Profiling the Major Aroma-Active Compounds of Microwave-Dried Jujube Slices through Molecular Sensory Science Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Preparation of Microwave-Dried Jujube Slices
2.3. Analytical Determinations
2.3.1. Extraction of Volatile Compounds through Drying Jujube with Headspace Solid-Phase Microextraction (HS-SPME)
2.3.2. GC-MS Analysis
2.3.3. Qualitative and Semiquantitative Analyses
2.3.4. Calculation of OAVs
2.3.5. Gas Chromatography–Olfactometry (GC-O) Frequency Analysis
2.3.6. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Profile of Dried Jujube Slices
3.2. Identification of Aroma-Active Compounds by OAV
3.3. Identification of Aroma-Active Compounds by DFA
3.4. Comparison of DFA and OAV Aroma-Active Compounds’ Identification
3.5. Effect of Different Microwave Drying Times on the Major Aroma-Active Compounds in Jujube
3.6. Sensory Analysis
3.7. PLSR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Li, P.; Sun, S.H.; Zhang, Q.D.; Su, Y.; Zong, Y.L.; Xie, J.P. Comparison of Liquid–Liquid Extraction, Simultaneous Distillation Extraction, Ultrasound-Assisted Solvent Extraction, and Headspace Solid-Phase Microextraction for the Determination of Volatile Compounds in Jujube Extract by Gas Chromatography/Mass Spectrometry. Anal. Lett. 2014, 47, 654–674. [Google Scholar] [CrossRef]
- Available online: https://www.renrendoc.com/paper/238826064.html (accessed on 7 July 2022).
- Lu, Y.; Bao, T.; Mo, J.; Ni, J.; Chen, W. Research Advances in Bioactive Components and Health Benefits of Jujube (Ziziphus jujuba Mill.) Fruit. J. Zhejiang Univ. Sci. B 2021, 22, 431–449. [Google Scholar] [CrossRef]
- Qian, J.; Dai, B.; Wang, B.; Zha, Y.; Song, Q. Traceability in Food Processing: Problems, Methods, and Performance Evaluations-A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 679–692. [Google Scholar] [CrossRef]
- Bao, T.; Karim, N.; Mo, J.; Chen, W. Ultrasound-assisted Ascorbic Acid Solution Pretreated Hot-air Drying Improves Drying Characteristics and Quality of Jujube Slices. J. Sci. Food Agric. 2023, 103, 4803–4812. [Google Scholar] [CrossRef] [PubMed]
- Fathi, F.; Ebrahimi, S.N.; Matos, L.C.; Oliveira, M.B.P.P.; Alves, R.C. Emerging Drying Techniques for Food Safety and Quality: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1125–1160. [Google Scholar] [CrossRef]
- Gao, Q.H.; Wu, C.S.; Wang, M.; Xu, B.N.; Du, L.J. Effect of Drying of Jujubes (Ziziphus jujuba Mill.) on the Contents of Sugars, Organic Acids, α-Tocopherol, β-Carotene, and Phenolic Compounds. J. Agric. Food Chem. 2012, 60, 9642–9648. [Google Scholar] [CrossRef]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of Structural Characterization and Antioxidant Activity of Polysaccharides from Hujube (Ziziphus jujuba Mill.) Fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Y.; Fu, W.; Luo, Y.; Cheng, S.; Li, W. Drying Kinetics and Physicochemical Properties of Kumquat under Hot Air and Air-impingement Jet Dryings. Food Sci. Biotechnol. 2022, 31, 711–719. [Google Scholar] [CrossRef]
- Bai, R.; Sun, J.; Qiao, X.; Zheng, Z.; Li, M.; Zhang, B. Hot Air Convective Drying of Ginger Slices: Drying Behaviour, Quality Characteristics, Optimisation of Parameters, and Volatile Fingerprints Analysis. Foods 2023, 12, 1283. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products—An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Characterization of Volatile Profile from Ten Different Varieties of Chinese Jujubes by HS-SPME/GC–MS Coupled with E-nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, Q.; Bi, J.; Meng, X.; Wu, X.; Qiao, Y.; Lyu, Y. GC/MS Coupled with MOS e-nose and Flash GC E-nose for Volatile Characterization of Chinese Jujubes as Affected by Different Drying Methods. Food Chem. 2020, 331, 127201. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Xu, X.Y.; Luo, D.S.; Lao, F.; Pang, X.L.; Shen, Q.; Hu, X.S.; Wu, J.H. Characterization of key aroma compounds in raw and roasted peas (Pisum sativum L.) by application of instrumental and sensory techniques. J. Agric. Food Chem. 2020, 68, 2718–2727. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.F.; Ding, T.; Lv, R.L.; Cheng, H.; Liu, D.H. Effect of drying and storage on the volatile compounds of jujube fruit detected by electronic nose and GC-MS. Food Sci. Technol. Res. 2018, 24, 1039–1047. [Google Scholar] [CrossRef]
- Lee, J.E.; Yun, J.H.; Lee, A.R.; Kim, S.S. Volatile components and sensory properties of jujube wine as affected by material preprocessing. Int. J. Food Prop. 2018, 21, 2052–2061. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, P.; Lao, F.; Liu, J.; Liao, X.; Wu, J. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chem. 2019, 289, 215–222. [Google Scholar] [CrossRef]
- Hu, W.; Wang, G.; Lin, S.; Liu, Z.; Wang, P.; Li, J.; Zhang, Q.; He, H. Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types-Based on OAV-Splitting Method. Foods 2022, 11, 2204. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Mu, Z.; Liu, H.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y. Flavor Compounds with High Odor Activity Values (OAV > 1) Dominate the Aroma of Aged Chinese Rice Wine (Huangjiu) by Molecular Association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef]
- Xu, S.; He, W.; Yan, J.; Zhang, R.; Wang, P.; Tian, H.; Zhan, P. Volatomics-assisted Characterization of Aroma and Off-flavor Contributors in Ffresh and Thermally Treated Kiwifruit Juice. Food Res. Int. 2023, 167, 112656. [Google Scholar] [CrossRef]
- Galindo, A.; Noguera-Artiaga, L.; Cruz, Z.N.; Burló, F.; Hernández, F.; Torrecillas, A.; Carbonell-Barrachina, Á.A. Sensory and physico-chemical quality attributes of jujube fruits as affected by crop load. LWT 2015, 63, 899–905. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Liu, Y.; Jin, Z.; Cheng, Q.; Qian, M.; Zhu, B.W.; Dong, X.P. Sensory Evaluation of Fresh/frozen Mackerel Products: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3504–3530. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, S.; Liu, L.; Wang, L.; Ban, Z. The Grade of Dried Jujube (Ziziphus jujuba Mill. cv. Junzao) Affects Its Quality Attributes, Antioxidant Activity, and Volatile Aroma Components. Foods 2023, 12, 989. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhang, L.; Wu, Y.; Pan, Q.; Zhang, Y.; Liu, P. An Integrated Metabolome and Transcriptome Aapproach Reveals the Fruit Flavor and Regulatory Network during Jujube Fruit Development. Front. Plant Sci. 2022, 13, 952698. [Google Scholar] [CrossRef]
- Zhuang, J.; Xiao, Q.; Feng, T.; Huang, Q.; Ho, C.T.; Song, S. Comparative flavor profile analysis of four different varieties of Boletus mushrooms by instrumental and sensory techniques. Food Res. Int. 2020, 136, 109485. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.vcfonline.nl/VcfCompoundSearch.cfm (accessed on 7 September 2022).
- Available online: http://www.odour.org.uk/index.html (accessed on 7 September 2022).
- Forero, D.P.; Orrego, C.E.; Peterson, D.G.; Osorio, C. Chemical and sensory comparison of fresh and Dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chem. 2015, 169, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Grosshauser, S.; Schieberle, P. Characterization of the Key Odorants in Pan-fried White Mushrooms (Agaricus bisporus L.) by Means of Molecular Sensory Science: Comparison with the Raw Mushroom Tissue. J. Agric. Food Chem. 2013, 61, 3804–3813. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Dt. Forschungsanst. für Lebensmittelchemie: Munich, Germany, 1998. [Google Scholar]
- Deuscher, Z.; Gourrat, K.; Repoux, M.; Boulanger, R.; Labouré, H.; Le Quéré, J.L. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020, 25, 1809. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Cai, Y.; Fu, X.; Zheng, L.; Xiao, Z.; Zhao, M. Comparison of Aroma-active Compounds in Broiler Broth and Native Chicken Broth by Aroma Extract Dilution Analysis (AEDA), Odor Activity Value (OAV) and Omission Experiment. Food Chem. 2018, 265, 274–280. [Google Scholar] [CrossRef]
- Wang, L.N.; Zhu, J.C.; Wang, Y.Q.; Wang, X.; Chen, F.; Wang, X.W. Characterization of Aroma-impact Compounds in Dry. Jujubes (Ziziphus jujube Mill.) by Aroma Extract Dilution Analysis (AEDA) and Gas. ChromatographyMass Spectrometer (GC-MS). Int. J. Food Prop. 2018, 21, 1844–1853. [Google Scholar] [CrossRef] [Green Version]
- Hernández, F.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, A.A.; Legua, P. Physico-chemical, nutritional, and volatile composition and sensory profifile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J. Sci. Food Agric. 2016, 96, 2682–2691. [Google Scholar] [CrossRef]
- Liu, Y.; Sang, Y.; Guo, J.; Zhang, W.; Zhang, T.; Wang, H.; Cheng, S.; Chen, G. Analysis of Volatility Characteristics of Five Jujube Varieties in Xinjiang Province, China, by HS-SPME-GC/MS and E-nose. Food Sci. Nutr. 2021, 9, 6617–6626. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Chen, Q.; Bi, J.; Wu, X.; Jin, X.; Gou, M.; Yang, X.; Purcaro, G. Investigation of the Volatile Profile of Red Jujube by Using GC-IMS, Multivariate Data Analysis, and Descriptive Sensory Analysis. Foods 2022, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.C.O.L.; Alcantara, G.M.R.N.; Silva, A.F.S.; Melchert, W.R.; Rocha, F.R.P. The role of 5-hydroxymethylfurfural in food and recent advances in analytical methods. Food Chem. 2022, 395, 133539. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xiao, Z. Characterization of the Major Odor-Active Compounds in Dry Jujube Cultivars by Application of Gas Chromatography–Olfactometry and Odor Activity Value. J. Agric. Food Chem. 2018, 66, 7722–7734. [Google Scholar] [CrossRef]
- Egea, M.B.; Bertolo, M.R.V.; Oliveira Filho, J.G.; Lemes, A.C. A Narrative Review of the Current Knowledge on Fruit. Active Aroma Using. Gas. Chromatography-Olfactometry (GC-O) Analysis. Molecules 2021, 26, 5181. [Google Scholar] [CrossRef]
- Qiao, Y.N.; Bi, J.F.; Chen, Q.Q.; Wu, X.Y.; Jin, X.W.; Gou, M. Rapid and Sensitive Quantitation of DDMP (2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one) in Baked Red Jujubes by HS-SPME-GC-MS/MS. Food Control 2022, 135, 108820. [Google Scholar] [CrossRef]
No | Compound Name A | CAS | RI B | LRI C | Identification D | Concentration (μg kg−1) | OT F | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 I | B2 | B3 | B4 | B5 | B6 | B7 | / | ||||||
aldehydes | |||||||||||||
1 | 2-Butenal | 4170-30-3 | 1051 | - E | MS,RI | 42.9 ± 5.78 | 0 | 0 | 0 | 0 | 0 | 0 | / H |
2 | Hexanal | 66-25-1 | 1089 | 1081 | MS,RI | 15.39 ± 0.65 a G | 13.43 ± 0.23 b | 10.37 ± 0.31 c | 9.52 ± 1.12 d | 7.97 ± 0.74 e | 0 | 0 | 0.0036 |
3 | 2-Ethyl-2-butena | 19780-25-7 | 1158 | - | MS,RI | 3.64 ± 0.52 | 0 | 0 | 0 | 0 | 0 | 0 | / |
4 | (Z)-2-Heptenal | 57266-86-1 | 1271 | 1291 | MS,RI | 3.70 ± 0.47 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 |
5 | Nonanal | 124-19-6 | 1403 | 1392 | MS,RI | 8.38 ± 0.34 a | 7.34 ± 0.41 b | 5.32 ± 0.54 c | 4.23 ± 0.42 d | 3.11 ± 0.37 e | 2.26 ± 0.53 f | 1.02 ± 0.62 g | 0.0035 |
6 | (E,E)-2,4-Hexadienal | 142-83-6 | 1418 | 1403 | MS,RI | 1.17 ± 0.15 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6 |
7 | Furfural | 98-01-1 | 1478 | 1466 | MS,RI | 0 | 0.93 ± 0.23 f | 5.38 ± 0.78 e | 8.34 ± 0.56 d | 17.04 ± 0.42 c | 38.97 ± 0.34 b | 82.5 ± 1.57 a | 0.008 |
8 | Decanal | 112-31-2 | 1508 | 1495 | MS,RI | 0 | 0.81 ± 0.11 a | 0.97 ± 0.09 a | 0.96 ± 0.07 a | 0.82 ± 0.15 a | 0.51 ± 0.21 b | 0 | 0.0009 |
9 | Benzaldehyde | 100-52-7 | 1541 | 1538 | MS,RI | 13.09 ± 1.12 | 0 | 0 | 0 | 0 | 0 | 0 | 0.05 |
10 | 5-Methyl-2-furanaldehyde | 620-02-0 | 1588 | 1570 | MS,RI | 0 | 1.56 ± 0.12 f | 3.03 ± 0.21 e | 3.87 ± 0.05 d | 5.34 ± 0.08 c | 13.82 ± 0.11 b | 23.19 ± 0.08 a | 0.005 |
11 | 5-Acetoxymethyl-2-furaldehyde | 10551-58-3 | 2203 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 2.33 ± 0.28 | / |
12 | 5-Hydroxymethyl-2-furaldehyde | 67-47-0 | 2514 | 2510 | MS,RI | 0 | 0 | 0.20 ± 0.04 d | 0.42 ± 0.05 c | 0.49 ± 0.09 c | 1.30 ± 0.25 b | 39.3 ± 2.27 a | 5 |
esters | |||||||||||||
13 | Ethyl acetate | 108-05-4 | 989 | - | MS,RI | 0 | 14.4 ± 0.12 a | 6.76 ± 0.25 b | 4.20 ± 0.13 c | 4.76 ± 0.24 c | 3.58 ± 0.22 d | 1.02 ± 0.09 e | / |
14 | Ethyl valerate | 539-82-2 | 1141 | - | MS,RI | 12.2 ± 0.14 | 0 | 0 | 0 | 0 | 0 | 0 | 0.094 |
15 | Ethyl hexanoate | 123-66-0 | 1240 | 1238 | MS,RI | 139.24 ± 5.67 a | 4.04 ± 0.21 b | 3.49 ± 0.15 b | 3.50 ± 0.22 b | 2.11 ± 0.13 c | 0 | 0 | 0.0005 |
16 | Ethyl heptanoate | 106-30-9 | 1340 | - | MS,RI | 10.04 ± 0.52 | 0 | 0 | 0 | 0 | 0 | 0 | 0.17 |
17 | 2-Hexenoic acid ethyl ester | 1552-67-6 | 1353 | - | MS,RI | 3.82 ± 0.21 | 0 | 0 | 0 | 0 | 0 | 0 | / |
18 | 2,3-Dihydro-5-methyl-2-furanone | 591-12-8 | 1418 | - | MS,RI | 0 | 0.53 ± 0.04 c | 0.76 ± 0.06 bc | 0.84 ± 0.06 b | 0.86 ± 0.09 b | 0.89 ± 0.12 b | 8.92 ± 0.82 a | / |
19 | Ethyl caprylate | 106-32-1 | 1441 | 1466 | MS,RI | 6.53 ± 0.32 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0001 |
20 | (E)-9-Tetradecen-1-olacetate | 23192-82-7 | 1478 | - | MS,RI | 0.91 ± 0.08 | 0 | 0 | 0 | 0 | 0 | 0 | / |
21 | Formic acid furfuryl ester | 13493-97-5 | 1507 | 1481 | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 2.44 ± 0.12 | / |
22 | Methyl decanoate | 110-42-9 | 1601 | 1590 | MS,RI | 0.44 ± 0.08 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
23 | 4-Hydroxy-2-methylbutanoic acid lactone | 1679-47-6 | 1610 | - | MS,RI | 0.76 ± 0.11 b | 1.21 ± 0.14 a | 0.95 ± 0.08 b | 0.92 ± 0.06 b | 0.89 ± 0.06 b | 0.86 ± 0.10 b | 0 | / |
24 | γ-Valerolactone | 108-29-2 | 1630 | - | MS,RI | 0 | 0.56 ± 0.05 a | 0.50 ± 0.04 ab | 0.44 ± 0.04 b | 0.41 ± 0.03 b | 0.33 ± 0.04 c | 0.30 ± 0.03 c | 100 |
25 | Ethyl caprate | 110-38-3 | 1644 | - | MS,RI | 4.25 ± 0.27 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02 |
26 | γ-Butyrolactone | 96-48-0 | 1650 | - | MS,RI | 1.34 ± 0.25 g | 10.05 ± 0.42 e | 28.80 ± 0.52 c | 36.65 ± 0.37 a | 30.24 ± 0.48 b | 25.64 ± 0.62 d | 2.55 ± 0.44 f | 0.025 |
27 | 4-Hexanolide | 695-06-7 | 1722 | - | MS,RI | 4.04 ± 0.27 a | 3.71 ± 0.36 a | 3.50 ± 0.52 ab | 2.97 ± 0.21 b | 2.53 ± 0.35 b | 2.43 ± 0.22 b | 2.37 ± 0.19 b | 8 |
28 | δ-Hexanolactone | 823-22-3 | 1815 | - | MS,RI | 0.76 ± 0.05 d | 1.52 ± 0.12 a | 1.51 ± 0.11 a | 1.33 ± 0.13 ab | 1.24 ± 0.08 b | 1.20 ± 0.07 b | 0.93 ± 0.05 c | 230 |
29 | γ-Heptanolactone | 105-21-5 | 1825 | - | MS,RI | 0.60 ± 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0.52 |
30 | Ethyl laurate | 106-33-2 | 1849 | - | MS,RI | 0.73 ± 0.04 | 0 | 0 | 0 | 0 | 0 | 0 | 3.5 |
31 | γ-Octanoic lactone | 104-50-7 | 1935 | 1883 | MS,RI | 0.55 ± 0.06 b | 0.52 ± 0.05 b | 0.69 ± 0.04 a | 0.59 ± 0.04 ab | 0.55 ± 0.06 b | 0.67 ± 0.06 a | 0.56 ± 0.03 b | 0.095 |
32 | Methyl pyruvate | 600-22-6 | 2357 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 10.39 ± 1.24 | / |
33 | 3,4-Dihydroxybutanoic acid gamma-lactone | 5469-16-9 | 2618 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 0.92 ± 0.08 | / |
ketones | |||||||||||||
34 | 2,3-Butanedione | 431-03-8 | 1022 | 981 | MS,RI | 0 | 12.00 ± 2.58 d | 29.00 ± 3.12 b | 38.00 ± 1.11 a | 22.00 ± 0.85 c | 7.00 ± 0.41 e | 2.00 ± 0.34 f | 0.003 |
35 | Acetoin | 513-86-0 | 1294 | 1292 | MS,RI | 0 | 60.28 ± 4.28 d | 102.09 ± 3.78 b | 128.23 ± 4.12 a | 87.45 ± 3.56 c | 42.16 ± 2.87 e | 8.25 ± 1.56 f | 0.04 |
36 | 6-Methyl-5-hepten-2-one | 110-93-0 | 1347 | 1339 | MS,RI | 0 | 1.49 ± 0.22 b | 1.74 ± 0.15 b | 1.81 ± 0.2 ab | 1.84 ± 0.34 ab | 2.36 ± 0.45 a | 2.50 ± 0.52 a | 0.1 |
37 | 3-Acetoxy-2-butanone | 4906-24-5 | 1390 | - | MS,RI | 3.18 ± 0.12 d | 6.46 ± 0.23 a | 5.59 ± 0.18 b | 4.41 ± 0.55 c | 4.38 ± 0.42 c | 3.64 ± 0.43 d | 2.08 ± 0.15 e | / |
38 | 4-Cyclopentene-1,3-dione | 930-60-9 | 1602 | - | MS,RI | 2.12 ± 0.15 g | 8.56 ± 0.05 e | 18.24 ± 0.07 c | 28.37 ± 0.07 a | 20.54 ± 0.06 b | 12.65 ± 0.08 d | 5.12 ± 0.14 f | 0.02 |
39 | 5,5-Dimethylfuran-2(5H)-one | 20019-64-1 | 1626 | - | MS,RI | 0 | 0.42 ± 0.05 a | 0.44 ± 0.04 a | 0.45 ± 0.06 a | 0.46 ± 0.02 a | 0.47 ± 0.04 a | 0.50 ± 0.03 a | / |
40 | 5-Methyl-2(5H)-furanone | 591-11-7 | 1698 | - | MS,RI | 0 | 0 | 0.01 ± 0.002 d | 0.97 ± 0.05 c | 1.26 ± 0.04 bc | 6.99 ± 0.05 b | 15.02 ± 0.15 a | 0.002 |
41 | 2(5H)-Furanone | 497-23-4 | 1776 | - | MS,RI | 0 | 0 | 0.24 ± 0.03 d | 0.25 ± 0.04 cd | 0.32 ± 0.04 c | 0.48 ± 0.05 b | 2.66 ± 0.21 a | / |
42 | 1,2-Cyclopentanedione | 3008-40-0 | 1783 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 1.03 ± 0.11 | / |
43 | 3-Methyl-1,2-cyclopentanedione | 765-70-8 | 1842 | - | MS,RI | 0 | 0.61 ± 0.08 c | 0.95 ± 0.07 b | 0.98 ± 0.12 b | 1.00 ± 0.09 b | 1.07 ± 0.13 ab | 1.42 ± 0.24 a | 0.01 |
44 | Furyl hydroxymethyl ketone | 17678-19-2 | 2023 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 1.03 ± 0.12 | 1 |
45 | 4-Hydroxy-2,5-dimethyl-3(2H)furanone | 3658-77-3 | 2038 | 2002 | MS,RI | 0 | 0.41 ± 0.09 c | 0.96 ± 0.24 b | 1.75 ± 0.42 a | 0.79 ± 0.15 b | 0.46 ± 0.07 c | 0.38 ± 0.04 cd | 0.001 |
46 | 5-Acetyldihydrofuran-2(3H)-one | 29393-32-6 | 2080 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0.42 ± 0.05 b | 2.13 ± 0.12 a | / |
47 | 2,5-Hexanedione | 110-13-4 | 2120 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 0.60 ± 0.05 | / |
48 | 2-Hydroxy-gamma-butyrolactone | 19444-84-9 | 2188 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0.43 ± 0.03 b | 3.99 ± 0.11a | / |
49 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one | 28564-83-2 | 2286 | 2266 | MS,RI | 0 | 1.13 ± 0.12 f | 5.92 ± 0.24 e | 11.57 ± 0.21 d | 16.50 ± 0.32 c | 53.04 ± 0.27 b | 106.79 ± 1.24 a | 0.02 |
50 | 3,5-Dihydroxy-2-methyl-4-pyrone | 1073-96-7 | 2314 | - | MS,RI | 0 | 0 | 0.54 | 1.12 | 3.56 | 7.35 | 13.12 ± 0.08 | 0.01 |
51 | Methyl pyruvate | 600-22-6 | 2357 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 10.39 ± 0.85 | / |
alcohols | |||||||||||||
52 | 1-Octen-3-ol | 3391-86-4 | 1453 | 1441 | MS,RI | 5.69 ± 0.52 a | 4.87 ± 0.37 bc | 4.92 ± 0.35 b | 4.69 ± 0.41 bc | 4.52 ± 0.25 c | 4.23 ± 0.36 c | 0 | 0.001 |
53 | 2-Ethylhexanol | 104-76-7 | 1493 | - | MS,RI | 6.87 ± 0.24 a | 4.58 ± 0.35 c | 4.73 ± 0.24 c | 4.84 ± 0.52 bc | 4.92 ± 0.32 bc | 5.35 ± 0.29 b | 7.20 ± 0.54 a | / |
54 | (S,S)-2,3-Butanediol | 19132-06-0 | 1543 | - | MS,RI | 0 | 13.30 ± 0.55 a | 12.42 ± 0.47 b | 12.01 ± 0.85 bc | 11.72 ± 0.65 c | 10.59 ± 0.74 c | 0 | 400 |
55 | Propylene glycol | 57-55-6 | 1595 | - | MS,RI | 0.83 ± 0.08 c | 1.66 ± 0.23 a | 1.47 ± 0.21 ab | 1.45 ± 0.16 ab | 1.35 ± 0.12 b | 1.31 ± 0.17 b | 1.24 ± 016 b | 1400 |
56 | 4-Methyl-5-decanol | 213547-15-0 | 1659 | - | MS,RI | 0.38 ± 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | / |
57 | 2-Furanmethanol | 98-00-0 | 1669 | - | MS,RI | 0 | 1.49 ± 0.18 f | 5.57 ± 0.24 e | 7.23 ± 0.32 d | 8.78 ± 0.34 c | 20.44 ± 1.24 b | 73.57 ± 3.25 a | 0.3 |
58 | 5-Methyl-2-furanMethanol | 3857-25-8 | 1728 | - | MS,RI | 0 | 0 | 0.64 ± 0.07 c | 0.75 ± 0.09 c | 0.78 ± 0.08 c | 1.64 ± 0.15 b | 2.57 ± 0.24 a | 0.3 |
59 | Benzyl alcohol | 100-51-6 | 1888 | - | MS,RI | 0 | 0.23 ± 0.05 a | 0.23 ± 0.03 a | 0.25 ± 0.02 a | 0.22 ± 0.03 a | 0.27 ± 0.04 a | 0.23 ± 0.03 a | 5.5 |
60 | (R)-(-)-3-Methyl-2-butanol | 1572-93-6 | 1982 | - | MS,RI | 0 | 2.27 ± 0.24 b | 2.58 ± 0.31 ab | 2.68 ± 0.26 a | 2.74 ± 0.27 a | 2.56 ± 0.18 ab | 2.10 ± 0.12 b | / |
acids | |||||||||||||
61 | Acetic acid | 64-19-7 | 1459 | 1442 | MS,RI | 581.59 ± 2.24 c | 509.50 ± 2.25 a | 456.68 ± 3.57 b | 451.40 ± 4.28 b | 414.41 ± 4.35 c | 401.04 ± 2.15 d | 254.97 ± 1.57 e | 0.1 |
62 | Propanoic acid | 79-09-4 | 1550 | 1531 | MS,RI | 11.51 ± 0.25 d | 14.25 ± 0.32 a | 12.54 ± 0.18 b | 12.06 ± 0.15 c | 11.21 ± 0.21 de | 11.14 ± 0.17 e | 10.60 ± 0.27 f | 3 |
63 | Butanoic acid | 107-92-6 | 1639 | - | MS,RI | 31.77 ± 0.25 | 26.08 ± 0.32 | 24.93 ± 0.21 | 21.91 ± 0.18 | 20.40 ± 0.12 d | 17.73 ± 0.08 | 16.04 ± 0.11 g | 0.015 |
64 | Isovaleric acid | 503-74-2 | 1680 | 1626 | MS,RI | 24.87 ± 0.52 a | 22.85 ± 0.47 b | 17.17 ± 0.32 c | 16.83 ± 0.25 cd | 14.55 ± 0.42 d | 13.47 ± 0.38 e | 8.36 ± 0.51 f | 0.1 |
65 | Pentanoic acid | 109-52-4 | 1749 | 1714 | MS,RI | 10.51 ± 0.25 c | 12.81 ± 0.35 a | 11.04 ± 0.19 b | 10.80 ± 0.42 bc | 8.91 ± 0.32 d | 8.34 ± 0.26 d | 6.10 ± 0.21 e | 0.5 |
66 | Isocrotonic acid | 503-64-0 | 1791 | - | MS,RI | 1.86 ± 0.12 d | 2.80 ± 0.08 a | 2.39 ± 0.07 b | 2.43 ± 0.11 b | 2.33 ± 0.08 b | 2.22 ± 0.07 bc | 2.15 ± 0.08 c | / |
67 | Hexanoic acid | 142-62-1 | 1855 | 1855 | MS,RI | 55.27 ± 0.85 a | 55.64 ± 1.21 a | 49.09 ± 0.54 b | 41.68 ± 0.36 c | 38.78 ± 0.41 d | 37.76 ± 0.52 e | 26.99 ± 0.44 f | 0.2 |
68 | 4-Methylvaleric acid | 646-07-1 | 1878 | - | MS,RI | 0.29 ± 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | / |
69 | trans-3-Hexenoic acid | 1577-18-0 | 1954 | 1958 | MS,RI | 0.25 ± 0.03 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3 |
70 | Heptanoic acid | 111-14-8 | 1960 | 1948 | MS,RI | 4.74 ± 0.24 a | 4.51 ± 0.32 a | 4.30 ± 0.38 ab | 3.97 ± 0.42 b | 3.92 ± 0.35 b | 3.58 ± 0.37 b | 2.44 ± 0.21 c | 0.1 |
71 | trans-2-Hexenoic acid | 1191-04-4 | 1982 | - | MS,RI | 1.51 ± 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | / |
72 | Octanoic acid | 124-07-2 | 2066 | - | MS,RI | 2.94 ± 0.24 a | 3.09 ± 0.26 a | 2.80 ± 0.13 a | 2.73 ± 0.32 ab | 2.64 ± 0.21 b | 2.36 ± 0.18 b | 2.12 ± 0.15 c | 0.5 |
73 | trans-2-Undecenoic acid | 15790-94-0 | 2091 | - | MS,RI | 0.71 ± 0.05 b | 0.88 ± 0.06 a | 0.85 ± 0.05 a | 0.79 ± 0.03 ab | 0.77 ± 0.04 b | 0.61 ± 0.03 c | 0 | / |
74 | Nonanoic acid | 112-05-0 | 2177 | 2177 | MS,RI | 0.74 ± 0.07 ab | 0.95 ± 0.08 a | 0.93 ± 0.06 a | 0.86 ± 0.08 a | 0.76 ± 0.07 ab | 0.70 ± 0.06 b | 0.43 ± 0.05 c | 0.0035 |
75 | Decanoic acid | 334-48-5 | 2288 | - | MS,RI | 2.16 ± 0.15 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 |
hydrocarbons | |||||||||||||
76 | Undecane | 1120-21-4 | 1104 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0.88 ± 0.07 b | 8.25 ± 0.12 a | / |
77 | Dodecane | 112-40-3 | 1203 | 1200 | MS,RI | 0 | 14.01 ± 0.12 e | 14.63 ± 0.08 d | 14.16 ± 0.11 e | 15.82 ± 0.12 c | 20.71 ± 0.15 b | 32.30 ± 0.32 a | / |
78 | 2,5,6-Trimethyloctane | 62016-14-2 | 1209 | - | MS,RI | 1.61 ± 0.08 | 0 | 0 | 0 | 0 | 0 | 0 | / |
79 | Styrene | 100-42-5 | 1267 | 1250 | MS,RI | 0 | 3.39 ± 0.28 d | 4.19 ± 0.23 c | 4.29 ± 0.35 bc | 4.59 ± 0.24 b | 5.08 ± 0.41 a | 5.45 ± 0.32 a | 0.022 |
80 | Tridecane | 629-50-5 | 1302 | 1300 | MS,RI | 0 | 4.66 ± 0.33 d | 6.75 ± 0.41 c | 8.13 ± 0.38 b | 8.66 ± 0.35 b | 8.96 ± 0.54 b | 22.73 ± 1.12 a | / |
81 | Nonane | 111-84-2 | 1310 | 900 | MS,RI | 1.61 ± 0.23 e | 1.14 ± 0.21 e | 4.19 ± 0.52 cd | 4.84 ± 0.38 c | 3.52 ± 0.32 d | 7.99 ± 0.56 b | 24.06 ± 1.21 a | / |
furans | |||||||||||||
82 | 2-Acetylfuran | 1192-62-7 | 1518 | - | MS,RI | 0 | 0.45 ± 0.09 e | 1.06 ± 0.12 d | 3.21 ± 0.26 c | 3.67 ± 0.21 c | 22.40 ± 0.12 b | 62.50 ± 0.41 a | 0.01 |
83 | Furan-2,5-dicarbaldehyde | 823-82-5 | 1999 | - | MS,RI | 0 | 0 | 0 | 0 | 0 | 0 | 0.77 ± 0.08 | 100 |
No | Compound Name | CAS | OAV A | DF B | Odor Quality C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | ||||
aldehydes | |||||||||||||||||
2 | Hexanal | 66-25-1 | 4.3 | 3.7 | 2.9 | 2.6 | 2.2 | <1 | <1 | 1 | 0 D | 0 | 0 | 0 | 0 | 0 | green |
5 | Nonanal | 124-19-6 | 2.4 | 2.1 | 1.5 | 1.2 | 0.9 | 0.6 | 0.3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | fatty |
7 | Furfural | 98-01-1 | <1 | <1 | <1 | 1 | 2.1 | 4.9 | 10.3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | burnt |
10 | 5-Methyl-2-furanaldehyde | 620-02-0 | <1 | <1 | <1 | <1 | 1.07 | 2.76 | 4.64 | 0 | 0 | 0 | 0 | 1 | 5 | 7 | burnt |
12 | 5-Hydroxymethyl-2-furaldehyde | 67-47-0 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 0 | 0 | 0 | 0 | 1 | 4 | 6 | burnt |
esters | |||||||||||||||||
15 | Ethyl hexanoate | 123-66-0 | 278.5 | 8.1 | 7 | 7 | 4.2 | <1 | <1 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | fruity |
26 | γ-Butyrolactone | 96-48-0 | <1 | <1 | 1.15 | 1.47 | 1.21 | 1.03 | <1 | 5 | 5 | 6 | 6 | 6 | 5 | 5 | caramel |
27 | 4-Hexanolide | 695-06-7 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 0 | 0 | 0 | 0 | 3 | 6 | 7 | sweet |
ketones | |||||||||||||||||
34 | 2,3-Butanedione | 431-03-8 | <1 | 4 | 9.7 | 12.7 | 7.3 | 2.3 | <1 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | roasted sweet |
35 | Acetoin | 513-86-0 | <1 | 1.5 | 2.6 | 3.2 | 2.2 | 1 | <1 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | roasted sweet |
38 | 4-Cyclopentene-1,3-dione | 930-60-9 | <1 | <1 | <1 | 1.42 | 1.03 | <1 | <1 | 0 | 0 | 2 | 6 | 3 | 2 | 2 | caramel |
40 | 5-Methyl-2(5H)-furanone | 591-11-7 | 0 | 0 | 0.005 | 0.49 | 0.63 | 3.5 | 7.51 | 0 | 0 | 0 | 0 | 3 | 6 | 9 | bitter |
45 | 4-Hydroxy-2,5-dimethyl-3(2H)furanone | 3658-77-3 | <1 | <1 | <1 | 1.75 | <1 | <1 | <1 | 0 | 0 | 1 | 3 | 2 | 1 | 1 | caramel |
49 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one | 28564-83-2 | 0 | 0.06 | 0.3 | 0.58 | 0.83 | 2.65 | 5.34 | 0 | 0 | 1 | 3 | 7 | 8 | 8 | burnt, bitter |
50 | 3,5-Dihydroxy-2-methyl-4-pyrone | 1073-96-7 | <1 | <1 | <1 | <1 | <1 | <1 | 1.31 | 0 | 0 | 0 | 0 | 1 | 5 | 6 | burnt, bitter |
alcohols | |||||||||||||||||
52 | 1-Octen-3-ol | 3391-86-4 | 5.7 | 4.9 | 4.9 | 4.7 | 4.5 | 4.2 | <1 | 8 | 7 | 7 | 7 | 7 | 7 | 6 | mushroom |
57 | 2-Furanmethanol | 98-00-0 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 0 | 0 | 0 | 0 | 1 | 3 | 5 | burnt |
acids | |||||||||||||||||
61 | Acetic acid | 64-19-7 | 5.8 | 5.1 | 4.6 | 4.5 | 4.1 | 4 | 2.5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | sour |
63 | Butanoic acid | 107-92-6 | 2.1 | 1.7 | 1.7 | 1.5 | 1.4 | 1.2 | 1.1 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | smelly |
67 | Hexanoic acid | 142-62-1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 10 | 10 | 10 | 10 | 10 | 10 | 8 | smelly |
furans | |||||||||||||||||
82 | 2-Acetylfuran | 1192-62-7 | <1 | <1 | <1 | <1 | <1 | 2.24 | 6.25 | 0 | 0 | 0 | 0 | 1 | 6 | 7 | bitter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Pan, S.; Liu, X.; Tan, M.; Zheng, X.; Du, W.; Wu, M.; Song, Y. Profiling the Major Aroma-Active Compounds of Microwave-Dried Jujube Slices through Molecular Sensory Science Approaches. Foods 2023, 12, 3012. https://doi.org/10.3390/foods12163012
Yan X, Pan S, Liu X, Tan M, Zheng X, Du W, Wu M, Song Y. Profiling the Major Aroma-Active Compounds of Microwave-Dried Jujube Slices through Molecular Sensory Science Approaches. Foods. 2023; 12(16):3012. https://doi.org/10.3390/foods12163012
Chicago/Turabian StyleYan, Xinhuan, Shaoxiang Pan, Xuemei Liu, Mengnan Tan, Xiaodong Zheng, Wenyu Du, Maoyu Wu, and Ye Song. 2023. "Profiling the Major Aroma-Active Compounds of Microwave-Dried Jujube Slices through Molecular Sensory Science Approaches" Foods 12, no. 16: 3012. https://doi.org/10.3390/foods12163012
APA StyleYan, X., Pan, S., Liu, X., Tan, M., Zheng, X., Du, W., Wu, M., & Song, Y. (2023). Profiling the Major Aroma-Active Compounds of Microwave-Dried Jujube Slices through Molecular Sensory Science Approaches. Foods, 12(16), 3012. https://doi.org/10.3390/foods12163012