Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Preparation
2.2.1. Preparation of Stock Solution (Zein, SPI, CMC-Na, Cur)
2.2.2. Preparation of Zein-Based Nanoparticles
2.2.3. Preparation of Cur-Loaded Nanoparticles
2.3. Characterization of the Complex Nanoparticles
2.3.1. Particle Size, Polydispersity Index (PDI) and Zeta Potential of Nanoparticles
2.3.2. Encapsulation Efficiency (EE%)
2.3.3. Transmission Electron Microscopy (TEM)
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.5. XRD
2.4. Stability of the Nanoparticles
2.4.1. pH Stability
2.4.2. Ionic Strength Stability
2.4.3. Photochemical Stability
2.4.4. Storage Stability
2.5. Redispersibility
2.6. Simulated Gastrointestinal Release
2.7. MTT
2.8. Statistical Analysis
3. Result and Discussion
3.1. Preparation of the Zein-Based Nanoparticles
3.1.1. Effect of Mass Ratio of Zein and SPI on Nanoparticles
3.1.2. Effect of Mass Ratio of SPI and Sodium CMC-Na on Nanoparticles
3.2. Characterization of Complex Nanoparticles
3.2.1. Transmission Electron Microscope (TEM)
3.2.2. Particle Size, Zeta Potential and Encapsulation Efficiency
3.2.3. FTIR
3.2.4. XRD
3.3. Stability Research
3.3.1. pH Stability
3.3.2. Ionic Strength Stability
3.3.3. Photochemical Stability
3.3.4. Storage Stability
3.4. Redispersibility
3.5. Simulating Gastrointestinal Release
3.6. Cytotoxicity MTT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goya, L.; San Roman, R.; de Pascual-Teresa, S. Polyphenols’ effect on cerebrovascular health. Curr. Med. Chem. 2022, 29, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Gomez Estaca, J.; Balaguer, M.P.; Gavara, R.; Hernandez Munoz, P. Formation of zein Nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll. 2012, 28, 82–91. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Garavand, F.; Jalai Jivan, M.; Assadpour, E.; Jafari, S.M. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem. 2021, 364, 130376. [Google Scholar] [CrossRef]
- Saffarionpour, S.; Diosady, L.L. Delivery of curcumin through colloidal systems and its applications in functional foods. Food Sci. 2022, 43, 155–162. [Google Scholar] [CrossRef]
- Yu, Y.B.; Wu, M.Y.; Wang, C.; Wang, Z.W.; Chen, T.T.; Yan, J.K. Constructing biocompatible carboxylic curdlan-coated zein Nanoparticles for curcumin encapsulation. Food Hydrocoll. 2020, 108, 106028. [Google Scholar] [CrossRef]
- Alvarenga, L.D.A.; Leal, V.D.O.; Borges, N.A.; de Aguiar, A.S.; Faxén-Irving, G.; Stenvinkel, P.; Lindholm, B.; Mafra, D. Curcumin-A promising nutritional strategy for chronic kidney disease patients. J. Funct. Foods 2018, 40, 715–721. [Google Scholar] [CrossRef]
- Liu, Z.; Chu, W.; Sun, Q.; Zhao, L.; Tan, X.; Zhang, Y.; Yin, T.; He, H.; Gou, J.; Tang, X. Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity. Int. J. Pharm. 2021, 602, 120619. [Google Scholar] [CrossRef] [PubMed]
- Araiza Calahorra, A.; Akhtar, M.; Sarkar, A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Tech. 2018, 71, 155–169. [Google Scholar] [CrossRef]
- Khoshakhlagh, K.; Koocheki, A.; Mohebbi, M.; Allafchian, A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum Nanoparticles for encapsulation of D-limonene. J. Colloid Interface Sci. 2017, 490, 562–575. [Google Scholar] [CrossRef]
- Ramos, S.D.; Trindade, L.G.D.; Mazzo, T.M.; Longo, E.; Bonsanto, F.P.; de Rosso, V.V.; Braga, A.R.C. Electrospinning Cpmposites as Carriers of Natural pigment: Screening of polymeric Blends. Processes 2015, 63, 3915–3923. [Google Scholar]
- Hajjari, M.M.; Golmakani, M.T.; Sharif, N. Electrospun zein/C-phycocyanin composite: Simulation, characterization and therapeutic application. Food Hydrocoll. 2023, 140, 108638. [Google Scholar] [CrossRef]
- Du, W.; Du, S.; Dong, X.; Bai, H.; Jiang, J.; Hao, S.; Yang, F.; Xiao, Q.; Zhang, B.; Ge, J.; et al. Biodegradable silica nanocapsules enable efficient nuclear-targeted delivery of native proteins for cancer therapy. Biomaterials 2023, 294, 122000. [Google Scholar] [CrossRef] [PubMed]
- Tarahi, M.; Ahmed, J. Recent advances in legume protein-based colloidal systems. Legum. Sci. 2023, e185. [Google Scholar] [CrossRef]
- Paliwal, R.; Palakurthi, S. Zein in controlled drug delivery and tissue engineering. J. Control. Release 2014, 189, 108–122. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.C.; Gong, P.X.; Zhang, Y.H.; Li, H.J. Chondroitin sulfate deposited on foxtail millet prolamin/caseinate Nanoparticles to improve physicochemical properties and enhance cancer therapeutic effects. Food Funct. 2022, 13, 5343–5352. [Google Scholar] [CrossRef]
- Tapal, A.; Tiku, P.K. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 2012, 130, 960–965. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Ouyang, X.k.; Ling, J. Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery. Int. J. Biol. Macromol. 2020, 165, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- KLupina; Kowalczyk, D.; Zieba, E.; Kazimierczak, W.; Mezynska, M.; Basiura-Cembala, M.; Wiacek, A.E. Edible films made from bleds of gelatin and polysaccharide-based emulsifiers—A comparative study. Food Hydrocoll. 2019, 96, 555–567. [Google Scholar] [CrossRef]
- Kasaai, M.R. Zein and zein-based nano-materials for food and nutrition applications: A review. Trends Food Sci. Technol. 2018, 79, 184–197. [Google Scholar] [CrossRef]
- Patel, A.R.; Velikov, K.P. Zein as a source of functional colloidal nano- and microstructures. Curr. Opin. Colloid Interface Sci. 2014, 19, 450–458. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, L.; Tong, M.; Lu, Y.; Ouyang, X.k.; Ling, J. Encapsulation of curcumin using fucoidan stabilized zein Nanoparticles: Preparation, characterization, and in vitro release performance. J. Mol. Liq. 2021, 329, 115586. [Google Scholar] [CrossRef]
- Li, D.; Wei, Z.; Sun, J.; Xue, C. Tremella polysaccharides-coated zein Nanoparticles for enhancing stability and bioaccessibility of curcumin. Curr. Res. Food Sci. 2022, 5, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Sun, C.; Wei, Y.; Zhan, X.; Mao, L.; Gao, Y. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type. Food Chem. 2018, 258, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhou, H.; Wei, Y.; Gao, Y.; McClements, D.J. Curcumin encapsulation in zein-rhamnolipid composite Nanoparticles using a pH-driven method. Food Hydrocoll. 2019, 93, 342–350. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.C.; Liu, Y.; Qian, L.H.; Zhang, Y.H.; Li, H.J. Single/co-encapsulation capacity and physicochemical stability of zein and foxtail millet prolamin nanoparticles. Colloids Surfaces B Biointerfaces 2022, 217, 130764. [Google Scholar] [CrossRef]
- Xu, X.; Peng, X.; Huan, C.; Chen, J.; Meng, Y.; Fang, S. Development of natamycin-loaded zein-casein composite Nanoparticles by a pH-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chem. 2023, 404, 134659. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Ma, M.; Zhang, S.; Wang, S.; Li, H.; Xu, Y.; Wang, D. Self-assembled composite Nanoparticles based on zein as delivery vehicles of curcumin: Role of chondroitin sulfate. Food Funct. 2020, 11, 5377–5388. [Google Scholar] [CrossRef]
- Wang, Y.; Wusigale; Luo, Y. Colloidal Nanoparticles prepared from zein and casein: Interactions, characterizations and emerging food applications. Food Sci. Hum. Wellness 2023, 12, 337–350. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Zhang, Y.; Wu, Y.C.; Ma, Y.; Li, H.J. Co-encapsulation of curcumin and resveratrol in zein-bovine serum albumin Nanoparticles using a pH-driven method. Food Funct. 2023, 14, 3169–3178. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, F.; Ling, J.; Ouyang, X.K.; Wang, Y.G. Delivery of curcumin using a zein-xanthan gum nanocomplex: Fabrication, characterization, and in vitro release properties. Colloids Surf. B Biointerfaces 2021, 204, 111827. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chi, C.; Pu, Y.; Miao, S.; Liu, D. Conjugation of soy protein isolate (SPI) with pectin: Effects of structural modification of the grafting polysaccharide. Food Chem. 2022, 387, 132876. [Google Scholar] [CrossRef]
- Wei, Y.; Zhan, X.; Dai, L.; Zhang, L.; Mao, L.; Yuan, F.; Liu, J.; Gao, Y. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex Nanoparticles using the pH-shifting method. LWT—Food Sci. Technol. 2021, 139, 110605. [Google Scholar] [CrossRef]
- Glusac, J.; Vardi, I.D.; Isaschar-Ovdat, S.; Kukavica, B.; Fishman, A. Tyrosinase-crosslinked pea protein emulsions: Impact of zein incorporation. Food Res. Int. 2019, 116, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Cai, X.; Zhang, F.; Wang, S. Fabrication of self-assembled Radix Pseudostellariae protein Nanoparticles and the entrapment of curcumin. Food Chem. 2019, 274, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qin, Y.; Chen, J.; Jiang, B.; Zhang, T. Fabrication, characterization, physicochemical stability and simulated gastrointestinal digestion of pterostilbene loaded zein-sodium caseinate-fucoidan Nanoparticles using pH-driven method. Food Hydrocoll. 2021, 119, 106851. [Google Scholar] [CrossRef]
- Inphonlek, S.; Sunintaboon, P.; Leonard, M.; Durand, A. Chitosan/carboxymethylcellulose- stabilized poly(lactide-co-glycolide) particles as bio-based drug delivery carriers. Carbohydr. Polym. 2020, 242, 116417. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Y.; Xu, Y.; Niu, F.; Li, Z.; Ba, C.; Jin, B.; Chen, G.; Li, X. One-step assembly of zein/caseinate/alginate Nanoparticles for encapsulation and improved bioaccessibility of propolis. Food Funct. 2019, 10, 635–645. [Google Scholar] [CrossRef]
- Zhan, X.; Dai, L.; Zhang, L.; Gao, Y. Entrapment of curcumin in whey protein isolate and zein composite Nanoparticles using pH-driven method. Food Hydrocoll. 2020, 106, 105839. [Google Scholar] [CrossRef]
- Chen, S.; Ma, Y.; Dai, L.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite Nanoparticles using pH-driven method. Food Hydrocoll. 2021, 118, 106758. [Google Scholar] [CrossRef]
- Chang, C.; Wang, T.; Hu, Q.; Zhou, M.; Xue, J.; Luo, Y. Pectin coating improves physicochemical properties of caseinate/zein Nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017, 70, 143–151. [Google Scholar] [CrossRef]
- Sun, C.; Gao, Y.; Zhong, Q. Effects of acidification by glucono-delta-lactone or hydrochloric acid on structures of zein-caseinate nanocomplexes self-assembled during a pH cycle. Food Hydrocoll. 2018, 82, 173–185. [Google Scholar] [CrossRef]
- Cheng, C.J.; Jones, O.G. Stabilizing zein Nanoparticle dispersions with iota-carrageenan. Food Hydrocoll. 2017, 69, 28–35. [Google Scholar] [CrossRef]
- Arshad, R.; Tabish, T.A.; Kiani, M.H.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Kang, M.; Pandey, S. A Hyaluronic acid functionalized self-nano-emulsifying drug delivery system (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials 2021, 11, 1086. [Google Scholar] [CrossRef]
- Wusigale; Liang, L.; Luo, Y. Casein and pectin: Structures, interactions, and applications. Trends Food Sci. Technol. 2020, 97, 391–403. [Google Scholar] [CrossRef]
- Donsi, F.; Voudouris, P.; Veen, S.J.; Velikov, K.P. Zein-based colloidal particles for encapsulation epigallocatechin gallate and delivery of epigallocatechin gallate. Food Hydrocoll. 2017, 63, 508–517. [Google Scholar] [CrossRef]
- Bian, Y.; Guo, D. Targeted therapy for hepatocellular carcinoma: Co-delivery of sorafenib and curcumin using lactosylated pH-responsive Nanoparticles. Drug Des. Dev. Ther. 2020, 14, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Pan, K.; Luo, Y.; Gan, Y.; Baek, S.J.; Zhong, Q. pH-driven encapsulation of curcumin in self-assembled casein Nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 2014, 10, 6820–6830. [Google Scholar] [CrossRef]
- Pan, K.; Zhong, Q. Low energy, organic solvent-free co-assembly of zein and caseinate to prepare stable dispersions. Food Hydrocoll. 2016, 52, 600–606. [Google Scholar] [CrossRef]
- Chen, S.; Sun, C.; Wang, Y.; Han, Y.; Dai, L.; Abliz, A.; Gao, Y. Quercetagetin-loaded composite Nanoparticles based on zein and hyaluronic acid: Formation, characterization, and physicochemical stability. J. Agric. Food Chem. 2018, 66, 7441–7450. [Google Scholar] [CrossRef]
- Dai, L.; Li, R.; Wei, Y.; Sun, C.; Mao, L.; Gao, Y. Fabrication of zein and rhamnolipid complex Nanoparticles to enhance the stability and in vitro release of curcumin. Food Hydrocoll. 2018, 77, 617–628. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, H.; Liu, C.; Zhu, J.; Xu, Y.; Zhang, S.; Fan, M.; Zhang, D.; Zhang, Y.; Zhang, Z.; et al. Fabrication of stable zein Nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method. Int. J. Biol. Macromol. 2019, 139, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yu, Z.; Lin, K.; Sun, C.; Dai, L.; Yang, S.; Mao, L.; Yuan, F.; Gao, Y. Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite Nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocoll. 2019, 95, 336–348. [Google Scholar] [CrossRef]
- Khan, M.A.; Yue, C.; Fang, Z.; Hu, S.; Cheng, H.; Bakry, A.M.; Liang, L. Alginate/chitosan-coated zein Nanoparticles for the delivery of resveratrol. J. Food Eng. 2019, 258, 45–53. [Google Scholar] [CrossRef]
- Patel, A.R.; Bouwens, E.C.M.; Velikov, K.P. Sodium caseinate stabilized zein colloidal particles. J. Agric. Food Chem. 2010, 58, 12497–12503. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Lu, Y.; Ouyang, X.k.; Ling, J. Development and characterization of soybean protein isolate and fucoidan Nanoparticles for curcumin encapsulation. Int. J. Biol. Macromol. 2021, 169, 194–205. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, H.; Li, J.; Wei, X.; Li, B. Improving the emulsifying property of gliadin Nanoparticles as stabilizer of Pickering emulsions: Modification with sodium carboxymethyl cellulose. Food Hydrocoll. 2020, 107, 105936. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.C.; Qian, L.H.; Zhang, Y.H.; Gong, P.X.; Liu, W.; Li, H.J. Fabrication of foxtail millet prolamin/caseinate/chitosan hydrochloride composite Nanoparticles using antisolvent and pH-driven methods for curcumin delivery. Food Chem. 2022, 404, 134604. [Google Scholar] [CrossRef]
- Sun, C.; Xu, C.; Mao, L.; Wang, D.; Yang, J.; Gao, Y. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem. 2017, 228, 656–667. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Sun, C.; Dai, L.; Yang, S.; Wei, Y.; Mao, L.; Yuan, F.; Gao, Y. Effect of molecular weight of hyaluronan on zein-based Nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydr. Polym. 2018, 201, 599–607. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, Q. Processes improving the dispersibility of spray-dried zein Nanoparticles using sodium caseinate. Food Hydrocoll. 2014, 35, 358–366. [Google Scholar] [CrossRef]
- Pardo, G.D.; Ciordia, S.P.; Marin-Arroyo, M.R.; McClements, D.J. Improving resveratrol bioaccessibility using biopolymer Nanoparticles and complexes: Impact of protein-carbohydrate maillard conjugation. J. Agric. Food Chem. 2015, 63, 3915–3923. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Yu, Z.; Lin, K.; Yang, S.; Dai, L.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Enhanced stability, structural characterization and simulated gastrointestinal digestion of coenzyme Q10 loaded ternary nanoparticles. Food Hydrocoll. 2019, 94, 333–344. [Google Scholar] [CrossRef]
- Yao, K.; Chen, W.; Song, F.; McClements, D.J.; Hu, K. Tailoring zein Nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocoll. 2018, 79, 262–272. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; McClements, D.J.; Han, Y.; Dai, L.; Mao, L.; Gao, Y. Co-delivery of curcumin and piperine in zein-carrageenan core-shell Nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocoll. 2020, 99, 105334. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, J.; Zhang, P.; Ma, M.; Wang, D.; Xu, Y. Development of pH-driven zein/tea saponin composite Nanoparticles for encapsulation and oral delivery of curcumin. Food Chem. 2021, 364, 130401. [Google Scholar] [CrossRef] [PubMed]
Sample | Concentration of Zein (mg/mL) | Concentration of SPI (mg/mL) | Concentration of CMC-Na (mg/mL) | The Ratio of Zein to SPI | The Ratio of SPI to CMC-Na |
---|---|---|---|---|---|
zein nanoparticles | 10 | - | - | - | - |
Zein:SPI (4:1) | 10 | 2.5 | - | 4:1 | - |
Zein:SPI (2:1) | 10 | 5 | - | 2:1 | - |
Zein:SPI (1:1) | 10 | 10 | - | 1:1 | - |
Zein:SPI (2:3) | 10 | 15 | - | 2:3 | - |
Zein:SPI (1:2) | 10 | 20 | - | 1:2 | - |
Zein:SPI (2:5) | 10 | 25 | - | 2:5 | - |
SPI:CMC-Na (4:1) | 10 | 15 | 3.75 | - | 4:1 |
SPI:CMC-Na (2:1) | 10 | 15 | 7.5 | - | 2:1 |
SPI:CMC-Na (1:1) | 10 | 15 | 15 | - | 1:1 |
SPI:CMC-Na (2:3) | 10 | 15 | 22.5 | - | 2:3 |
SPI:CMC-Na (1:2) | 10 | 15 | 30 | - | 1:2 |
SPI:CMC-Na (2:5) | 10 | 15 | 37.5 | - | 2:5 |
Sample | Particle (nm) | PDI | Zeta (mV) | EE (%) |
---|---|---|---|---|
Z-cur | 142.80 ± 0.92 | 0.23 ± 0.02 | −48.50 ± 0.32 | 50.8 ± 1.90 |
Z/S-cur | 80.10 ± 0.58 | 0.24 ± 0.01 | −39.50 ± 0.26 | 82.2 ± 0.56 |
Z/S/C-cur | 69.80 ± 0.39 | 0.21 ± 0.01 | −51.50 ± 0.26 | 90.9 ± 0.51 |
Sample | Treatment | Particle Size (nm) | PDI | Zeta-Potential (mV) | EE (%) |
---|---|---|---|---|---|
Z-cur | Freshly | 144.40 ± 0.91 | 0.19 ± 0.01 | −48.87 ± 0.19 | 47.99 ± 1.11 |
Re-dispersed | 232.40 ± 11.76 | 0.46 ± 0.05 | −45.37 ± 0.91 | 25.27 ± 2.42 | |
Z/S-cur | Freshly | 81.30 ± 0.33 | 0.22 ± 0.01 | −39.23 ± 0.23 | 81.50 ± 0.76 |
Re-dispersed | 88.40 ± 0.91 | 0.28 ± 0.01 | −38.73 ± 0.33 | 73.83 ± 0.60 | |
Z/S/C-cur | Freshly | 70.40 ± 0.30 | 0.21 ± 0.02 | −51.17 ± 0.16 | 90.98 ± 0.17 |
Re-dispersed | 72.50 ± 0.48 | 0.23 ± 0.01 | −51.33 ± 0.62 | 89.20 ± 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Shan, J.; Ju, H.; Chen, X.; Xu, G.; Wu, Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods 2023, 12, 2692. https://doi.org/10.3390/foods12142692
Yu C, Shan J, Ju H, Chen X, Xu G, Wu Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods. 2023; 12(14):2692. https://doi.org/10.3390/foods12142692
Chicago/Turabian StyleYu, Chong, Jingyu Shan, Hao Ju, Xiao Chen, Guangsen Xu, and Yanchao Wu. 2023. "Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability" Foods 12, no. 14: 2692. https://doi.org/10.3390/foods12142692
APA StyleYu, C., Shan, J., Ju, H., Chen, X., Xu, G., & Wu, Y. (2023). Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods, 12(14), 2692. https://doi.org/10.3390/foods12142692