | 0.30 ± 0.017 a |
Methionine | 0.09 ± 0.025 a | 0.03 ± 0.006 b | 0.04 ± 0.012 b |
Threonine | 0.21 ± 0.006 a | 0.21 ± 0.006 a | 0.22 ± 0.005 a |
Phenylalanine | 0.22 ± 0.023 b | 0.24 ± 0.021 a | 0.25 ± 0.012 a |
Lysine | 0.41 ± 0.010 b | 0.42 ± 0.012 b | 0.45 ± 0.012 a |
Total EAA | 2.02 ± 0.019 a | 2.01 ± 0.035 a | 2.09 ± 0.021 a |
Serine | 0.28 ± 0.010 b | 0.29 ± 0.006 a,b | 0.30 ± 0.010 a |
Glutamic acid | 1.03 ± 0.026 b | 1.07 ± 0.020 a,b | 1.10 ± 0.025 a |
Glycine | 0.08 ± 0.001 a | 0.08 ± 0.000 a | 0.08 ± 0.003 a |
Alanine | 0.13 ± 0.002 a | 0.14 ± 0.001 a | 0.14 ± 0.006 a |
Cystine | 0.09 ± 0.015 a | 0.08 ± 0.006 a,b | 0.07 ± 0.012 b |
Aspartic acid | 0.36 ± 0.006 b | 0.35 ± 0.012 b | 0.38 ± 0.006 a |
Tyrosine | 0.22 ± 0.021 b | 0.27 ± 0.015 a | 0.27 ± 0.012 a |
Arginine | 0.15 ± 0.019 a | 0.16 ± 0.010 a | 0.17 ± 0.007 a |
Proline | 0.42 ± 0.053 b | 0.42 ± 0.041 b | 0.45 ± 0.021 a |
Total NEAA | 2.76 ± 0.042 b | 2.86 ± 0.027 a,b | 2.96 ± 0.049 a |
TAA | 4.78 ± 0.057 b | 4.87 ± 0.050 a,b | 5.05 ± 0.069 a |
BCAAs | 0.97 ± 0.036 a | 0.99 ± 0.015 a | 1.01 ± 0.026 a |
EAA/TAA (%) | 42.26 | 41.27 | 41.39 |
EAA/NEAA (%) | 73.19 | 70.28 | 70.61 |
Compounds | RI 2 | Rt 3 [s] | Dt 4 | Region 1 | ||
---|---|---|---|---|---|---|
MR | XH | MQ | ||||
Ketones (6) | ||||||
2-Butanone | 596.5 | 50.505 | 1.24595 | 0.052 ± 0.007 b | 0.181 ± 0.007 a | 0.187 ± 0.007 a |
2-Pentanone | 672.7 | 66.271 | 1.12129 | 0.112 ± 0.013 b | 0.110 ± 0.003 b | 0.334 ± 0.061 a |
2-Heptanone | 880.4 | 205.561 | 1.25979 | 0.070 ± 0.012 b | 0.092 ± 0.002 b | 0.123 ± 0.006 a |
2,3-Butanedione | 576.2 | 46.978 | 1.18614 | 0.101 ± 0.007 b | 0.129 ± 0.004 a | 0.121 ± 0.008 a |
1-Penten-3-One | 611.7 | 53.306 | 1.15948 | 0.046 ± 0.002 c | 0.079 ± 0.005 a | 0.067 ± 0.003 b |
2-Pentanone dimer | 644.1 | 59.84 | 1.11984 | 0.034 ± 0.003 b | 0.176 ± 0.007 a | 0.186 ± 0.004 a |
Esters (5) | ||||||
Ethyl Acetate | 613.3 | 53.617 | 1.33819 | 4.123 ± 0.556 a | 5.007 ± 0.409 a | 4.650 ± 0.405 a |
Ethyl Butanoate | 780.5 | 120.019 | 1.56098 | 0.367 ± 0.082 b | 0.863 ± 0.090 a | 0.539 ± 0.078 b |
Iso-Propyl Acetate | 647.5 | 60.566 | 1.17533 | 0.743 ± 0.125 a | 0.384 ± 0.014 b | 0.294 ± 0.041 b |
Ethyl Acetate dimer | 599.6 | 51.061 | 1.09698 | 0.020 ± 0.000 b | 0.033 ± 0.005 b | 0.101 ± 0.020 a |
4-Pentanolide | 982.2 | 343.744 | 1.41125 | 0.038 ± 0.002 b | 0.147 ± 0.019 a | 0.158 ± 0.022 a |
Aldehydes (10) | ||||||
Hexanal | 784.2 | 122.651 | 1.25803 | 0.412 ± 0.044 b | 0.756 ± 0.032 a | 0.526 ± 0.051 b |
Butanal | 598.9 | 52.371 | 1.29905 | 0.103 ± 0.006 c | 0.170 ± 0.003 b | 0.207 ± 0.012 a |
Pentanal | 693.3 | 72.079 | 1.4225 | 0.665 ± 0.025 c | 1.696 ± 0.011 a | 1.619 ± 0.019 b |
Isopentanal | 691.1 | 71.146 | 1.18686 | 0.312 ± 0.045 a | 0.213 ± 0.004 b | 0.299 ± 0.004 a |
Heptanal | 892.8 | 219.599 | 1.25803 | 0.411 ± 0.092 b | 0.966 ± 0.102 a | 0.590 ± 0.084 b |
Benzaldehyde | 956.1 | 301.631 | 1.14956 | 0.121 ± 0.013 a | 0.119 ± 0.003 a | 0.114 ± 0.010 a |
(E)-2-Hexenal | 843.2 | 168.294 | 1.17956 | 0.041 ± 0.004 c | 0.060 ± 0.005 a | 0.053 ± 0.004 a,b |
(E)-2-Heptenal | 952.6 | 296.32 | 1.25246 | 0.138 ± 0.011 b | 0.162 ± 0.007 a | 0.111 ± 0.004 c |
3-Methyl-2-Butenal | 780.4 | 119.921 | 1.35214 | 0.048 ± 0.006 a | 0.053 ± 0.003 a | 0.054 ± 0.004 a |
3-Methylbutanal | 652.2 | 61.602 | 1.39578 | 0.071 ± 0.006 b | 0.110 ± 0.008 a | 0.090 ± 0.006 b |
Alcohols (4) | ||||||
Isoamyl Alcohol | 754.1 | 102.868 | 1.51065 | 0.101 ± 0.015 b | 1.739 ± 0.122 a | 1.432 ± 0.175 a |
3-Octanol | 1001.1 | 378.22 | 1.40231 | 0.093 ± 0.023 b | 0.120 ± 0.000 a,b | 0.157 ± 0.009 a |
1-Penten-3-Ol | 683.6 | 68.894 | 1.36515 | 0.051 ± 0.009 a | 0.031 ± 0.001 b | 0.037 ± 0.002 a,b |
3-Methyl-3-Buten-1-Ol | 724 | 86.236 | 1.18474 | 0.302 ± 0.119 a | 0.114 ± 0.006 a | 0.140 ± 0.009 a |
Acids (2) | ||||||
Acetic Acid | 611.7 | 53.306 | 1.15948 | 0.517 ± 0.107 a | 0.376 ± 0.041 b | 0.413 ± 0.055 a,b |
Propanoic Acid | 692.8 | 71.853 | 1.26579 | 0.134 ± 0.004 c | 0.181 ± 0.003 b | 0.199 ± 0.009 a |
Others (7) | ||||||
Pyridine | 753.5 | 102.472 | 1.25281 | 0.161 ± 0.014 c | 0.657 ± 0.016 b | 0.948 ± 0.025 a |
Dipropyl Sulfide | 884.6 | 210.185 | 1.1502 | 0.041 ± 0.003 c | 0.191 ± 0.011 b | 0.438 ± 0.034 a |
1,2-Dimethoxyethane | 635 | 57.933 | 1.31767 | 0.042 ± 0.005 b | 0.150 ± 0.007 a | 0.162 ± 0.010 a |
2-Ethyl Furan | 707.7 | 78.414 | 1.06197 | 0.114 ± 0.019 a,b | 0.081 ± 0.001 b | 0.126 ± 0.014 a |
Tetrahydrofuran | 629.1 | 56.728 | 1.23082 | 0.211 ± 0.028 b | 0.248 ± 0.008 b | 0.341 ± 0.013 a |
Myrcene | 988.4 | 354.555 | 1.22026 | 0.810 ± 0.014 a | 0.614 ± 0.012 c | 0.746 ± 0.014 b |
2-Ethyl-5-Methylpyrazine | 1003.9 | 387.315 | 1.67288 | 0.147 ± 0.017 c | 0.310 ± 0.005 b | 0.347 ± 0.009 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhang, J.; Dai, R.; Ma, X.; Huang, C.; Ren, W.; Ma, X.; Lu, J.; Zhao, X.; Renqing, J.; et al. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023, 12, 2172. https://doi.org/10.3390/foods12112172
Yang G, Zhang J, Dai R, Ma X, Huang C, Ren W, Ma X, Lu J, Zhao X, Renqing J, et al. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods. 2023; 12(11):2172. https://doi.org/10.3390/foods12112172
Chicago/Turabian StyleYang, Guowu, Juanxiang Zhang, Rongfeng Dai, Xiaoyong Ma, Chun Huang, Wenwen Ren, Xiaoming Ma, Jianwei Lu, Xue Zhao, Ji Renqing, and et al. 2023. "Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan" Foods 12, no. 11: 2172. https://doi.org/10.3390/foods12112172
APA StyleYang, G., Zhang, J., Dai, R., Ma, X., Huang, C., Ren, W., Ma, X., Lu, J., Zhao, X., Renqing, J., Zha, L., Guo, X., Chu, M., La, Y., Bao, P., & Liang, C. (2023). Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods, 12(11), 2172. https://doi.org/10.3390/foods12112172