High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Skin Characterization by Optical Microscopy
2.3. Analysis of Cell Wall Material
2.3.1. Isolation of Cell Wall Material
2.3.2. Analysis of Cell Wall Composition
2.4. Wine Physico-Chemical Analysis
2.5. Wine Spectrophotometric Parameters
2.6. Determination of Tannins by HPLC
2.7. Identification and Quantification of Monosaccharides by GC–MS
2.8. Statistical Analysis
3. Results and Discussion
3.1. Wine Chemical Composition
3.2. Chromatic and Phenolic Composition of the Different Wines
3.3. Optical Analysis and Composition Study of Grape Skin Cell Walls
3.4. Monosaccharide and Polysaccharide Composition of the Produced Wines
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. LWT 2022, 156, 113032. [Google Scholar] [CrossRef]
- Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Pérez-Coello, M.S. Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines. Molecules 2021, 26, 1193. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Ultrasound treatment of crushed grapes: Effect on the must and red wine polysaccharide composition. Food Chem. 2021, 356, 129669. [Google Scholar] [CrossRef] [PubMed]
- OIV. Treatment of Crushed Grapes with Ultrasound to Promote the Extraction of Their Compounds; Resolution OIV-OENO 616-2019; OIV: Paris, France, 2019. [Google Scholar]
- Río Segade, S.; Torchio, F.; Giacosa, S.; Ricauda Aimonino, D.; Gay, P.; Lambri, M.; Dordoni, R.; Gerbi, V.; Rolle, L. Impact of several pre-treatments on the extraction of phenolic compounds in winegrape varieties with different anthocyanin profiles and skin mechanical properties. J. Agric. Food Chem. 2014, 62, 8437–8451. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Botía, P.; Romero, P. Changes in berry tissues in Monastrell grapevines grafted on different rootstocks and their relationship with berry and wine phenolic content. Plants 2021, 10, 2585. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Romero-Cascales, I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal. Chim. Acta 2006, 563, 26–32. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; Dokoozlian, N.; Ponangi, R.; Blair, T.; Block, D.E.; Oberholster, A. Correlation between skin cell wall composition and polyphenol extractability of pinot noir and cabernet sauvignon grapes. Am. J. Enol. Vitic. 2021, 72, 328–337. [Google Scholar] [CrossRef]
- Cholet, C.; Delsart, C.; Petrel, M.; Gontier, E.; Grimi, N.; L’Hyvernay, A.; Ghidossi, R.; Vorobiev, E.; Mietton-Peuchot, M.; Geny, L. Structural and biochemical changes induced by pulsed electric field treatments on cabernet sauvignon grape berry skins: Impact on cell wall total tannins and polysaccharides. J. Agric. Food Chem. 2014, 62, 2925–2934. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. The effect of a commercial pectolytic enzyme on grape skin cell wall degradation and colour evolution during the maceration process. Food Chem. 2012, 130, 626–631. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; Ros-García, J.M. Degradation of Syrah and Cabernet Sauvignon grapes skin: Application of different enzymatic activities: A preliminary study. Eur. Food Res. Technol. 2016, 242, 2041–2049. [Google Scholar] [CrossRef]
- López, N.; Puértolas, E.; Condón, S.; Álvarez, I.; Raso, J. Application of pulsed electric fields for improving the maceration process during vinification of red wine: Influence of grape variety. Eur. Food Res. Technol. 2008, 227, 1099–1107. [Google Scholar] [CrossRef]
- De Vries, J.A.; Voragen, A.G.J.; Rombouts, F.M.; Pilnik, W. Extraction and purification of pectins from alcohol insoluble solids from ripe and unripe apples. Carbohydr. Polym. 1981, 1, 117–127. [Google Scholar] [CrossRef]
- European Commission Regulation. E.E.C. No. 2676/90 Determining Community methods for the analysis of wines. OJEU 1990, L272/1, 192. Available online: http://data.europa.eu/eli/reg/1990/2676/oj/ (accessed on 3 February 2022).
- Glories, Y. La couleur des vins rouges. 1◦ Partie. Les équilibres des anthocyanes et des tanins. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Pontallier, P.; Glories, Y. Some interpretations of colour changes in young red wines during their conservation. J. Sci. Food Agric. 1983, 34, 505–516. [Google Scholar] [CrossRef]
- Ho, P.; Da Silva, M.; Hogg, T.A. Changes in colour and phenolic composition during the early stages of maturation of port in wood, stainless steel and glass. J. Sci. Food Agric. 2001, 81, 1269–1280. [Google Scholar] [CrossRef]
- Smith, P.A. Precipitation of tannin with methyl cellulose allows tannin quantification in grape and wine samples. Tech. Rev. AWRI 2005, 158, 3–7. [Google Scholar]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B. Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J. Agric. Food Chem. 2010, 58, 11333–11339. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, Á.; Carrillo, J.D.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography–mass spectrometry (GC–MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374. [Google Scholar] [CrossRef]
- Ayestarán, B.; Guadalupe, Z.; León, D. Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. Anal. Chim. Acta 2004, 513, 29–39. [Google Scholar] [CrossRef]
- Doco, T.; Quellec, N.; Moutounet, M.; Pellerin, P. Polysaccharide patterns during the aging of Carignan noir red wines. Am. J. Enol. Vitic. 1999, 50, 25–32. [Google Scholar] [CrossRef]
- Preys, S.; Mazerolles, G.; Courcoux, P.; Samson, A.; Fischer, U.; Hanafi, M.; Bertrand, D.; Cheynier, V. Relationship between polyphenolic composition and some sensory properties in red wines using multiway analyses. Anal. Chim. Acta 2006, 563, 126–136. [Google Scholar] [CrossRef]
- Quijada-Morín, N.; Williams, P.; Rivas-Gonzalo, J.C.; Doco, T.; Escribano-Bailón, M.T. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem. 2014, 154, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Zietsman, A.J.; Moore, J.P.; Fangel, J.U.; Willats, W.G.; Trygg, J.; Vivier, M.A. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes. J. Agric. Food Chem. 2015, 63, 2798–2810. [Google Scholar] [CrossRef] [PubMed]
- Lisov, N.; Petrović, A.; Čakar, U.; Jadranin, M.; Tešević, V.; Bukarica-Gojković, L. Extraction kinetic of some phenolic compounds during Cabernet Sauvignon alcoholic fermentation and antioxidant properties of derived wines. Maced. J. Chem. Chem. Eng. 2020, 39, 185–196. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Loira, I.; Morata, A.; González, C.; Suárez-Lepe, J.A.; Cuerda, R. Application of ultrasound to improve lees ageing processes in red wines. Food Chem. 2018, 261, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Manyatsi, T.S.; Morata, A.; Tiwari, B.K. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5243–5271. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Changes in skin cell wall composition during the maturation of four premium wine grape varieties. J. Sci. Food Agric. 2008, 88, 420–428. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; Meade, H.; Dokoozlian, N.; Ponangi, R.; Blair, T.; Block, D.E.; Oberholster, A. Investigating the Relation between Skin Cell Wall Composition and Phenolic Extractability in Cabernet Sauvignon Wines. Fermentation 2022, 8, 401. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Fernández-Fernández, J.I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. Characterisation of the main enzymatic activities present in six commercial macerating enzymes and their effects on extracting colour during winemaking of Monastrell grapes. Int. J. Food Sci. Technol. 2008, 43, 1295–1305. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M. The composition of cell walls from grape marcs is affected by grape origin and enological technique. Food Chem. 2015, 167, 370–377. [Google Scholar] [CrossRef]
- Prithani, R.; Dash, K.K. Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innov. Food Sci. Emerg. Technol. 2020, 64, 102407. [Google Scholar] [CrossRef]
- Pieczywek, P.M.; Kozioł, A.; Konopacka, D.; Cybulska, J.; Zdunek, A. Changes in cell wall stiffness and microstructure in ultrasonically treated apple. J. Food Eng. 2017, 197, 1–8. [Google Scholar] [CrossRef]
- Rodrigues, S.; Gomes, M.C.; Gallão, M.I.; Fernandes, F.A. Effect of ultrasound-assisted osmotic dehydration on cell structure of sapotas. J. Sci. Food Agric. 2009, 89, 665–670. [Google Scholar] [CrossRef]
- Vidal, S.; Williams, P.; O’neill, M.A.; Pellerin, P. Polysaccharides from grape berry cell walls. Part I: Tissue distribution and structural characterization of the pectic polysaccharides. Carbohydr. Polym. 2001, 45, 315–323. [Google Scholar] [CrossRef]
- Gil Cortiella, M.; Úbeda, C.; del Barrio-Galán, R.; Peña-Neira, A. Impact of berry size at harvest on red wine composition: A winemaker’s approach. J. Sci. Food Agric. 2020, 100, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Jones-Moore, H.R.; Jelley, R.E.; Marangon, M.; Fedrizzi, B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci. Technol. 2021, 111, 731–740. [Google Scholar] [CrossRef]
- Guilloux-Benatier, M.; Guerreau, J.; Feuillat, M. Influence of initial colloid content on yeast macromolecule production and on the metabolism of wine microorganisms. Am. J. Enol. Vitic. 1995, 46, 486–492. [Google Scholar] [CrossRef]
- Brandão, E.; Silva, M.S.; García-Estévez, I.; Williams, P.; Mateus, N.; Doco, T.; de Freitas, V.; Soares, S. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydr. Polym. 2017, 177, 77–85. [Google Scholar] [CrossRef]
pH | TAc | VAc | G+F | TS | Gluc | Lact | Mal | °Alc | |
---|---|---|---|---|---|---|---|---|---|
Monastrell | |||||||||
M-C7d | 3.74 a | 4.98 b | 0.56 a | 0.70 a | 1.33 a | 0.18 a | 0.11 a | 1.54 a | 14.93 b |
M-US7d | 4.00 b | 4.77 a | 0.74 b | 1.15 b | 1.80 b | 0.20 a | 0.10 a | 1.60 a | 14.61 a |
Syrah | |||||||||
S-C7d | 3.80 a | 5.55 a | 0.25 a | 0.49 b | 1.07 a | 0.10 a | 0.11 a | 2.23 a | 13.50 b |
S-US7d | 3.90 b | 5.65 a | 0.24 a | 0.20 a | 0.97 a | 0.07 a | 0.13 a | 2.76 b | 13.10 a |
Cabernet Sauvignon | |||||||||
CS-C7d | 3.79 a | 5.69 a | 0.32 a | 0.37 a | 0.87 a | 0.04 a | 0.14 a | 1.97 a | 13.24 a |
CS-US7d | 3.86 b | 5.50 a | 0.34 a | 0.40 a | 1.00 a | 0.06 a | 0.16 a | 2.09 a | 13.40 a |
CI | TP | Tant | Pant | MCPT | |
---|---|---|---|---|---|
Monastrell | |||||
M-C7d | 10.9 a | 50.1 a | 406.2 a | 47.5 a | 1463.6 a |
M-US7d | 13.4 b | 53.2 b | 429.0 a | 61.3 b | 1850.4 b |
Syrah | |||||
S-C7d | 17.7 a | 56.6 a | 847.1 a | 42.5 a | 1051.6 a |
S-US7d | 21.6 b | 71.2 b | 883.2 a | 60.6 b | 1552.9 b |
Cabernet Sauvignon | |||||
CS-C7d | 15.7 a | 50.2 a | 700.5 a | 48.9 a | 1137.8 a |
CS-US7d | 18.9 b | 67.9 b | 845.2 b | 59.2 b | 1676.7 b |
TT | mDP | EGC | ECG | |
---|---|---|---|---|
Monastrell | ||||
M-C7d | 705.71 a | 6.58 b | 438.54 a | 68.83 a |
M-US7d | 802.70 a | 5.89 a | 466.10 a | 78.19 a |
Syrah | ||||
S-C7d | 418.10 a | 6.09 b | 286.57 a | 62.09 a |
S-US7d | 757.65 b | 4.31 a | 401.60 b | 124.95 b |
Cabernet Sauvignon | ||||
CS-C7d | 482.11 a | 5.42 a | 468.68 a | 70.29 a |
CS-US7d | 922.35 b | 5.33 a | 731.40 b | 134.43 b |
CWM | Proteins | TP | UA | CG | NCG | Lignin | |
---|---|---|---|---|---|---|---|
Monastrell | |||||||
Fresh grape | 7.33 | 94.85 ± 1.74 a | 80.51 ± 0.72 a | 83.44 ± 1.98 a | 157.08 ± 1.40 c | 34.92 ± 1.49 a | 549.19 ± 0.74 a |
C7d | 21.34 | 90.99 ± 0.17 a | 82.65 ± 0.05 ab | 94.06 ± 5.42 a | 132.70 ± 1.01 a | 48.67 ± 1.77 b | 550.92 ± 5.08 a |
US7d | 23.67 | 94.36 ± 2.14 a | 83.75 ± 1.06 b | 90.98 ± 0.51 a | 146.39 ± 1.96 b | 47.09 ± 0.58 b | 537.44 ± 2.81 a |
Syrah | |||||||
Fresh grape | 6.45 | 90.47 ± 2.82 b | 73.68 ± 0.61 a | 64.92 ± 1.03 a | 129.50 ± 7.11 a | 13.58 ± 2.21 a | 627.84 ± 9.97 a |
C7d | 19.11 | 82.85 ± 0.91 a | 86.20 ± 0.14 c | 63.45 ± 3.78 a | 121.72 ± 1.12 a | 21.64 ± 0.95 b | 624.14 ± 2.08 a |
US7d | 23.22 | 87.36 ± 0.93 ab | 77.90 ± 0.71 b | 71.54 ± 1.90 b | 120.22 ± 4.42 a | 19.06 ± 0.61 b | 623.92 ± 7.39 a |
Cabernet Sauvignon | |||||||
Fresh grape | 6.48 | 79.13 ± 0.18 a | 61.50 ± 1.93 a | 102.93 ± 4.04 c | 151.07 ± 0.78 c | 12.91 ± 0.30 a | 592.46 ± 4.59 a |
C7d | 17.50 | 88.59 ± 0.86 b | 88.22 ± 1.75 b | 63.45 ± 2.18 a | 114.29 ± 1.41 a | 15.70 ± 1.01 b | 629.75 ± 2.89 c |
US7d | 22.25 | 88.18 ± 0.54 b | 85.18 ± 0.51 b | 73.75 ± 4.05 b | 132.29 ± 1.22 b | 13.31 ± 0.50 a | 607.29 ± 5.49 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Porras, P.; Gómez Plaza, E.; Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z.; Jurado, R.; Bautista-Ortín, A.B. High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety? Foods 2023, 12, 2236. https://doi.org/10.3390/foods12112236
Pérez-Porras P, Gómez Plaza E, Martínez-Lapuente L, Ayestarán B, Guadalupe Z, Jurado R, Bautista-Ortín AB. High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety? Foods. 2023; 12(11):2236. https://doi.org/10.3390/foods12112236
Chicago/Turabian StylePérez-Porras, Paula, Encarna Gómez Plaza, Leticia Martínez-Lapuente, Belén Ayestarán, Zenaida Guadalupe, Ricardo Jurado, and Ana Belén Bautista-Ortín. 2023. "High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety?" Foods 12, no. 11: 2236. https://doi.org/10.3390/foods12112236
APA StylePérez-Porras, P., Gómez Plaza, E., Martínez-Lapuente, L., Ayestarán, B., Guadalupe, Z., Jurado, R., & Bautista-Ortín, A. B. (2023). High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety? Foods, 12(11), 2236. https://doi.org/10.3390/foods12112236