Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Identification and Processing
2.2. Preparation of Extracts
2.3. Determination of Alkaloids
2.4. Determination of Flavonoids
2.5. Determination of Tannins
2.6. Determination of Phenolic Compounds
2.7. Determination of Cardiac Glycosides
2.8. Determination of Steroids
2.9. Determination of Carbohydrates
2.10. Ash Content
2.11. Hydrogen Peroxide Radical Scavenging Activity
2.12. In Vitro Antibacterial Activity of Seaweed and Seagrass against Human Pathogenic Bacteria
2.13. Characterization of the Active Compound by Gas Chromatography-Mass Spectrometry (GC-MS)
2.14. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Analysis
3.2. Antioxidant Activity
3.3. Antimicrobial Activity
3.4. Presence of Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebrahimi, B.; Baroutian, S.; Li, J.; Zhang, B.; Ying, T.; Lu, J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front. Nutr. 2023, 9, 1047026. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chen, Y.; Chan, W.Y. Marine natural products with anti-inflammatory activity. Appl. Microbiol. Biotecnol. 2016, 100, 1645–1666. [Google Scholar] [CrossRef]
- Miranda, J.M.; Trigo, M.; Barros-Velazquez, J.; Aubourg, S.P. Effect of an icing medium containing the alga Fucus spiralis on the microbiological activity and lipid oxidation in chilled megrim (Lepidorhombus whiffiagonis). Food Cont. 2016, 59, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Santamarina, A.; Miranda, J.M.; Mondragón, A.C.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Potential use of marine seaweeds as prebiotics: A review. Molecules 2020, 25, 1004. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Mahomoodally, M.F.; Sadeer, N.B.; Seok, P.G.; Zengin, G.; Palaniveloo, K.; Khalil, A.A.; Rauf, A.; Rengasamy, K.R.R. Nutritional and bioactive potential of seagrasses: A review. S. Afr. J. Bot. 2021, 137, 216–227. [Google Scholar] [CrossRef]
- Anjum, A.; Aruna, G.; Noorjahan, C.M. Phytochemical analysis and antibacterial activity of selected seaweeds from coast of Mandapam, Tamilnadu. Indian J. Appl. Microbiol. 2014, 17, 50–58. [Google Scholar]
- Ragunath, C.; Santhosh Kumar, Y.A.; Kanivalan, I.; Radhakrishnan, S. Phytochemical screening and GC-MS analysis of bioactive constituents in the methanolic extract of Caulerpa racemosa (Forssk.) J. Agardh and Padina boergesenii Allender & Kraft. Curr. Appl. Sci. Technol. 2020, 20, 380–393. [Google Scholar]
- Balachandran, P.; Anson, S.M.; Ajay, K.T.V.; Parthasarathy, V. Preliminary phytochemical analysis of the ethanolic extract of brown Seaweed Sargassum wightii. Int. J. Res. Pharm. Sci. 2016, 7, 154–156. [Google Scholar]
- Pushpabharathi, N.; Jayalakshmi, M.; Amudha, P.; Vanitha, V. Identification of bioactive compounds in Cymodocea serrulata seagrass by Gas Chromatography–Mass Spectroscopy. Asian J. Pharm. Clin. Res. 2018, 11, 317–320. [Google Scholar]
- Govindasamy, C.; Arulpriya, M.; Anantharaj, K.; Ruban, P.; Srinivasan, R. Seasonal variations in seagrass biomass and productivity in Palk Bay, Bay of Bengal, India. Int. J. Biodivers. Conserv. 2013, 5, 408–417. [Google Scholar]
- Zulkifli, L.; Muksin, Y.D.; Hartanto, P.; Desimarlina, Y.; Idrus, A.A.; Syukur, A. Phytochemical profiles and ethnomedicine preliminary studies on seagrass species in the Southern Coast of Lombok Island Indonesia. Environ. Earth Sci. 2021, 913, 012102. [Google Scholar] [CrossRef]
- Manivannan, K.; Kathiga Devi, G.; Ananthararaman, P.; Balasubramanian, T. Antimicrobial potential of selected brown seaweeds from vedalia coastal waters, Gulf of Mannar. Asian Pac. J. Trop. Biomed. 2011, 1, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Chin, Y.X.; Mi, Y.; Cao, W.X.; Lim, P.E.; Xue, C.H.; Tang, Q.J. A pilot study on anti-obesity mechanisms of Kappaphycus alvarezii: The role of native κ-carrageenan and the leftover sans-carrageenan fraction. Nutrients 2019, 11, 1133. [Google Scholar] [CrossRef] [Green Version]
- Pushparaj, A. Antibacterial activity of Kappaphycus alvarezii and Ulva lactuca extracts against human pathogenic bacteria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 432–436. [Google Scholar]
- Bharathi, N.P.; Jayalakshmi, M.; Amudha, P.; Vanitha, V. Phytochemical screening and in vitro antioxidant activity of the seagrass Cymodocea serrulata. Indian J. Mar. Sci. 2019, 48, 1216–1221. [Google Scholar]
- Libin, B.; Sankar, T.V.; Chandramohana, K.N. Changes in phenolic compounds in seagrasses against changes in the ecosystem. J. Pharmacogn. Phytochem. 2017, 6, 742–747. [Google Scholar]
- Adharini, R.; Setyawan, A.R.; Suadi, S.; Jayanti, A.D. Comparison of nutritional composition in red and green strains of Kappaphycus alvarezii cultivated in Gorontalo Province, Indonesia. J. Appl. Phycol. 2020, 31, 725–730. [Google Scholar] [CrossRef]
- Prasad, M.P.; Shekhar, S.; Babhulkar, A.P. Antibacterial activity of seaweed (Kappaphycus) extracts against infectious pathogens. Afr. J. Biotechnol. 2013, 12, 2968–2971. [Google Scholar]
- Rupert, R.; Rodrigues, K.F.; Thien, V.Y.; Lym Yong, W.T. Carrageenan from Kappaphycus alvarezii (Rodophyta, Soliariaceae): Metabolism, structure, production, and application. Front. Plant. Sci. 2022, 13, 859635. [Google Scholar] [CrossRef]
- Dilipan, E.; Arulbalachandran, D. Genetic diversity of seagrass Cymodocea species as an ecological indicator on the Palk Bay Coast, India. Ecol. Genet Genom. 2022, 23, 100119. [Google Scholar] [CrossRef]
- Sanchez-Arcos, C.; Paris, D.; Mazzella, V.; Mutalipassi, M.; Costantini, M.; Buia, M.C.; von Elert, E.; Cutignano, A.; Zupo, V. Responses of the macroalga Ulva prolifera Müller to ocean acidifications revealed by complementary NMR- and MS-based omics approaches. Mar. Drugs 2023, 20, 743. [Google Scholar] [CrossRef]
- Rao, M. Key for identification of economical important seaweeds. Cent. Mar. Fish. Res. Inst. Bull. 1987, 41, 116. [Google Scholar]
- Harborne, J.B. Phytochemical Methods—A Guide to Modern Techniques of Plant Analysis; Chapman and Hall: London, UK, 1998; Volume 5, pp. 21–27. [Google Scholar]
- Arulkumar, A.; Thomas, R.; Paramasivam, S. Phytochemical composition, in vitro antioxidant, antibacterial potential, and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal. Agric. Biotechnol. 2018, 15, 63–71. [Google Scholar] [CrossRef]
- Hikino, H.; Kiso, Y.; Wagner, H.; Fiebig, M. Antihepatotoxic actions of flavonolignans from Silybum marianum. Planta Med. 1984, 50, 248–250. [Google Scholar] [CrossRef]
- Ejikeme, C.M.; Ezeonu, C.S.; Eboatu, A.N. Determination of physical and phytochemical constituents of some tropical timbers indigenous to Niger Delta area of Nigeria. Eur. Sci. J. 2014, 10, 247–270. [Google Scholar]
- Julkunen-Titto, R. Phenolic constituents in the leaves of northern willows. Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Sangeeta, S.; Vrunda, V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera. Pharmacogn. Res. 2016, 8, 16–21. [Google Scholar]
- El-Olemy, M.M.; Al-Muhtadi, F.J.; Afifi, A.F.A. Experimental Phytochemistry: A Laboratory Manual; King Saud University Press: Riyadh, Saudi Arabia, 1994; pp. 21–27. [Google Scholar]
- Yemm, E.W.; Willis, J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Bahramian, F.; Bekhradnia, A.R. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak. J. Pharm. Sci. 2010, 23, 29–34. [Google Scholar]
- Domettila, C.; Joselin, J.; Jeeva, S. Phytochemical analysis on some south Indian seaweeds. J. Chem. Pharm. Res. 2013, 5, 275–278. [Google Scholar]
- Rengasamy, R.R.K.; Arumugam, R.; Perumal, A. Seagrasess as potential source of medicinal food ingredients: Nutritional analysis and multivariate approach. Biomed. Prev. Nutr. 2013, 3, 375–380. [Google Scholar] [CrossRef]
- Kytidou, K.; Artola, M.; Overkleeft, H.S.; Aerts, J.M.F.G. Plant glycosides and glycosidades: A treasure-trove for therapeutics. Front. Plant. Sci. 2020, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Deyad, M.; Ward, F. Qualitative and quantitative analysis of phytochemical studies on brown seaweed, Dictyota dichotoma. Int. J. Eng. Develop. Res. 2016, 4, 674–678. [Google Scholar]
- Anitha, K.G.; Arputha, G.; Muthubala, G.; Susithra, R.; Mullaivendhan, M.; Anandham, R. GC-MS Analysis of bioactive compounds of seaweed extracts collected from seashore of Manalmelkudi (Pudukkottai dist., Tamilnadu), responsible for antifungal activity. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2319–7706. [Google Scholar] [CrossRef]
- Sheela, D.; Uthayakumari, F. GC-MS analysis of bioactive constituents from coastal sand dune taxon—Sesuvium portulacastrum (L.). Biosci. Dis. 2013, 4, 47–53. [Google Scholar]
- Mahabaleshwara, K.; Chandrasekhar, N.; Govindappa, M. Phytochemical investigations of methanol leaf extracts of Randia spinosa using column chromatography, HPTLC and GC-MS. Nat. Prod.Chem. Res. 2016, 4, 2. [Google Scholar]
- Kalaivani, P.; Kavitha, D.; Amudha, P. In vitro antioxidant activity and phytochemical composition of Syringodium isoetifolium. Res. J. Pharm. Technol. 2021, 14, 6201–6206. [Google Scholar]
- Vaghela, P.; Das, A.K.; Trivedi, K.; Vijay, K.G.; Shinde, P.; Ghosh, A. Characterization and metabolomics profiling of Kappaphycus seaweed extract. Algal Res. 2022, 66, 1022774. [Google Scholar] [CrossRef]
- Smadi, A.; Civatta, M.L.; Bitam, F.; Carbone, M.; Villani, G.; Gavagnin, M. Flavonoids and phenolic compounds from the Cymodocae nodosa. Plant Med. 2018, 84, 704–709. [Google Scholar]
- Alghaweer, R.; Azwai, S.; Garbaj, A.M.; Amr, A.; Elghmasi, S.; Sidati, M.; Yudiati, E.; Kubbat, M.G.; Eskandrani, A.A.; Shamlan, G.; et al. Alkaloids rich extracts from brown algae against multidrug-resistant bacteria by distinctive mode of action. Arab. J. Sci. Eng. 2021, 47, 179–188. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P.; Yasir, S.M.; Tan, T.S. Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. J. Appl. Phycol. 2015, 27, 2377–2386. [Google Scholar] [CrossRef]
- Farah, D.; Abdullah, A.; Shahrul, H.; Chan, K. Antioxidant activity of red algae Kappaphycus alvarezii and Kappaphycus striatum. Int. Food Res. J. 2015, 22, 1977–1984. [Google Scholar]
- Araújo, P.G.; Nardelli, A.E.; Fujii, M.T.; Chow, F. Antioxidant properties of different strains of Kappaphycus alvarezii (Rhodophyta) farmed on the Brazilian coast. Phycologia 2020, 53, 272–279. [Google Scholar] [CrossRef]
- Dumay, O.; Costa, J.; Desiobert, J.M.; Pergent, G. Variations in the concentrations of phenolic compounds in the seagrass Cymodocae rotundata under conditions of competition. Phytochemistry 2004, 65, 3211–3220. [Google Scholar]
- Devi, K.N. Antibacterial activity of seagrass species of Cymodocea serrulata against chosen bacterial fish pathogens. Ann. Biol. Res. 2011, 2, 88–93. [Google Scholar]
- Kumar, V.; Murugesan, S.; Bhuvaneswari, S. Phytochemical analysis of red alga Champia parvula (C. Agardh) collected from Mandapam coast of Tamil Nadu, India. Int. J. Adv. Pharm. 2015, 4, 15–20. [Google Scholar]
- Sanchez, M.; Lopez, D.L.; Seiro, J.P.L. An HPLC method for the quantification of sterols in edible seaweeds. Biomed. Chromatogram. 2004, 18, 183–190. [Google Scholar] [CrossRef]
- Kannan, R.R.; Arumugam, R.; Lyapparaj, P.; Thangaradjou, T.; Anantharaman, P. In vitro antibacterial, cytotoxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chem. 2013, 136, 1484–1489. [Google Scholar] [CrossRef]
- Tango, E.; Canencia, O.; Del Rosario, R.M. Phytochemical screening and proximate composition of the seagrass Halodule pinifolia of the coastal waters of Carmen, Agusan Del Norte, Philippines. Int. J. Modern Pharm. Res. 2021, 5, 75–80. [Google Scholar]
- Prabakaran, G.; Moovendhan, M.; Arumugam, A.; Matharasi, A.; Dineshkumar, R.; Sampathkumar, P. Quantitative analysis of phytochemical profile in marine microalgae Chlorella vulgaris. Int. J. Pharm. Biol. Sci. 2018, 8, 562–565. [Google Scholar]
- Regalado, E.L.; Menendez, R.; Valdés, O.; Morales, R.A.; Laguna, A.; Thomas, O.P.; Hernandez, Y.; Nogueiras, C.; Kijjoa, A. Phytochemical analysis and antioxidant capacity of BM-21, a bioactive extract rich in polyphenolic metabolites from the Sea Grass Thalassia testudinum. Nat. Prod. Commun. 2011, 7, 47–50. [Google Scholar] [CrossRef]
- Chew, Y.L.; Lim, Y.Y.; Omar, M.; Khoo, K.S. Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Sci. Tecnol. 2008, 41, 1067–1072. [Google Scholar] [CrossRef]
- Jaswir, I.; Tawakalit Tope, A.H.; Raus, R.A.; Monsur, H.A.; Ramli, N. Study on antibacterial potentials of some Malaysian brown seaweeds. Food Hydrocoll. 2014, 42, 275–279. [Google Scholar] [CrossRef]
- Kumar, C.S.; Sarada, D.V.L.; Gideon, T.P.; Rengasamy, R. Antibacterial activity of three South Indian seagrasses, Cymodocea serrulata, Halophila ovalis and Zostera capensis. World J. Microbiol. Biotechnol. 2008, 24, 1989–1992. [Google Scholar] [CrossRef]
- Datchanamurthy, B.; Narayanamurthy, U.; Anandh, S.J.V. Preliminary phytochemical and GC-MS analysis of marine seaweed Acathophora deilei (Red alga). Biomed. Pharmacol. J. 2022, 15, 1695–1707. [Google Scholar]
Parameters | K. alverazii | C. serrulata |
---|---|---|
Alkaloids (ATE/g dry wt) | 1.91 ± 0.58 * | - |
Flavonoids (CAE/g dry wt) | 1.63 ± 0.73 | 2.11 ± 1.40 |
Tannins (CAE/g dry wt) | 2.94 ± 0.41 * | 1.94 ± 0.85 |
Phenolic compounds (GAE/g dry wt) | 3.39 ± 0.45 * | 1.01 ± 0.39 |
Glycosides (mg/g dry wt) | 1.88 ± 0.11 | 2.47 ± 0.28 * |
Steroids (mg/g dry wt) | 2.51 ± 0.15 * | 1.60 ± 0.24 |
Carbohydrates (% DW) | 2.57 ± 1.89 | 1.44 ± 1.75 |
Ash (% DW) | 8.5 ± 0.95 | 6.9 ± 0.49 |
Antioxidant activity | 27.9 ± 0.1 | 22.1 ± 0.1 |
Human Pathogenic Bacteria | Concentration (µg/mL) | Seaweed Extract | Seagrass Extract |
---|---|---|---|
Zone of Inhibition (mm) | |||
Bacillus subtilis | 100 | 26 ± 0.03 | 25 ± 0.16 |
Klebsiella pneumoniae | 100 | 23 ± 0.01 | 22 ± 0.20 |
Vibrio alginolyticus | 100 | 22 ± 0.01 | 20 ± 0.04 |
Vibrio parahaemolyticus | 100 | 24 ± 0.02 | 26 ± 0.08 |
Vibrio harveyi | 100 | 24 ± 0.10 | 22 ± 0.01 |
No. | Name | Retention Time (min) | Base m/z |
---|---|---|---|
1 | Phenol | 4.119 | 94.05 |
2 | Cyclopropyl methyl carbinol | 4.170 | 58.05 |
3 | Decane | 4.347 | 57.05 |
4 | Butanoic acid, 2-hydroxy-, ethyl ester | 4.429 | 59.05 |
5 | 2-Methylpentyl formate | 4.457 | 56.05 |
6 | Benzene, 1,4-dichloro- | 4.530 | 145.95 |
7 | Cyclopentane, 1,2-dimethyl-, cis- | 4.568 | 70.10 |
8 | Dodecane, 2,6,11-trimethyl- | 5.158 | 57.05 |
9 | Undecane, 5-methyl- | 5.237 | 57.10 |
10 | Ethane, hexachloro- | 5.395 | 116.90 |
11 | Dodecane, 2,6,10-trimethyl- | 5.803 | 57.05 |
12 | 3-Ethyl-3-methylheptane | 5.890 | 57.05 |
13 | Naphthalene | 6.994 | 128.10 |
14 | Dodecane | 7.201 | 57.05 |
15 | Benzaldehyde, 2,5-dimethyl- | 7.450 | 133.10 |
16 | Octadecanoic acid, phenyl ester | 7.517 | 94.05 |
17 | Benzene, 1,3-bis(1,1-dimethylethyl)- | 7.986 | 175.15 |
18 | Undecane, 2,4-dimethyl- | 8.093 | 57.10 |
19 | Dodecane, 4,6-dimethyl- | 8.317 | 57.05 |
20 | Hexadecane | 8.437 | 57.10 |
21 | Formamide, N-phenyl- | 8.884 | 121.05 |
22 | Dodecane, 2,6,10-trimethyl- | 8.942 | 57.10 |
23 | Chloroxylenol | 9.762 | 121.10 |
24 | Benzene, 1-cyclobuten-1-yl- | 9.844 | 129.10 |
25 | Hexadecane | 9.907 | 57.05 |
26 | Vanillin | 9.950 | 151.05 |
27 | Heptadecane | 10.186 | 57.05 |
28 | Dodecane, 2,6,10-trimethyl- | 10.690 | 57.10 |
29 | 1-Dodecanol | 10.864 | 55.05 |
30 | Nonadecane | 11.005 | 85.10 |
31 | Decane, 1-bromo-2-methyl- | 11.044 | 57.05 |
32 | Heneicosane | 11.113 | 71.10 |
33 | Nonadecane | 11.159 | 57.05 |
34 | 2,4-Di-tert-butylphenol | 11.351 | 191.15 |
35 | Hexadecane | 11.655 | 57.05 |
36 | Hexadecane | 12.350 | 57.05 |
37 | Diphenylamine | 12.664 | 169.15 |
38 | Benzophenone | 12.754 | 105.05 |
39 | 3-Hydroxydiphenylamine | 13.216 | 185.10 |
40 | Hexadecane, 2,6,10,14-tetramethyl- | 13.328 | 57.10 |
41 | Heptadecane | 13.476 | 57.05 |
42 | Dodecane, 2,6,10-trimethyl- | 13.540 | 71.10 |
43 | Heneicosane | 13.590 | 71.10 |
44 | Heneicosane | 13.681 | 57.10 |
45 | Decane, 1-iodo- | 13.751 | 71.10 |
46 | Heptadecane, 8-methyl- | 13.940 | 71.10 |
47 | Heneicosane | 14.061 | 71.10 |
48 | Tetradecanoic acid | 14.148 | 57.05 |
49 | Formamide, N,N-diphenyl- | 14.487 | 168.10 |
50 | Heneicosane | 14.549 | 57.05 |
51 | p-(Benzylideneamino)phenol | 14.651 | 196.10 |
52 | Isopropyl myristate | 14.836 | 60.00 |
53 | Carbamic chloride, diphenyl- | 14.990 | 196.10 |
54 | 2-Pentadecanone, 6,10,14-trimethyl- | 15.036 | 57.05 |
55 | Phenoxazine | 15.211 | 183.10 |
56 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 15.305 | 149.05 |
57 | Heneicosane | 15.445 | 57.05 |
58 | Hexadecane | 15.569 | 57.05 |
59 | Tetrapentacontane | 15.735 | 71.10 |
60 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 15.837 | 57.05 |
61 | 3-Hydroxydiphenylamine | 15.925 | 185.10 |
62 | Benzoic acid, 2-benzoyl-, methyl ester | 16.008 | 163.05 |
63 | n-Hexadecanoic acid | 16.227 | 73.05 |
64 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 16.414 | 57.05 |
65 | Heneicosane | 16.547 | 57.05 |
66 | Cyclic octaatomic sulfur | 16.953 | 63.95 |
67 | Palmitic acid, TMS derivative | 17.018 | 117.05 |
68 | Dotriacontane | 17.125 | 57.05 |
69 | Tetrapentacontane | 17.472 | 57.05 |
70 | Pentatriacontane | 17.560 | 85.10 |
71 | Octadecane, 3-ethyl-5-(2-ethylbutyl)- | 17.635 | 71.10 |
72 | Dotriacontane | 17.723 | 57.05 |
73 | Dotriacontane | 17.820 | 71.10 |
74 | Octadecanoic acid | 18.063 | 73.05 |
75 | Tetrapentacontane | 18.120 | 71.10 |
76 | Tetrapentacontane | 18.193 | 71.10 |
77 | Heneicosane | 18.374 | 57.05 |
78 | Tetracosane | 19.231 | 57.10 |
79 | Tetrapentacontane | 19.605 | 71.10 |
80 | 1-Heptadecanamine | 19.985 | 85.10 |
81 | Heneicosane | 20.056 | 57.05 |
82 | Benzenemethanamine, N-hydroxy-N-(phenylmethyl)- | 20.519 | 91.05 |
83 | 9-Octadecenenitrile, (Z)- | 20.833 | 55.05 |
84 | Bis(2-ethylhexyl) phthalate | 21.292 | 149.05 |
85 | 13-Docosenamide, (Z)- | 21.461 | 59.05 |
86 | 9-Octadecenamide, (Z)- | 21.520 | 59.05 |
87 | Dotriacontane | 21.670 | 57.05 |
88 | Tetracontane | 22.656 | 57.05 |
89 | 13-Docosenamide, (Z)- | 23.720 | 59.05 |
90 | Squalene | 24.338 | 69.05 |
91 | Tetrapentacontane | 25.429 | 57.05 |
92 | 13-Docosenamide, (Z)- | 26.983 | 59.00 |
93 | Dotriacontane | 27.136 | 57.05 |
94 | Cholesterol | 28.552 | 386.35 |
No. | Name | R. Time (min) | Base m/z |
---|---|---|---|
1 | 1-Trifluoroacetoxy-2-methylpentane | 3.115 | 71.05 |
2 | Propanoic acid, 2-hydroxy-2-methyl- | 3.929 | 59.05 |
3 | Cyclopropyl methyl carbinol | 4.168 | 58.05 |
4 | Carbamic acid, 2-(dimethylamino)ethyl ester | 4.354 | 58.05 |
5 | Butanoic acid, 2-hydroxy-, ethyl ester | 4.427 | 59.05 |
6 | 2-Methylpentyl formate | 4.455 | 71.05 |
7 | 1-Heptanol | 4.565 | 70.10 |
8 | Octane, 3,3-dimethyl- | 4.656 | 71.10 |
9 | 3-Heptanol, 4-methyl- | 4.780 | 59.05 |
10 | Propane, 1,3-dichloro- | 4.817 | 76.00 |
11 | Dodecane, 2,6,10-trimethyl- | 5.156 | 57.05 |
12 | Dodecane, 4,6-dimethyl- | 5.236 | 57.10 |
13 | Ethane, hexachloro- | 5.392 | 116.90 |
14 | Dodecane, 2,6,10-trimethyl- | 5.800 | 57.05 |
15 | Naphthalene | 6.993 | 128.10 |
16 | Tetradecane | 7.265 | 57.05 |
17 | (Z),(Z)-2,4-Hexadiene | 7.332 | 77.00 |
18 | Decane, 2-methyl- | 7.399 | 57.05 |
19 | Benzaldehyde, 2,4-dimethyl- | 7.455 | 133.10 |
20 | Undecane, 4,8-dimethyl- | 7.510 | 71.10 |
21 | Tridecane | 7.817 | 57.05 |
22 | Tridecane | 7.893 | 57.05 |
23 | Benzene, 1,3-bis(1,1-dimethylethyl)- | 7.983 | 175.15 |
24 | Nonadecane | 8.092 | 57.05 |
25 | Dodecane, 4,6-dimethyl- | 8.316 | 71.10 |
26 | Nonadecane | 8.431 | 57.05 |
27 | Dodecane, 4,6-dimethyl- | 8.507 | 71.10 |
28 | Dodecane, 2,6,10-trimethyl- | 8.615 | 71.10 |
29 | Dodecane, 4,6-dimethyl- | 8.940 | 71.10 |
30 | Naphthalene, decahydro-1,4a-dimethyl-7-(1-methylethyl)-, [1S-(1.alpha.,4a.alpha.,7.alpha.,8a | 9.200 | 57.05 |
31 | Benzene, 1-cyclobuten-1-yl- | 9.841 | 129.10 |
32 | Hexadecane | 9.903 | 57.05 |
33 | Dodecanal | 10.039 | 57.05 |
34 | Heptadecane | 10.184 | 57.05 |
35 | Cyclotetrasiloxane, octamethyl- | 10.471 | 281.05 |
36 | Hexadecane | 10.570 | 57.05 |
37 | Dodecane, 2,6,10-trimethyl- | 10.687 | 71.10 |
38 | Heptane, 2,4-dimethyl- | 10.720 | 85.10 |
39 | Hexadecane, 1-bromo- | 10.852 | 57.05 |
40 | Undecane, 2,4-dimethyl- | 11.005 | 85.10 |
41 | Octane, 2-methyl- | 11.039 | 71.10 |
42 | Hexadecane | 11.110 | 71.10 |
43 | Tetradecane | 11.157 | 57.05 |
44 | Octadecane, 1-iodo- | 11.220 | 57.05 |
45 | 2,4-Di-tert-butylphenol | 11.349 | 191.15 |
46 | Hexadecane | 11.653 | 57.10 |
47 | Dodecanoic acid | 11.918 | 73.05 |
48 | Octadecane | 12.008 | 57.10 |
49 | Hexadecane | 12.346 | 57.10 |
50 | 1,4-Methanoazulen-9-ol, decahydro-1,5,5,8a-tetramethyl-, [1R-(1.alpha.,3a.beta.,4.alpha.,8a. | 12.425 | 85.10 |
51 | Heptadecane | 12.515 | 57.05 |
52 | Pentadecane, 4-methyl- | 12.590 | 71.10 |
53 | Diphenylamine | 12.653 | 169.10 |
54 | Heptadecane | 12.749 | 57.05 |
55 | Hexadecane, 2,6,10,14-tetramethyl- | 13.057 | 57.05 |
56 | Heneicosane | 13.192 | 57.05 |
57 | Heneicosane | 13.249 | 57.05 |
58 | Hexadecane | 13.330 | 57.05 |
59 | Dodecane, 1-iodo- | 13.385 | 57.05 |
60 | Heneicosane | 13.483 | 57.05 |
61 | Hexadecane | 13.540 | 71.10 |
62 | Heneicosane | 13.588 | 71.10 |
63 | Hexadecane | 13.945 | 57.05 |
64 | Heneicosane | 14.058 | 71.10 |
65 | Pentacosane | 14.156 | 57.05 |
66 | 3,5-di-tert-Butyl-4-hydroxybenzaldehyde | 14.250 | 219.15 |
67 | Octadecane, 1-iodo- | 14.320 | 57.05 |
68 | Heneicosane | 14.546 | 57.05 |
69 | Octacosane | 14.645 | 57.10 |
70 | 6-Octen-1-ol, 3,7-dimethyl-, acetate | 14.966 | 68.05 |
71 | Heneicosane | 15.042 | 57.05 |
72 | 1-Tetradecanamine | 15.151 | 59.05 |
73 | Phytol | 15.213 | 57.05 |
74 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 15.302 | 149.05 |
75 | Phytol | 15.397 | 57.05 |
76 | Hexadecane | 15.445 | 57.05 |
77 | Hexadecane | 15.489 | 57.05 |
78 | Tetracosane | 15.650 | 57.10 |
79 | Dotriacontane | 15.695 | 71.10 |
80 | Tetracosane | 15.738 | 267.05 |
81 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 15.835 | 57.05 |
82 | Benzoic acid, 2-benzoyl-, methyl ester | 16.006 | 163.05 |
83 | n-Hexadecanoic acid | 16.202 | 73.05 |
84 | Dibutyl phthalate | 16.441 | 149.05 |
85 | Heneicosane | 16.544 | 57.05 |
86 | Palmitic acid, TMS derivative | 17.010 | 117.10 |
87 | Heneicosane | 17.115 | 57.10 |
88 | Dotriacontane | 17.246 | 57.05 |
89 | Heneicosane | 17.476 | 57.05 |
90 | Tetrapentacontane | 17.564 | 57.05 |
91 | Phytol | 17.631 | 71.10 |
92 | Tetracosane | 17.725 | 57.05 |
93 | Tetrapentacontane | 17.817 | 71.10 |
94 | Octadecanoic acid | 18.056 | 57.05 |
95 | Tetrapentacontane | 18.116 | 71.10 |
96 | Tetrapentacontane | 18.190 | 71.10 |
97 | Docosane | 18.371 | 57.05 |
98 | 4-Morpholinepropanamine | 18.495 | 100.05 |
99 | 3-Isopropyl-2,5-piperazine-dione | 18.583 | 114.10 |
100 | Heptadecane, 2-methyl- | 18.945 | 57.05 |
101 | Tetrapentacontane | 18.997 | 57.10 |
102 | Heneicosane | 19.229 | 57.05 |
103 | Tetracosane | 19.450 | 57.05 |
104 | Tetrapentacontane | 19.529 | 71.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, D.; Arulkumar, A.; Paramasivam, S.; Lopez-Santamarina, A.; del Carmen Mondragon, A.; Miranda Lopez, J.M. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods 2023, 12, 2811. https://doi.org/10.3390/foods12142811
Das D, Arulkumar A, Paramasivam S, Lopez-Santamarina A, del Carmen Mondragon A, Miranda Lopez JM. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods. 2023; 12(14):2811. https://doi.org/10.3390/foods12142811
Chicago/Turabian StyleDas, Deep, Abimannan Arulkumar, Sadayan Paramasivam, Aroa Lopez-Santamarina, Alicia del Carmen Mondragon, and Jose Manuel Miranda Lopez. 2023. "Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata)" Foods 12, no. 14: 2811. https://doi.org/10.3390/foods12142811
APA StyleDas, D., Arulkumar, A., Paramasivam, S., Lopez-Santamarina, A., del Carmen Mondragon, A., & Miranda Lopez, J. M. (2023). Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods, 12(14), 2811. https://doi.org/10.3390/foods12142811