Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Water Lentil Protein Extraction and Purification
Water Lentil Protein Extraction by Solubilization—First Protocol
Impact of Concentration on Water Lentil Protein Solubilization at Optimized Temperature and pH Values—Second Protocol
Water Lentil Protein Purification by Isoelectric Point Precipitation—Third Protocol
2.2.2. Analyses
Proximal Composition
Protein Solubilization and Total Protein Yields
Protein Identification and Quantification by Proteomic Analyses
- Protein digestion
- Mass spectrometry
- Database searching
- Criteria for protein identification and quantification
FTIR Spectroscopy
- Sample measurement and data acquisition
- Secondary structure analyses using Fourier self-deconvolution on the Amide I band.
Differential Scanning Calorimetry
Functionnal Properties
- Solubility
- Foaming Properties
Statistical Analyses
3. Results and Discussion
3.1. Water Lentil Protein Extraction by Solubilization
3.2. Impact of Concentration on Water Lentil Protein Solubilization at Optimized Temperature and pH
3.3. Water Lentil Protein Purification by Isoelectric Point Precipitation
3.3.1. Impact of Concentration and pH of Purification on Total Protein Yield
3.3.2. Impact of Concentration and pH of Purification on Total Protein Purity
3.3.3. Protein Identification and Quantification at the Initial and Final Steps of the Process
3.4. Structural and Functionnal Properties of the Initial and End Products of the Extraction Process
3.4.1. Protein Structural Properties
Protein Secondary Structure: ATR-FTIR Spectroscopy
Protein Quaternary Structure: Differential Scanning Calorimetry (DSC)
3.4.2. Protein Functionnal Properties according to the Process Step
Solubility according to the Process Step
Foaming Capacity and Stability according to the Process Step
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; p. 3056. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Auclair, O.; Burgos, S.A. Carbon footprint of Canadian self-selected diets: Comparing intake of foods, nutrients, and diet quality between low- and high-greenhouse gas emission diets. J. Clean. Prod. 2021, 316, 128245. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [CrossRef]
- Leser, S. The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications: FAO dietary protein report. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R. Position of the american dietetic association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [CrossRef]
- Hillman, W.S.; Culley, D.D., Jr. The uses of duckweed: The rapid growth, nutritional value, and high biomass productivity of these floating plants suggest their use in water treatment, as feed crops, and in energy-efficient farming. Am. Sci. 1978, 66, 442–451. Available online: http://www.jstor.org/stable/27848752 (accessed on 12 September 2023).
- Rusoff, L.L.; Blakeney, E.W.; Culley, D.D., Jr. Duckweeds (lemnaceae family): A potential source of protein and amino acids. J. Agric. Food Chem. 1980, 28, 848–850. [Google Scholar] [CrossRef]
- Landolt, E. Key to the determination of taxa within the family of lemnaceae. Veröff. Geobot. Inst. ETH Stift. Rübel Zürich 1980, 70, 13–21. [Google Scholar]
- Nieuwland, M.; Geerdink, P.; Engelen-Smit, N.P.E.; van der Meer, I.M.; America, A.H.P.; Mes, J.J.; Kootstra, A.M.J.; Henket, J.T.M.M.; Mulder, W.J. Isolation and gelling properties of duckweed protein concentrate. ACS Food Sci. Technol. 2021, 1, 908–916. [Google Scholar] [CrossRef]
- Barbeau, W.E.; Kinsella, J.E. Ribulose bisphosphate carboxylase/oxygenase (rubisco) from green leaves-potential as a food protein. Food Rev. Int. 1988, 4, 93–127. [Google Scholar] [CrossRef]
- Fourounjian, P.; Fakhoorian, T.; Cao, X.H. Importance of duckweeds in basic research and their industrial applications. In The Duckweed Genomes; Cao, X.H., Fourounjian, P., Wang, W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional value of duckweeds (lemnaceae) as human food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef]
- van Krimpen, M.M.; Bikker, P. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products; Report/Wageningen UR Livestock Research; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2013. [Google Scholar]
- Pérez-Vila, S. Extraction of plant protein from green leaves: Biomass composition and processing considerations. Food Hydrocoll. 2022, 133, 107902. [Google Scholar] [CrossRef]
- Møller, A.H.; Hammershøj, M.; dos Passos, N.H.M.; Tanambell, H.; Stødkilde, L.; Ambye-Jensen, M.; Danielsen, M.; Jensen, S.K.; Dalsgaard, T.K. Biorefinery of green biomass—How to extract and evaluate high quality leaf protein for food? J. Agric. Food Chem. 2021, 69, 14341–14357. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, D.S.; Linnemann, A.R.; van Boekel, T.A.J.S. Towards sustainable production of protein-rich foods: Appraisal of eight crops for Western Europe. PART II: Analysis of the Technological Aspects of the Production Chain. Crit. Rev. Food Sci. Nutr. 2003, 43, 481–506. [Google Scholar] [CrossRef] [PubMed]
- Nynäs, A.-L.; Newson, W.R.; Johansson, E. Protein fractionation of green leaves as an underutilized food source—Protein yield and the effect of process parameters. Foods 2021, 10, 2533. [Google Scholar] [CrossRef]
- Tamayo Tenorio, A.; Gieteling, J.; de Jong, G.A.H.; Boom, R.M.; van der Goot, A.J. Recovery of protein from green leaves: Overview of crucial steps for utilisation. Food Chem. 2016, 203, 402–408. [Google Scholar] [CrossRef]
- Bray, W.J.; Humphries, C. Preparation of white leaf protein concentrate using a polyanionic flocculant. J. Sci. Food Agric. 1979, 30, 171–176. [Google Scholar] [CrossRef]
- Fiorentini, R.; Galoppini, C. Pilot plant production of an ddible alfalfa protein concentrate. J. Food Sci. 1981, 46, 1514–1517. [Google Scholar] [CrossRef]
- Kobbi, S.; Bougatef, A.; Le flem, G.; Balti, R.; Mickael, C.; Fertin, B.; Chaabouni, S.; Dhulster, P.; Nedjar, N. Purification and recovery of RuBisCO protein from alfalfa green juice: Antioxidative properties of generated protein hydrolysate. Waste Biomass Valorization 2017, 8, 493–504. [Google Scholar] [CrossRef]
- Martin, A.H.; Nieuwland, M.; de Jong, G.A.H. Characterization of heat-set gels from RuBisCO in comparison to those from other proteins. J. Agric. Food Chem. 2014, 62, 10783–10791. [Google Scholar] [CrossRef]
- Pérez Simba, B.P.; Garrido Espinosa, J.A.; Endara Vargas, A.B.; Landázuri Flores, A.C.; Ramírez Cárdenas, L. Optimization of the extraction and precipitation process of a leaf protein concentrate from Moringa oleifera Lam. Rev. Fac. Nac. Agron. Medellín 2022, 75, 9813–9821. [Google Scholar] [CrossRef]
- Coldebella, P.F.; Gomes, S.D.; Evarini, J.A.; Cereda, M.P.; Coelho, S.R.M.; Coldebella, A. Evaluation of protein extraction methods to obtain protein concentrate from cassava leaf. Eng. Agríc. 2013, 33, 1223–1233. [Google Scholar] [CrossRef]
- Dewanji, A.; Chanda, S.; Si, L.; Barik, S.; Matai, S. Extractability and nutritional value of leaf protein from tropical aquatic plants. Plant Foods Hum. Nutr. 1997, 50, 349–357. [Google Scholar] [CrossRef]
- Edwards, R.H.; Miller, R.E.; De Fremery, D.; Knuckles, B.E.; Bickoff, E.M.; Kohler, G.O. Pilot plant production of an edible white fraction leaf protein concentrate from alfalfa. J. Agric. Food Chem. 1975, 23, 620–626. [Google Scholar] [CrossRef]
- Khan, L.H.; Varshney, V.K.; Naithani, S. Utilization of Biomass Residue (Leaves) Generated from Populus deltoides Plantations for Development of Protein Concentrate. Waste Biomass Valorization 2014, 5, 995–1004. [Google Scholar] [CrossRef]
- Khan, L.H.; Varshney, V.K. Chemical utilization of Albizia lebbeck Leaves for developing protein concentrates as a dietary supplement. J. Diet. Suppl. 2018, 15, 386–397. [Google Scholar] [CrossRef]
- Lamsal, B.P.; Koegel, R.G.; Gunasekaran, S. Some physicochemical and functional properties of alfalfa soluble leaf proteins. LWT-Food Sci. Technol. 2006, 40, 1520–1526. [Google Scholar] [CrossRef]
- Merodio, C.; Sabater, B. Preparation and properties of a white protein fraction in high yield from sugar beet (Beta vulgaris L.) leaves. J. Sci. Food Agric. 1988, 44, 237–243. [Google Scholar] [CrossRef]
- Rathore, M. Leaf protein concentrate as food supplement from arid zone plants. J. Diet. Suppl. 2010, 7, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Hojilla-Evangelista, M.P.; Selling, G.W.; Hatfield, R.; Digman, M. Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein. J. Sci. Food Agric. 2017, 97, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Jwanny, E.W.; Montanari, L.; Fantozzi, P. Protein production for human use from sugarbeet: Byproducts. Bioresour. Technol. 1993, 43, 67–70. [Google Scholar] [CrossRef]
- Sheen, S.J. Comparison of chemical and functional properties of soluble leaf proteins from four plant species. Food Chem. J. Agric. 1991, 39, 681–685. [Google Scholar] [CrossRef]
- Knuckles, B.E.; De Fremery, D.; Bickoff, E.M.; Kohler, G.O. Soluble protein from alfalfa juice by membrane filtration. J. Agric. Food Chem. 1975, 23, 209–212. [Google Scholar] [CrossRef]
- Knuckles, B.E.; Edwards, R.H.; Miller, R.E.; Kohler, G.O. Pilot scale ultrafiltration of clarified alfalfa juice. J. Food Sci. 1980, 45, 730–734. [Google Scholar] [CrossRef]
- Martin, A.H.; Castellani, O.; de Jong, G.A.; Bovetto, L.; Schmitt, C. Comparison of the functional properties of RuBisCO protein isolate extracted from sugar beet leaves with commercial whey protein and soy protein isolates. J. Sci. Food Agric. 2019, 99, 1568–1576. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Lübeck, M. Production of leaf protein concentrates in green biorefineries as alternative feed for monogastric animals. Anim. Feed Sci. Technol. 2020, 268, 114605. [Google Scholar] [CrossRef]
- Tamayo Tenorio, A.; Kyriakopoulou, K.E.; Suarez-Garcia, E.; van den Berg, C.; van der Goot, A.J. Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass—Consequences for industrial use. Trends Food Sci. Technol. 2018, 71, 235–245. [Google Scholar] [CrossRef]
- Yu, G.; Liu, H.; Venkateshan, K.; Yan, S.; Cheng, J.; Sun, X.S.; Wang, D. Functional, physiochemical, and rheological properties of duckweed (Spirodela polyrhiza) protein. Trans. ASABE 2011, 54, 555–561. [Google Scholar] [CrossRef]
- Duangjarus, N.; Chaiworapuek, W.; Rachtanapun, C.; Ritthiruangdej, P.; Charoensiddhi, S. Antimicrobial and functional properties of duckweed (Wolffia globosa) protein and peptide extracts repared by Uultrasound-assisted extraction. Foods 2022, 11, 2348. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, R.; Mojaver, M.; Azdast, T.; Park, C.B. Polyethylene waste gasification syngas analysis and multi-objective optimization using central composite design for simultaneous minimization of required heat and maximization of exergy efficiency. Energy Convers. Manag. 2021, 247, 114713. [Google Scholar] [CrossRef]
- Jankovic, A.; Chaudhary, G.; Goia, F. Designing the design of experiments (DOE)—An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build. 2021, 250, 111298. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; Van Der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Boukil, A.; Perreault, V.; Chamberland, J.; Mezdour, S.; Pouliot, Y.; Doyen, A. High hydrostatic Ppressure-assisted enzymatic hydrolysis affect mealworm allergenic proteins. Molecules 2020, 25, 2685. [Google Scholar] [CrossRef]
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Ayala-Bribiesca, E.; Pourcelly, G.; Bazinet, L. Nature identification and morphology characterization of anion-exchange membrane fouling during conventional electrodialysis. J. Colloid Interface Sci. 2007, 308, 182–190. [Google Scholar] [CrossRef]
- Arrondo, J.L.R.; Muga, A.; Castresana, J.; Goñi, F.M. Quantitative studies of the structure of proteins in solution by fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol. 1993, 59, 23–56. [Google Scholar] [CrossRef]
- Hui, Y.H.; Sherkat, F. (Eds.) Infrared and Raman Spectroscopy in Food Science. In Handbook of Food Science, Technology, and Engineering; CRC Press: Boca Raton, FL, USA, 2005; Volume 44, pp. 1–19. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Yu, L. Pulse proteins: Secondary structure, functionality and applications. J. Food Sci. Technol. 2019, 56, 2787–2798. [Google Scholar] [CrossRef]
- Calderón-Chiu, C.; Calderón-Santoyo, M.; Barros-Castillo, J.C.; Díaz, J.A.; Ragazzo-Sánchez, J.A. Structural modification of Jackfruit leaf protein concentrate by enzymatic hydrolysis and their effect on the emulsifier properties. Colloids Interfaces 2022, 6, 52. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Nikonenko, V.; Pourcelly, G.; Bazinet, L. Hybrid bipolar membrane electrodialysis/ ultrafiltration technology assisted by a pulsed electric field for casein production. Green Chem. 2016, 18, 307–314. [Google Scholar] [CrossRef]
- Schwenke, K.D.; Rauschal, E.J.; Robowsky, K.D. Functional properties of plant proteins Part IV. Foaming properties of modified proteins from faba beans. Food Nahr. 1983, 27, 335–350. [Google Scholar] [CrossRef]
- Ivanova, P.; Kalaydzhiev, H.; Dessev, T.T.; Silva, C.L.M.; Rustad, T.; Chalova, V.I. Foaming properties of acid-soluble protein-rich ingredient obtained from industrial rapeseed meal. J. Food Sci. Technol. 2018, 55, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Akyüz, A.; Ersus, S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Dong, S.; Bortner, M.J.; Roman, M. Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study. Ind. Crops Prod. 2016, 93, 76–87. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill College: New York, NY, USA, 1980; ISBN 0070610282. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw-Hill College: New York, NY, USA, 1997; ISBN 0070610282. [Google Scholar]
- Lo, S.; Andrews, S. To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015, 6, 1171. [Google Scholar] [CrossRef] [PubMed]
- Chou, D.H.; Morr, C.V. Protein-water interactions and functional properties. J. Am. Oil Chem. Soc. 1979, 56, A53–A62. [Google Scholar] [CrossRef]
- Nagy, S.; Telek, L.; Hall, N.T.; Berry, R.E. Potential food uses for protein from tropical and subtropical plant leaves. J. Agric. Food Chem. 1978, 26, 1016–1028. [Google Scholar] [CrossRef]
- Wang, W.; Nema, S.; Teagarden, D. Protein aggregation—Pathways and influencing factors. Int. J. Pharm. 2010, 390, 89–99. [Google Scholar] [CrossRef]
- Douillard, R.; de Mathan, O. Leaf protein for food use: Potential of Rubisco. In New and Developing Sources of Food Proteins; Hudson, B.J.F., Ed.; Springer: Boston, MA, USA, 1994; pp. 307–342. [Google Scholar] [CrossRef]
- Nissen, S.H.; Lübeck, M.; Møller, A.H.; Dalsgaard, T.K. Protein recovery and quality of alfalfa extracts obtained by acid precipitation and fermentation. Bioresour. Technol. Rep. 2022, 19, 101190. [Google Scholar] [CrossRef]
- Stødkilde, L.; Lashkari, S.; Eriksen, J.; Jensen, S.K. Enhancing protein recovery in green biorefineries through selection of plant species and time of harvest. Anim. Feed Sci. Technol. 2021, 278, 115016. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Bao, T.; Zheng, X.; Chen, W.; Wang, J. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chem. 2017, 221, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Juul, L.; Møller, A.H.; Bruhn, A.; Jensen, S.K.; Dalsgaard, T.K. Protein solubility is increased by antioxidant addition during protein extraction from the green macroalga, Ulva sp. J. Appl. Phycol. 2021, 33, 545–555. [Google Scholar] [CrossRef]
- Goktayoglu, E.; Oztop, M.H.; Ozcan, S. Proteomics approach to differentiate protein extraction methods in sugar beet leaves. J. Agric. Food Chem. 2023, 71, 9157–9163. [Google Scholar] [CrossRef]
- Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000, 74, 141–173. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, M.; Maselli, P.; Nucara, A. Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: A Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 2012, 43, 911–921. [Google Scholar] [CrossRef]
- Nowick, J.S. Exploring β-sheet structure and interactions with chemical model systems. Acc. Chem. Res. 2008, 41, 1319–1330. [Google Scholar] [CrossRef]
- Diaz, A.A.; Tomba, E.; Lennarson, R.; Richard, R.; Bagajewicz, M.J.; Harrison, R.G. Prediction of protein solubility in Escherichia coli using logistic regression. Biotechnol. Bioeng. 2010, 105, 374–383. [Google Scholar] [CrossRef]
- Johnson, C.M. Differential scanning calorimetry as a tool for protein folding and stability. Arch. Biochem. Biophys. 2013, 531, 100–109. [Google Scholar] [CrossRef]
- Vogt, G.; Argos, P. Protein thermal stability: Hydrogen bonds or internal packing? Fold. Des. 1997, 2, S40–S46. [Google Scholar] [CrossRef]
- Hubbard, R.E.; Kamran Haider, M. Hydrogen bonds in proteins: Role and strength. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Kinsella, J. Functional properties of proteins: Possible relationships between structure and function in foams. Food Chem. 1981, 7, 273–288. [Google Scholar] [CrossRef]
- Kinsella, J.E.; Melachouris, N. Functional properties of proteins in foods: A survey. C R C Crit. Rev. Food Sci. Nutr. 1976, 7, 219–280. [Google Scholar] [CrossRef]
- Akintayo, E.T.; Oshodi, A.A.; Esuoso, K.O. Effects of NaCl, ionic strength and pH on the foaming and gelation of pigeon pea (Cajanus cajan) protein concentrates. Food Chem. 1999, 66, 51–56. [Google Scholar] [CrossRef]
- Knuckles, B.E.; Kohler, G.O. Functional properties of edible protein concentrates from alfalfa. J. Agric. Food Chem. 1982, 30, 748–752. [Google Scholar] [CrossRef]
- Sheen, S.J.; Sheen, V.L. Functional properties of fraction 1 protein from tobacco leaf. J. Agric. Food Chem. 1985, 33, 79–83. [Google Scholar] [CrossRef]
- Sheen, S.J. Whole-plant utilization: The potential of soybean. Biomass 1986, 10, 195–206. [Google Scholar] [CrossRef]
- Nynäs, A.-L.; Newson, W.R.; Langton, M.; Wouters, A.G.B.; Johansson, E. Applicability of leaf protein concentrates from various sources in food: Solubility at food-relevant pH values and air-water interfacial properties. LWT 2023, 184, 114962. [Google Scholar] [CrossRef]
- Mine, Y. Recent advances in the understanding of egg white protein functionality. Trends Food Sci. Technol. 1995, 6, 225–232. [Google Scholar] [CrossRef]
- Wang, J.; Nguyen, A.V.; Farrokhpay, S. Effects of surface rheology and surface potential on foam stability. Colloids Surf. Physicochem. Eng. Asp. 2016, 488, 70–81. [Google Scholar] [CrossRef]
Food Component | Amount (g/100 g) on Dry Basis | ||||
---|---|---|---|---|---|
Present Study | Rusoff et al. [11] | Yu et al. [44] | Nieuwland et al. [13] | Duangjarus et al. [45] | |
Crude protein | 35.8 ± 0.3 | 25.2–36.4 | 34.5 | 33.6 ± 0.9 | 33.2 ± 1.9 |
Fat | - | 4.5–6.6 | 3.9 | 3.4 ± 0.2 | 3.0 ± 0.2 |
Ash | 6.2 ± 0.2 | 13.7–17.1 | 9.7 | 18.0 ± 0.4 | 14.6 ± 0.1 |
Total carbohydrates | - | - | - | 3.3 ± 0.2 | 36.7 ± 2.0 |
Dietary fibers | 47.2 ± 1.2 | 8.8–11.0 | 10.2 | 25.5 ± 0.7 | 12.5 ± 0.2 |
soluble fibers | 6.5 ± 0.2 | - | - | - | - |
insoluble fibers | 40.7 ± 1.0 | - | - | - | - |
Humidity | 3.7 ± 0.3 | - | - | - | 8.6 ± 0.0 |
Trial | Input Parameters | ||
---|---|---|---|
Concentration (w/w in %) | Temperature (°C) | pH | |
1 | 2 | 80 | 9 |
2 | 4 | 80 | 10 |
3 | 4 | 65 | 9 |
4 | 4 | 65 | 10 |
5 | 6 | 80 | 9 |
6 | 6 | 80 | 11 |
7 | 6 | 65 | 10 |
8 | 6 | 50 | 9 |
9 | 2 | 50 | 11 |
10 | 4 | 50 | 10 |
11 | 4 | 65 | 10 |
12 | 2 | 80 | 11 |
13 | 2 | 50 | 9 |
14 | 4 | 65 | 11 |
15 | 6 | 50 | 11 |
16 | 2 | 65 | 10 |
Input Parameter | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 5663.85 | 629.32 | 11.30 | 0.0040 |
Concentration | 1 | 1.44 | 1.44 | 0.03 | 0.88 |
Temperature | 1 | 1690.78 | 1690.78 | 30.36 | 0.0015 |
pH | 1 | 2303.11 | 2303.11 | 41.36 | 0.0007 |
Concentration*Temperature | 1 | 9.81 | 9.81 | 0.18 | 0.69 |
Concentration*pH | 1 | 0.99 | 0.99 | 0.018 | 0.90 |
Temperature*pH | 1 | 1041.50 | 1041.50 | 18.70 | 0.0050 |
Concentration*Concentration | 1 | 47.40 | 47.40 | 0.85 | 0.39 |
Temperature*Temperature | 1 | 140.70 | 140.70 | 2.53 | 0.16 |
pH*pH | 1 | 47.85 | 47.85 | 0.86 | 0.39 |
Error | 6 | 334.18 | 55.69 | ||
Total | 15 | 5997.96 |
Input Parameter | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 3 | 679.87 | 226.62 | 4.17 | 0.031 |
Concentration | 3 | 679.87 | 226.62 | 4.17 | 0.031 |
Concentration (linear) | 1 | 651.51 | 651.51 | 11.99 | 0.004 |
Concentration (quadratic) | 1 | 24.30 | 24.55 | 0.45 | 0.52 |
Concentration (cubic) | 1 | 4.10 | 4.09 | 0.08 | 0.79 |
Error | 12 | 652.16 | 54.35 | ||
Total | 15 | 1332.02 |
Input Parameter | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
pH effect at Concentration = 2% | 4 | 1192.26 | 298.06 | 5.74 | 0.0006 |
pH effect at Concentration = 4% | 4 | 689.22 | 172.3 | 3.32 | 0.016 |
pH effect at Concentration = 6% | 4 | 106.5 | 26.63 | 0.51 | 0.73 |
pH effect at Concentration = 8% | 4 | 19.39 | 4.85 | 0.09 | 0.98 |
Concentration effect at pH 3 | 3 | 95.13 | 31.71 | 0.61 | 0.61 |
Concentration effect at pH 3.5 | 3 | 161.22 | 53.74 | 1.04 | 0.38 |
Concentration effect at pH 4 | 3 | 545.1 | 181.7 | 3.50 | 0.021 |
Concentration effect at pH 4.5 | 3 | 146.27 | 48.76 | 0.94 | 0.43 |
Concentration effect at pH 5 | 3 | 200.68 | 66.89 | 1.29 | 0.29 |
Input Parameter | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
pH effect at Concentration = 2% | 4 | 147.71 | 36.92 | 1.97 | 0.11 |
pH effect at Concentration = 4% | 4 | 76.94 | 19.26 | 1.03 | 0.40 |
pH effect at Concentration = 6% | 4 | 12.44 | 3.11 | 0.17 | 0.95 |
pH effect at Concentration = 8% | 4 | 19.13 | 4.78 | 0.26 | 0.91 |
Concentration effect at pH 3 | 3 | 95.9 | 31.97 | 1.71 | 0.17 |
Concentration effect at pH 3.5 | 3 | 11.10 | 3.70 | 0.20 | 0.90 |
Concentration effect at pH 4 | 3 | 62.08 | 20.70 | 1.11 | 0.35 |
Concentration effect at pH 4.5 | 3 | 171.97 | 57.32 | 3.07 | 0.035 |
Concentration effect at pH 5 | 3 | 392.69 | 130.90 | 7.00 | 0.00040 |
Leaf Source | Purification pH | Total Protein Yield (%) | Protein Purity (%) | Reference |
---|---|---|---|---|
Alfalfa | 4 | 8.4% | 73.9% | [24] |
Alfalfa | 3.5 | 36% | 60% | [36] |
Alfalfa | 3 | NR | 73.0% | [25] |
Alfalfa | 3.5 | NR | 72% | [33] |
Alfalfa | 4.5 | 29.6% | 52.9% | [69] |
Alfalfa | 4.5 | 1.5% | 12.9% | [21] |
Alfalfa | 4 | Nr. | 86,5% | [38] |
Alfalfa | 4 | 6% | 41% | [70] |
Beetroot | 4.5 | 3.8% | 7.21% | [21] |
Broccoli | 4.5 | 2.9% | 7.9% | [21] |
Cabbage | 4.5 | 0.2% | 0.7% | [21] |
Carrot | 4.5 | 0.2% | 1.1% | [21] |
Cassava | 4 | 48.7% | 50.0% | [28] |
Cauliflower | 4 | 1.2% | 53.1% | [71] |
Eastern cottonwood | 4 | ~7.8% | ~59.5% | [31] |
Lebeeck tree | 4 | 6.0% | 37.3% | [32] |
Kale | 4.5 | 2.1% | 7.9% | [21] |
Mangold | 4.5 | 3.7% | 7.2% | [21] |
Moringa | 4–4.5 | 7.3% | 26.9% | [27] |
Red clover | 4 | 5.9% | 45.3% | [70] |
Ryegrass | 4 | 5.1% | 61.7% | [70] |
Sea lettuce | 2 | 5% | 30% | [72] |
Sugar beet | 3 | NR | 63.2–82.2% | [37] |
Sugar beet | 4.5 | 32.7% | ~59% | [34] |
Sugar beet | 4.5 | 0.9% | 7.2% | [21] |
Tall fescus | 4 | 5.2% | 60.7% | [70] |
White clover | 4 | 3.9% | 46.9% | [70] |
Water lentil | 3.5 | NR | NR | [45] |
Water lentil | 6 | 14.2% | 67.2% | [13] |
Water lentil | 3.65 | NR | 44.7% | [11] |
Water lentil | 3.65 | 52.1% (1) 45.6% (2) 44.3% (3) | 46.1% (1) 67.83% (2) 45.20% (3) | [44] |
Water lentil | 4 | 60% | 57% | Present study |
Protein Type | IP | PP C2 | PP C4 | PS C2 | PS C4 |
---|---|---|---|---|---|
Actin | 0.9 ± 0.4 a,b,* | 0.2 ± 0.3 b | 0.1 ± 0.1 b | 2.2 ± 1.0 a | 2.5 ± 1.3 a |
ATPase | 14.1 ± 2.0 a | 4.7 ± 6.5 a,b | 1.8 ± 0.4 b | 1.1 ± 0.9 b | 0.0 ± 0.0 b |
Cytochrome | 0.8 ± 0.2 a | 0.7 ± 0.6 a | 0.9 ± 1.1 a | 1.9 ± 1.0 a | 0.7 ± 1.1 a |
CAB protein | 2.7 ± 0.4 a | 1.9 ± 1.4 a | 3.1 ± 3.0 a | 1.3 ± 1.7 a | 0.0 ± 0.0 a |
Histone | 0.0 ± 0.0 a | 0.2 ± 0.2 a | 0.4 ± 0.5 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Metabolism | 8.5 ± 1.7 a | 2.1 ± 1.3 b | 1.8 ± 1.0 b | 2.7 ± 1.3 b | 4.2 ± 1.0 a,b |
Photosystem | 6.1 ± 2.2 a | 3.6 ± 3.3 a | 4.5 ± 5.1 a | 1.1 ± 0.8 a | 0.4 ± 0.6 a |
Ribosomal | 2.6 ± 0.9 a | 1.6 ± 1.1 a | 1.6 ± 1.6 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
RubisCO | 45.6 ± 6.1 b | 84.5 ± 14.9 a | 85.6 ± 12.8 a | 89.6 ± 7.0 a | 92.1 ± 0.7 a |
RubisCO activase | 18.4 ± 12.4 a | 0.4 ± 0.5 b | 0.2 ± 0.1 b | 0.1 ± 0.2 b | 0.0 ± 0.0 b |
Sample | PEAK 1 | PEAK 2 | ||||
---|---|---|---|---|---|---|
Denaturation Temperature (°C) | Enthalpy of Transition ΔH (J/g of Product) | Enthalpy of Transition ΔH (J/g of Protein) | Denaturation Temperature (°C) | Enthalpy of Transition ΔH (J/g of Product) | Enthalpy of Transition ΔH (J/g of Protein) | |
IP pH 4 | 72.4 ± 1.9 a,* | 134.6 ± 5.0 c,d | 374.0 ± 13.8 c | 134.2 ± 2.6 a | 5.0 ± 0.1 a | 13.8 ± 0.2 a |
PP pH 4 C2 | 72.2 ± 4.1 a | 139.2 ± 18.4 b,c | 241.4 ± 43.1 e | 138.5 ± 2.7 a | 2.0 ± 1.3 b,c | 3.4 ± 2.4 b,c |
PP pH 4 C4 | 74.8 ± 2.6 a | 127.8 ± 14.2 c,d | 236.1 ± 17.5 e | 142.2 ± 0.1 a | 2.5 ± 1.0 b | 4.7 ± 2.3 b |
PS pH 4 C2 | 59.2 ± 6.5 c | 69.9 ± 4.0 e | 349.3 ± 19.9 c,d,e | 116.0 ± 1.6 b | 0.8 ± 0.2 c,d | 3.9 ± 1.0 b,c |
PS pH 4 C4 | 65.8 ± 3.1 a,b | 73.0 ± 6.9 e | 364.9 ± 34.5 c,d | 118.9 ± 6.4 b | 0.3 ± 0.3 d | 1.2 ± 1.4 c |
IP pH 7 | 73.7 ± 2.6 a | 166.8 ± 4.7 a | 463.4 ± 13.2 b | 137.0 ± 2.9 a | 4.3 ± 0.3 a | 11.8 ± 0.8 a |
PP pH 7 C2 | 62.9 ± 0.4 b | 167.0 ± 11.0 a | 288.0 ± 9.0 e | 117.5 ± 0.8 b | 0.1 ± 0.1 d | 0.2 ± 0.1 c |
PP pH 7 C4 | 62.0 ± 0.6 b | 162.3 ± 11.3 a,b | 300.5 ± 21.6 d,e | 118.6 ± 1.9 b | 0.5 ± 0.4 c,d | 0.9 ± 0.1 c |
PS pH 7 C2 | 65.6 ± 3.3 a | 109.2 ± 5.1 d | 545.8 ± 25.7 a | 123.1 ± 0.2 b | 0.2 ± 0.0 d | 0.9 ± 0.1 c |
PS pH 7 C4 | 65.4 ± 3.4 a | 106.7 ± 10.5 d | 533.6 ± 52.3 a | 118.7 ± 5.7 b | 0.2 ± 0.2 d | 0.8 ± 1.0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, T.; Bernier, M.-È.; Bazinet, L. Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties. Foods 2023, 12, 3424. https://doi.org/10.3390/foods12183424
Muller T, Bernier M-È, Bazinet L. Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties. Foods. 2023; 12(18):3424. https://doi.org/10.3390/foods12183424
Chicago/Turabian StyleMuller, Tristan, Marie-Ève Bernier, and Laurent Bazinet. 2023. "Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties" Foods 12, no. 18: 3424. https://doi.org/10.3390/foods12183424
APA StyleMuller, T., Bernier, M. -È., & Bazinet, L. (2023). Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties. Foods, 12(18), 3424. https://doi.org/10.3390/foods12183424