Tracing the Volatilomic Fingerprint of the Most Popular Italian Fortified Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Samples
2.3. HS-SPME Procedure
2.4. Gas Chromatography Mass Spectrometry
2.5. Statistical Analysis
3. Results and Discussions
3.1. Volatilomic Fingerprint of the Italian Fortified Wines
3.2. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abreu, T.; Perestrelo, R.; Bordiga, M.; Locatelli, M.; Coïsson, J.D.; Câmara, J.S. The Flavor Chemistry of Fortified Wines-A Comprehensive Approach. Foods 2021, 10, 1239. [Google Scholar] [CrossRef] [PubMed]
- Tredoux, A.G.J.; Silva Ferreira, A.C. Fortified Wines: Styles, Production and Flavour Chemistry. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2012; pp. 159–179. [Google Scholar]
- Reader, H.P.; Dominguez, M. Fortified Wines: Sherry, Port and Madeira. In Fermented Beverage Production; Springer: New York, NY, USA, 2003; pp. 157–194. [Google Scholar]
- Ferreira, I.M.P.L.V.O.; Pérez-Palacios, M.T. Anthocyanic Compounds and Antioxidant Capacity in Fortified Wines. In Processing and Impact on Antioxidants in Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 3–14. ISBN 9780124047389. [Google Scholar]
- Zanfi, A.; Mencarelli, S. Marsala. In Sweet, Reinforced and Fortified Wines; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 319–325. [Google Scholar]
- La Torre, G.L.; La Pera, L.; Rando, R.; Lo Turco, V.; Di Bella, G.; Saitta, M.; Dugo, G. Classification of Marsala Wines According to Their Polyphenol, Carbohydrate and Heavy Metal Levels Using Canonical Discriminant Analysis. Food Chem. 2008, 110, 729–734. [Google Scholar] [CrossRef]
- Panesar, P.S.; Joshi, V.K.; Panesar, R.; Abrol, G.S. Vermouth: Technology of Production and Quality Characteristics. In Advances in Food and Nutrition Research; Academic Press Inc.: New York, NY, USA, 2011; Volume 63, pp. 251–283. [Google Scholar]
- Tonutti, I.; Liddle, P. Aromatic Plants in Alcoholic Beverages. A Review. Flavour Fragr. J. 2010, 25, 341–350. [Google Scholar] [CrossRef]
- Panesar, P.S.; Joshi, V.K.; Bali, V.; Panesar, R. Chapter 8—Technology for Production of Fortified and Sparkling Fruit Wines. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 487–530. ISBN 978-0-12-800850-8. [Google Scholar] [CrossRef]
- Buglass, A.J. Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects, 1st ed.; Buglass, A.J., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2011; Volume 1, pp. 383–445. [Google Scholar] [CrossRef]
- Leça, J.M.; Pereira, V.; Pereira, A.C.; Marques, J.C. Rapid and Sensitive Methodology for Determination of Ethyl Carbamate in Fortified Wines Using Microextraction by Packed Sorbent and Gas Chromatography with Mass Spectrometric Detection. Anal. Chim. Acta 2014, 811, 29–35. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.S.; Câmara, J.S.S.; Rocha, S.M.M. In-Depth Search Focused on Furans, Lactones, Volatile Phenols, and Acetals as Potential Age Markers of Madeira Wines by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Combined with Solid Phase Microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeirawine Aroma Descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Alañón, M.E.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Comparison of Extraction Methods for Volatile Compounds of Muscat Grape Juice. Talanta 2009, 79, 871–876. [Google Scholar] [CrossRef]
- Perestrelo, R.; Nogueira, J.M.F.; Câmara, J.S. Potentialities of Two Solventless Extraction Approaches-Stir Bar Sorptive Extraction and Headspace Solid-Phase Microextraction for Determination of Higher Alcohol Acetates, Isoamyl Esters and Ethyl Esters in Wines. Talanta 2009, 80, 622–630. [Google Scholar] [CrossRef]
- Saha, B.; Longo, R.; Torley, P.; Saliba, A.; Schmidtke, L. SPME Method Optimized by Box-Behnken Design for Impact Odorants in Reduced Alcohol Wines. Foods 2018, 7, 127. [Google Scholar] [CrossRef]
- Pati, S.; Tufariello, M.; Crupi, P.; Coletta, A.; Grieco, F.; Losito, I. Quantification of Volatile Compounds in Wines by HS-SPME-GC/MS: Critical Issues and Use of Multivariate Statistics in Method Optimization. Processes 2021, 9, 662. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Zeng, L.; Fu, Y.; Huang, J.; Wang, J.; Jin, S.; Yin, J.; Xu, Y. Comparative Analysis of Volatile Compounds in Tieguanyin with Different Types Based on HS-SPME-GC-MS. Foods 2022, 11, 1530. [Google Scholar] [CrossRef]
- Ivanova, V.; Stefova, M.; Vojnoski, B.; Stafilov, T.; Bíró, I.; Bufa, A.; Felinger, A.; Kilár, F. Volatile Composition of Macedonian and Hungarian Wines Assessed by GC/MS. Food Bioprocess Technol. 2013, 6, 1609–1617. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, D.; Niu, Y.; Chen, F.; Song, S.; Zhu, J.; Zhu, G. Characterization of Aroma Compounds of Chinese Famous Liquors by Gas Chromatography–Mass Spectrometry and Flash GC Electronic-Nose. J. Chromatogr. B 2014, 945–946, 92–100. [Google Scholar] [CrossRef]
- Moreira, N.; Araújo, A.M.; Rogerson, F.; Vasconcelos, I.; Freitas, V.D.; de Pinho, P.G. Development and Optimization of a HS-SPME-GC-MS Methodology to Quantify Volatile Carbonyl Compounds in Port Wines. Food Chem. 2019, 270, 518–526. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Adam, Z.R.; Fahrenbach, A.C.; Jacobson, S.M.; Kacar, B.; Zubarev, D.Y. Radiolysis Generates a Complex Organosynthetic Chemical Network. Sci. Rep. 2021, 11, 1743. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Gonçalves, C.; Castillo, M.; Câmara, J.S. An Approach of the Madeira Wine Chemistry. Beverages 2020, 6, 12. [Google Scholar] [CrossRef]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical Characterization of the Aroma of Tinta Negra Mole Red Wine: Identification of the Main Odorants Compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef]
- Nisbet, M.A.; Tobias, H.J.; Brenna, J.T.; Sacks, G.L.; Mansfield, A.K. Quantifying the Contribution of Grape Hexoses to Wine Volatiles by High-Precision [U13C]-Glucose Tracer Studies. J. Agric. Food Chem. 2014, 62, 6820. [Google Scholar] [CrossRef]
- Duan, W.P.; Zhu, B.Q.; Song, R.R.; Zhang, B.; Lan, Y.B.; Zhu, X.; Duan, C.Q.; Han, S.Y. Volatile Composition and Aromatic Attributes of Wine Made with Vitisvinifera l.Cv Cabernet Sauvignon Grapes in the Xinjiang Region of China: Effect of Different Commercial Yeasts. Int. J. Food Prop. 2018, 21, 1423–1441. [Google Scholar] [CrossRef]
- Dugo, G.; Franchina, F.A.; Scandinaro, M.R.; Bonaccorsi, I.; Cicero, N.; Tranchida, P.Q.; Mondello, L. Elucidation of the Volatile Composition of Marsala Wines by Using Comprehensive Two-Dimensional Gas Chromatography. Food Chem. 2014, 142, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef] [PubMed]
- Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances Useful in Human Healthcare. Arch. Immunol. Ther. Exp. 2007, 55, 315–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasmins, G.; Perestrelo, R.; Coïsson, J.D.; Sousa, P.; Teixeira, J.A.; Bordiga, M.; Câmara, J.S. Tracing the Volatilomic Fingerprint of the Most Popular Italian Fortified Wines. Foods 2023, 12, 2058. https://doi.org/10.3390/foods12102058
Jasmins G, Perestrelo R, Coïsson JD, Sousa P, Teixeira JA, Bordiga M, Câmara JS. Tracing the Volatilomic Fingerprint of the Most Popular Italian Fortified Wines. Foods. 2023; 12(10):2058. https://doi.org/10.3390/foods12102058
Chicago/Turabian StyleJasmins, Gonçalo, Rosa Perestrelo, Jean Daniel Coïsson, Patrícia Sousa, José A. Teixeira, Matteo Bordiga, and José S. Câmara. 2023. "Tracing the Volatilomic Fingerprint of the Most Popular Italian Fortified Wines" Foods 12, no. 10: 2058. https://doi.org/10.3390/foods12102058
APA StyleJasmins, G., Perestrelo, R., Coïsson, J. D., Sousa, P., Teixeira, J. A., Bordiga, M., & Câmara, J. S. (2023). Tracing the Volatilomic Fingerprint of the Most Popular Italian Fortified Wines. Foods, 12(10), 2058. https://doi.org/10.3390/foods12102058