A Correlational Study of Two U.S. State Extension Professionals’ Behavioral Intentions to Improve Sustainable Food Chains through Precision Farming Practices
Abstract
:1. Introduction
2. Theoretical Framework
- (1)
- Describe agricultural extension professionals’ performance expectancy, effort expectancy, social influence, facilitating conditions, and behavioral intentions to promote precision farming technologies.
- (2)
- Investigate the relationship between performance expectancy, effort expectancy, social influence, and facilitating conditions on agricultural extension professionals’ behavioral intentions to promote precision farming technologies.
- (3)
- Examine the mean difference of four variables—performance expectancy, effort expectancy, social influence, and facilitating condition—between two extension system groups.
- (4)
- Predict behavioral intentions using independent variables (performance expectancy, effort expectancy, social influence, facilitating conditions, age, gender, and years of service).
3. Method
3.1. Population and Samples
3.2. Data Collection
3.3. Data Analysis
4. Results
4.1. Descriptive Results
4.2. Inferential Results
4.2.1. The Relationships between UTAUT Constructs
4.2.2. Determine the Mean Differences of Variables among Participants from Two Extension Systems
4.2.3. Determine the Predictor of Behavioral Intention to Promote Precision-Farming Technologies
5. Discussions
6. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simola, A.; Boysen, O.; Ferrari, E.; Nechifor, V.; Boulanger, P. Economic integration and food security—The case of the AfCFTA. Glob. Food Secur. 2022, 35, 100651. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Crist, E.; Mora, C.; Engelman, R. The Interaction of Human Population, Food Production, and Biodiversity Protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- Ganpat, W.G.; Ramjattan, J.; Strong, R. Factors Influencing Self-Efficacy and Adoption of ICT Dissemination Tools by New Extension Officers. J. Int. Agric. Ext. Educ. 2016, 23, 72–85. [Google Scholar] [CrossRef]
- Wolde, Z.; Wei, W.; Kunpeng, W.; Ketema, H. Local Community Perceptions Toward Livelihood and Water–Energy–Food Nexus: A Perspective on Food Security. Food Energy Secur. 2020, 9, e207. [Google Scholar] [CrossRef]
- Carthy, U.M.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global Food Security—Issues, Challenges and Technological Solutions. Trends Food Sci. Technol. 2018, 77, 11–20. [Google Scholar] [CrossRef]
- Xin, J.; Zazueta, F. Technology Trends in ICT–Towards Data-Driven, Farmer-Centered and Knowledge-Based Hybrid Cloud Architectures for Smart Farming. Agric. Eng. Int. CIGR J. 2016, 18, 275–279. [Google Scholar]
- Asif, A.S.; Uddin, M.N.; Dev, D.S.; Miah, M.A.M. Factors Affecting Mobile Phone Usage by the Farmers in Receiving Information on Vegetable Cultivation in Bangladesh. J. Agric. Inf. 2017, 8, 33–43. [Google Scholar] [CrossRef]
- Azumah, S.B.; Donkoh, S.A.; Awuni, J.A. The Perceived Effectiveness of Agricultural Technology Transfer Methods: Evidence from Rice Farmers in Northern Ghana. Cogent Food Agric. 2018, 4, 1503798. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Erickson, B.; Fausti, S.W. The Role of Precision Agriculture in Food Security. J. Agron. 2021, 113, 4455–4462. [Google Scholar] [CrossRef]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for Precision Agriculture and Sustainable Agriculture: Current State and Future Perspectives. J. Agric. Food Chem. 2017, 66, 6487–6503. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Sundström, J.F.; Albihn, A.; Boqvist, S.; Ljungvall, K.; Marstorp, H.; Martiin, C.; Nyberg, K.; Vågsholm, I.; Yuen, J.; Magnusson, U. Future Threats to Agricultural Food Production Posed by Environmental Degradation, Climate Change, and Animal and Plant Diseases—A Risk Analysis in Three Economic and Climate Settings. Food Secur. 2014, 6, 201–215. [Google Scholar] [CrossRef]
- Bulter, D.; Holloway, L. Technology and Restructuring the Social Field of Dairy Farming: Hybrid Capitals, ‘Stockmanship’ and Automatic Milking Systems. Sociol. Rural. 2016, 56, 513–530. [Google Scholar] [CrossRef]
- Eastwood, C.R.; Chapman, D.F.; Paine, M.S. Networks of Practice for Co-construction of Agricultural Decision Support Systems: Case Studies of Precision Dairy Farms in Australia. Agric. Syst. 2012, 108, 10–18. [Google Scholar] [CrossRef]
- Strong, R.; Wynn, J.T., II; Lindner, J.R.; Palmer, K. Evaluating Brazilian agriculturalists’ IoT smart agriculture adoption barriers: Understanding stakeholder salience prior to launching an innovation. Sensors 2022, 22, 6833. [Google Scholar] [CrossRef]
- Carolan, M. Publicising Food: Big Data, Precision Agriculture, and Co-Experimental Techniques of Addition. Sociol. Rural. 2015, 57, 135–154. [Google Scholar] [CrossRef]
- Tambo, J.A.; Abdoulaye, T. Climate Change and Agricultural Technology Adoption: The Case of Drought Tolerant Maize in Rural Nigeria. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 277–292. [Google Scholar] [CrossRef]
- Mikwamba, K.; Dessein, J.; Kambewa, D.; Messely, L.; Strong, R. Collaborative Governance Dynamics in Innovation Platforms: Case of Malawi’s District Stakeholder Panel. J. Agric. Educ. Ext. 2021, 27, 255–275. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Lee, C.-L.; Strong, R.; Dooley, K. Analyzing Precision Agriculture Adoption Across the Globe: A Systematic Review of Scholarship from 1999–2020. Sustainability 2021, 13, 10295. [Google Scholar] [CrossRef]
- Kanter, D.R.; Bell, A.R.; McDermid, S.S. Precision Agriculture for Smallholder Nitrogen Management. One Earth 2019, 1, 281–284. [Google Scholar] [CrossRef]
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of Agricultural Extension Service on Adoption of Chemical Fertilizer: Implications for Rice Productivity and Development in Ghana. NJAS—Wagening. J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- Seitz, P.; Strong, R.; Hague, S.; Murphrey, T.P. Evaluating Agricultural Extension Agent’s Sustainable Cotton Land Production Competencies: Subject Matter Discrepancies Restricting Farmers’ Information Adoption. Land 2022, 11, 2075. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A Systematic Literature Review of The Factors Affecting the Precision Agriculture Adoption Process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Roberts, P.C. Precision agriculture: A Challenge for Crop Nutrition Management. Plant Soil 2002, 247, 143–149. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward A Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Attuquayefio, S.; Addo, H. Review of Studies with UTAUT as Conceptual Framework. Eur. Sci. J. 2014, 10, 249–258. [Google Scholar] [CrossRef]
- Ronaghi, M.H.; Forouharfar, A. A Contextualized Study of the Usage of the Internet of Things (IoTs) in Smart Farming in A Typical Middle Eastern Country within the Context of Unified Theory of Acceptance and Use of Technology Model (UTAUT). Technol. Soc. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Faridi, A.A.; Kavoosi-Kalashami, H.; Bilali, H.E. Attitude Components Affecting Adoption of Soil and Water Conservation Measures by Paddy Farmers in Rasht County, Northern Iran. Land Use Policy 2020, 99, 104885. [Google Scholar] [CrossRef]
- Li, W.; Clark, B.; Taylor, J.A.; Kendall, H.; Jones, G.; Li, Z.; Jin, S.; Zhao, C.; Yang, G.; Shuai, C.; et al. A Hybrid Modelling Approach to Understanding Adoption of Precision Agriculture Technologies in Chinese Cropping Systems. Comput. Electron. Agric. 2020, 172, 105305. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and Intrinsic Motivation to Use Computers in the workplace. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Moya, M.B.; Engotoit, B.; Mayoka, G.K. Mediating Effect of Price Value on Effort Expectancy and Behavioural Intentions to Use Mobile Communication Technologies by Commercial Farmers in Uganda. ICTACT J. Manag. Stud. 2018, 4, 754–763. [Google Scholar] [CrossRef]
- Giua, G.; Materia, V.C.; Camanzi, L. Smart Farming Technologies Adoption: Which Factors Play a Role in The Digital Transition? Technol. Soc. 2022, 68, 101869. [Google Scholar] [CrossRef]
- Shi, Y.; Siddik, A.B.; Masukujjaman, M.; Zheng, G.; Hamayun, M.; Ibrahim, A.M. The Antecedents of Willingness to Adopt and Pay for the IoT in the Agricultural Industry: An Application of the UTAUT 2 Theory. Sustainability 2022, 14, 6640. [Google Scholar] [CrossRef]
- Wang, H.; Tao, D.; Yu, N.; Qu, X. Understanding Consumer Acceptance of Healthcare Wearable Devices: An Integrated Model of UTAUT and TTF. Int. J. Med. Inform. 2020, 139, 104156. [Google Scholar] [CrossRef]
- Lian, J.W.; Yen, D.C. Online Shopping Drivers and Barriers for Older Adults: Age and Gender Differences. Comput. Hum. Behav. 2014, 37, 133–143. [Google Scholar] [CrossRef]
- Ruggeri, K.; Kacha, O.; Menezes, I.G.; Kos, M.; Franklin, M.; Parma, L.; Landon, P.; Mattews, B.; Miles, J. In with the New? Generational Differences Shape Population Technology Adoption Patterns in the Age of Self-Driving Vehicles. J. Eng. Technol. Manag. 2018, 50, 39–44. [Google Scholar] [CrossRef]
- Zaremohzzabieh, Z.; Samah, B.A.; Omar, S.Z.; Bolong, J.; Mohamed Shaffril, H.A. Fisherman’s Acceptance of Information Effect of Age and Experience. J. Appl. Sci. 2014, 14, 873–882. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef]
- Creswell, J.W.; Guetterman, T.C. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 6th ed.; Pearson: New York, NY, USA, 2019. [Google Scholar]
- Irby, T.L.; Strong, R. Agricultural Education Students’ Acceptance and Self-Efficacy of Mobile Technology in Classrooms. NACTA 2013, 57, 82–87. Available online: https://www.jstor.org/stable/10.2307/nactajournal.57.1.82 (accessed on 9 March 2023).
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Fraenkel, J.R.; Hyun, H.H.; Wallen, N.E. How to Design and Evaluate Research in Education, 10th ed.; McGraw Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Davis, J.A. Elementary Survey Analysis; Prentice Hall: Hoboken, NJ, USA, 1971. [Google Scholar]
- El-Masri, M.; Tarhini, A. Factors Affecting the Adoption of E-Learning Systems in Qatar and USA: Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Educ. Technol. Res. Dev. 2017, 65, 743–763. [Google Scholar] [CrossRef]
- Hu, S.; Laxman, K.; Lee, K. Exploring Factors Affecting Academics’ Adoption of Emerging Mobile Technologies-An Extended UTAUT Perspective. Educ. Inf. Technol. 2020, 25, 4615–4635. [Google Scholar] [CrossRef]
- Williams, M.D.; Rana, N.P.; Dwivedi, Y.K. The Unified Theory of Acceptance and Use of Technology (UTAUT): A literature Review. J. Enterp. Inf. Manag. 2015, 28, 443–488. [Google Scholar] [CrossRef]
Characteristics | f | % | ||
---|---|---|---|---|
UT Extension | UC Extension | Total | ||
Gender | ||||
Male | 34 | 17 | 51 | 68.92 |
Female | 8 | 12 | 20 | 27.03 |
Prefer not to answer | 0 | 3 | 3 | 4.05 |
100.00 | ||||
Age | ||||
Under 34 years | 7 | 5 | 12 | 16.67 |
35 to 54 years | 15 | 15 | 30 | 41.67 |
55 years and older | 13 | 17 | 30 | 41.67 |
100.01 | ||||
Years of Service as an Extension Agent/Specialist | ||||
Less than ten years | 12 | 20 | 32 | 44.44 |
10–20 years | 7 | 2 | 9 | 12.50 |
More than 20 years | 18 | 13 | 31 | 43.06 |
100.00 |
Constructs | n | M | SD |
---|---|---|---|
Behavioral Intention | 44 | 3.36 | 0.72 |
Performance Expectancy | 45 | 3.33 | 0.75 |
Social Influence | 44 | 3.19 | 0.56 |
Effort Expectancy | 45 | 3.00 | 0.77 |
Facilitating Conditions | 44 | 2.78 | 0.64 |
Constructs | n | M | SD |
---|---|---|---|
Behavioral Intention | 37 | 3.53 | 0.68 |
Performance Expectancy | 38 | 3.34 | 0.87 |
Social Influence | 37 | 3.20 | 0.70 |
Effort Expectancy | 37 | 3.00 | 0.78 |
Facilitating Conditions | 37 | 2.72 | 0.78 |
Performance Expectancy | Behavioral Intention | Social Influence | Effort Expectancy | Facilitating Conditions | |
---|---|---|---|---|---|
Performance Expectancy | - | ||||
Behavioral Intention | 0.80 * | - | |||
Social Influence | 0.64 * | 0.67 * | - | ||
Effort Expectancy | 0.59 * | 0.53 * | 0.33 * | - | |
Facilitating Conditions | 0.43 * | 0.50 * | 0.35 * | 0.62 * | - |
Performance Expectancy | Behavioral Intention | Social Influence | Effort Expectancy | Facilitating Conditions | |
---|---|---|---|---|---|
Performance Expectancy | - | ||||
Behavioral Intention | 0.68 * | - | |||
Social Influence | 0.58 * | 0.72 * | - | ||
Effort Expectancy | 0.48 * | 0.49 * | 0.51 * | - | |
Facilitating Conditions | 0.38 * | 0.55 * | 0.53 * | 0.67 * | - |
Group | n | M | SD | t | df | p |
---|---|---|---|---|---|---|
Performance Expectancy | ||||||
UC Extension | 38 | 3.34 | 0.75 | −0.04 | 81 | 0.97 |
UT Extension | 45 | 3.33 | 0.87 | |||
Effort Expectancy | ||||||
UT Extension | 45 | 3.00 | 0.77 | 0.07 | 80 | 0.95 |
UC Extension | 37 | 2.99 | 0.78 | |||
Social Influence | ||||||
UC Extension | 37 | 3.20 | 0.56 | −0.06 | 79 | 0.95 |
UT Extension | 44 | 3.19 | 0.70 | |||
Facilitating Conditions | ||||||
UT Extension | 44 | 2.78 | 0.64 | 0.35 | 79 | 0.73 |
UC Extension | 37 | 2.72 | 0.78 |
Group | n | M | SD | t | df | p |
---|---|---|---|---|---|---|
Behavioral Intention | ||||||
55 years and older | 30 | 3.46 | 0.75 | −1.12 | 58 | 0.27 |
35 to 54 years | 30 | 3.26 | 0.67 |
Group | n | M | SD | t | df | p |
---|---|---|---|---|---|---|
Behavioral Intention | ||||||
Fewer than 10 years of service | 32 | 3.72 | 0.57 | 1.64 | 61 | 0.11 |
More than 20 years of service | 31 | 3.47 | 0.65 |
Negative Intention | Moderate Intention | Positive Intention | ||||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | X2 | p | |
Performance Expectancy | ||||||||
Negative Opinion | 6 | 11.8 | 3 | 5.9 | 0 | 0 | 37.12 | <0.01 * |
Moderate Opinion | 5 | 9.8 | 17 | 33.3 | 4 | 7.8 | ||
Positive Opinion | 0 | 0 | 2 | 3.9 | 14 | 27.5 | ||
Effort Expectancy | ||||||||
Negative Opinion | 7 | 13.7 | 11 | 21.6 | 1 | 2.0 | 17.71 | <0.01 * |
Moderate Opinion | 3 | 5.9 | 11 | 21.6 | 11 | 21.6 | ||
Positive Opinion | 1 | 2.0 | 0 | 0 | 6 | 11.8 | ||
Facilitating Conditions | ||||||||
Negative Opinion | 9 | 14 | 14 | 27.5 | 4 | 7.8 | 14.19 | 0.01 * |
Moderate Opinion | 2 | 8 | 8 | 15.7 | 11 | 21.6 | ||
Positive Opinion | 0 | 0 | 0 | 0 | 3 | 5.9 | ||
Social Influence | ||||||||
Negative Opinion | 5 | 4 | 4 | 7.8 | 0 | 0 | 19.83 | <0.01 * |
Moderate Opinion | 6 | 18 | 18 | 35.3 | 12 | 23.5 | ||
Positive Opinion | 0 | 0 | 0 | 0 | 6 | 11.8 |
Independent Variable | Beta | SE | ꞵ | t | p |
---|---|---|---|---|---|
Performance Expectancy | 0.36 | 0.10 | 0.42 | 3.75 | <0.01 * |
Social Influence | 0.36 | 0.11 | 0.32 | 3.21 | <0.01 * |
Facilitating Conditions | 0.18 | 0.10 | 0.20 | 1.84 | 0.07 |
Effort Expectancy | 0.05 | 0.09 | 0.06 | 0.55 | 0.58 |
Gender | 0.01 | 0.08 | 0.01 | 0.07 | 0.94 |
Age | 0.01 | 0.01 | 0.15 | 0.90 | 0.37 |
Years of Service | −0.01 | 0.01 | −0.23 | −1.39 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-L.; Strong, R.; Briers, G.; Murphrey, T.; Rajan, N.; Rampold, S. A Correlational Study of Two U.S. State Extension Professionals’ Behavioral Intentions to Improve Sustainable Food Chains through Precision Farming Practices. Foods 2023, 12, 2208. https://doi.org/10.3390/foods12112208
Lee C-L, Strong R, Briers G, Murphrey T, Rajan N, Rampold S. A Correlational Study of Two U.S. State Extension Professionals’ Behavioral Intentions to Improve Sustainable Food Chains through Precision Farming Practices. Foods. 2023; 12(11):2208. https://doi.org/10.3390/foods12112208
Chicago/Turabian StyleLee, Chin-Ling, Robert Strong, Gary Briers, Theresa Murphrey, Nithya Rajan, and Shelli Rampold. 2023. "A Correlational Study of Two U.S. State Extension Professionals’ Behavioral Intentions to Improve Sustainable Food Chains through Precision Farming Practices" Foods 12, no. 11: 2208. https://doi.org/10.3390/foods12112208
APA StyleLee, C. -L., Strong, R., Briers, G., Murphrey, T., Rajan, N., & Rampold, S. (2023). A Correlational Study of Two U.S. State Extension Professionals’ Behavioral Intentions to Improve Sustainable Food Chains through Precision Farming Practices. Foods, 12(11), 2208. https://doi.org/10.3390/foods12112208