Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Color Measurement
2.4. Determination of Capsaicin and Dihydrocapsaicin Content
2.5. Data Collection
2.6. Data Analysis for Classification
3. Results
3.1. Color Values of Red Pepper Powder in Relation to Different Pericarp and Seed Ratios and Allura Red Concentrations
3.2. Hyperspectral Information and PCA Results in Relation to the Pericarp and Seed Ratio and the Presence of Allura Red
3.3. Classification of Adulterated Red Pepper Powder by the Pericarp Ratio and Allura Red Concentration
3.4. Classification of Adulterated Red Pepper Powder by Adulterant Types
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Korea Food & Drug Administration (KFDA). Food Public Code. Available online: https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC (accessed on 13 August 2023).
- Khan, M.H.; Saleem, Z.; Ahmad, M.; Sohaib, A.; Ayaz, H.; Mazzara, M.; Raza, R.A. Hyperspectral imaging-based unsupervised adulterated red chili content transformation for classification: Identification of red chili adulterants. Neural Comput. Appl. 2021, 33, 14507–14521. [Google Scholar] [CrossRef]
- Haughey, S.A.; Galvin-King, P.; Ho, Y.-C.; Bell, S.E.; Elliott, C.T. The feasibility of using near infrared and raman spectroscopic techniques to detect fraudulent adulteration of chili powders with sudan dye. Food Control 2015, 48, 75–83. [Google Scholar] [CrossRef]
- Ku, K.-H.; Choi, E.-J.; Park, J.-B. Chemical component analysis of red pepper (Capsicum annuum L.) seeds with various cultivars. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1084–1089. [Google Scholar] [CrossRef]
- Khan, M.H.; Saleem, Z.; Ahmad, M.; Sohaib, A.; Ayaz, H.; Mazzara, M. Hyperspectral imaging for color adulteration detection in red chili. Appl. Sci. 2020, 10, 5955. [Google Scholar] [CrossRef]
- Rovina, K.; Siddiquee, S.; Shaarani, S.M. Extraction, analytical and advanced methods for detection of allura red ac (e129) in food and beverages products. Front. Microbiol. 2016, 7, 798. [Google Scholar] [CrossRef] [PubMed]
- Di Anibal, C.V.; Rodríguez, M.S.; Albertengo, L. Synchronous fluorescence and multivariate classification analysis as a screening tool for determining sudan i dye in culinary spices. Food Control 2015, 56, 18–23. [Google Scholar] [CrossRef]
- Modupalli, N.; Naik, M.; Sunil, C.; Natarajan, V. Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci. Technol. 2021, 108, 133–147. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Soni, A.; Dixit, Y.; Reis, M.M.; Brightwell, G. Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3717–3745. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhu, S.P.; Huang, H.; Xu, D. Quantitative identification of adulterated sichuan pepper powder by near-infrared spectroscopy coupled with chemometrics. J. Food Qual. 2017, 2017, 5019816. [Google Scholar] [CrossRef]
- Aviara, N.A.; Liberty, J.T.; Olatunbosun, O.S.; Shoyombo, H.A.; Oyeniyi, S.K. Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. J. Agric. Food Res. 2022, 8, 100288. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ma, J.; Wang, Q.; Sun, D.-W. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. Crit. Rev. Food Sci. Nutr. 2023, 63, 1649–1669. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sirisomboon, P.; Sumesh, K.; Terdwongworakul, A.; Phetpan, K.; Kshetri, T.B.; Sangwanangkul, P. Near-infrared hyperspectral imaging combined with machine learning for physicochemical-based quality evaluation of durian pulp. Postharvest Biol. Technol. 2023, 200, 112334. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.; Cheng, J.; Fu, L.; Wang, S.; Xu, M. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Li, C.; He, M.; Cai, Z.; Qi, H.; Zhang, J.; Zhang, C. Hyperspectral imaging with machine learning approaches for assessing soluble solids content of tribute citru. Foods 2023, 12, 247. [Google Scholar] [CrossRef]
- Kim, D.; Park, H.; Cho, I.H. The effect of roasting on capsaicinoids, volatile compounds, and fatty acids in Capsicum annuum L. (red pepper) seeds. Food Sci. Biotechnol. 2022, 31, 211–220. [Google Scholar] [CrossRef]
- Baykan, N.A.; Yılmaz, N. A mineral classification system with multiple artificial neural network using k-fold cross validation. Math. Comput. Appl. 2011, 16, 22–30. [Google Scholar] [CrossRef]
- Bignardi, C.; Cavazza, A.; Rinaldi, M.; Corradini, C. Correlation between different markers for the assessment of red chilli pepper powders stability during shelf-life. Int. J. Food Sci. Nutr. 2016, 67, 391–399. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Dong, H.; Sun, J.; Huang, J.; Li, S.; Ma, C.; Guo, Y.; Sun, X. Spatio-temporal distribution patterns and quantitative detection of aflatoxin b1 and total aflatoxin in peanut kernels explored by short-wave infrared hyperspectral imaging. Food Chem. 2023, 424, 136441. [Google Scholar] [CrossRef]
- Shao, Y.; Xuan, G.; Hu, Z.; Gao, X. Identification of adulterated cooked millet flour with hyperspectral imaging analysis. IFAC-Pap. 2018, 51, 96–101. [Google Scholar] [CrossRef]
- Choi, J.Y.; Cho, J.S.; Park, K.J.; Kim, S.S.; Lim, J.H. Grading the pungency of red pepper powder using hyperspectral imaging coupled with multivariate analysis. Korean J. Food Preserv. 2022, 29, 918–931. [Google Scholar] [CrossRef]
- Jing, B.; Song, W.; Gao, X.; He, K.; Sun, Q.; Tang, X. A feasibility quantification study of capsaicin content in chili powder for rapid evaluation using near-infrared reflectance spectroscopy. J. Food Meas. Charact. 2023, 17, 4405–4414. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhou, G.; Liu, C.; Ji, Z.; Li, Z.; Li, W. Strategies for the content determination of capsaicin and the identification of adulterated pepper powder using a hand-held near-infrared spectrometer. Food Res. Int. 2023, 163, 112192. [Google Scholar] [CrossRef] [PubMed]
- Park, T.S.; Bae, Y.M.; Sim, M.J.; Kim, D.E.; Cho, S.I. Analysis of capsaicinoids from hot red pepper powder by near-infrared spectroscopy. ASABE 2008, 083703. [Google Scholar]
- Kamil, M.M.; Mohamed, G.F.; Shaheen, M.S. Fourier transformer infrared spectroscopy for quality assurance of tomato products. J. Am. Sci. 2011, 7, 559–572. [Google Scholar]
- Xie, S.; Zhang, Y.; Lv, D.; Chen, X.; Lu, J.; Liu, J. A new improved maximal relevance and minimal redundancy method based on feature subset. J. Supercomput. 2023, 79, 3157–3180. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, C.; Huang, W.; Chen, L. Detection of blueberry internal bruising over time using nir hyperspectral reflectance imaging with optimum wavelengths. Postharvest Biol. Technol. 2017, 134, 55–66. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Zhu, F.; Song, Y.; Yu, K.; Zhao, Y. Rapid qualitative detection of titanium dioxide adulteration in persimmon icing using portable raman spectrometer and machine learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122221. [Google Scholar] [CrossRef]
- Ruttanadech, N.; Phetpan, K.; Srisang, N.; Srisang, S.; Chungcharoen, T.; Limmun, W.; Youryon, P.; Kongtragoul, P. Rapid and accurate classification of Aspergillus ochraceous contamination in robusta green coffee bean through near-infrared spectral analysis using machine learning. Food Control 2023, 145, 109446. [Google Scholar] [CrossRef]
- Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Visualization of volatomic profiles for early detection of fungal infection on storage jasmine brown rice using electronic nose coupled with chemometrics. Measurement 2020, 157, 107561. [Google Scholar] [CrossRef]
- Ordukaya, E.; Karlik, B. Quality control of olive oils using machine learning and electronic nose. J. Food Qual. 2017, 2017, 9272404. [Google Scholar] [CrossRef]
- Yoon, H.S.; Kwon, J.H.; Bae, M.J.; Hwang, J.H. Studies on the development of food resources from waste seeds iv. Chemical composition of red pepper seed. J. Korean Soc. Food Sci. Nutr. 1983, 12, 46–50. [Google Scholar]
- Zhang, J.; Dai, L.; Cheng, F. Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method. Food Anal. Methods 2021, 14, 389–400. [Google Scholar] [CrossRef]
- Nugrahaeni, R.A.; Mutijarsa, K. Comparative analysis of machine learning knn, svm, and random forests algorithm for facial expression classification. In Proceedings of the 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), Semarang, Indonesia, 5–6 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 163–168. [Google Scholar]
- Phillips, T.; Abdulla, W. A new honey adulteration detection approach using hyperspectral imaging and machine learning. Eur. Food Res. Technol. 2023, 249, 259–272. [Google Scholar] [CrossRef]
Group | Appearance | Seed (%) | Pericarp (%) | Allura Red (%) |
---|---|---|---|---|
P0 | 100.00 | 0.00 | 0.00 | |
P0A | 99.95 | 0.00 | 0.05 | |
P0B | 99.90 | 0.00 | 0.10 | |
P0C | 99.85 | 0.00 | 0.15 | |
P25 | 75.00 | 25.00 | 0.00 | |
P25A | 74.96 | 24.99 | 0.05 | |
P25B | 74.93 | 24.98 | 0.10 | |
P25C | 74.89 | 24.96 | 0.15 | |
P50 | 50.00 | 50.00 | 0.00 | |
P50A | 49.98 | 49.98 | 0.05 | |
P50B | 49.95 | 49.95 | 0.10 | |
P50C | 49.93 | 49.93 | 0.15 | |
P75 | 25.00 | 75.00 | 0.00 | |
P75A | 24.99 | 74.96 | 0.05 | |
P75B | 24.98 | 74.93 | 0.10 | |
P75C | 24.96 | 74.89 | 0.15 | |
P100 | 0.00 | 100.00 | 0.00 | |
P100A | 0.00 | 99.95 | 0.05 | |
P100B | 0.00 | 99.90 | 0.10 | |
P100C | 0.00 | 99.85 | 0.15 |
L* | a* | b* | Hue Angle | Chroma | |
---|---|---|---|---|---|
P0 | 58.6 ± 0.7m | 26.6 ± 1.1a | 52.3 ± 1.5gh | 63.1 ± 0.7n | 58.7 ± 1.7de |
P0A | 43.2 ± 0.5k | 31.1 ± 0.3b | 34.1 ± 0.6a | 47.7 ± 0.5c | 46.2 ± 0.6a |
P0B | 41.1 ± 0.6j | 38.9 ± 0.3h | 34.9 ± 0.5a | 41.8 ± 0.3a | 52.3 ± 0.5c |
P0C | 37.3 ± 0.5gh | 36.9 ± 0.6efg | 34.1 ± 0.6a | 42.7 ± 0.4a | 50.2 ± 0.8b |
P25 | 49.8 ± 1.0l | 33.7 ± 0.8c | 48.2 ± 1.3c | 55.0 ± 1.0ij | 58.8 ± 1.2de |
P25A | 41.0 ± 0.5j | 37.1 ± 0.2fg | 43.2 ± 1.1b | 49.4 ± 0.7d | 57.0 ± 0.9d |
P25B | 38.9 ± 0.5i | 40.4 ± 0.2i | 44.6 ± 0.6b | 47.8 ± 0.4c | 60.2 ± 0.5ef |
P25C | 37.7 ± 0.4h | 41.9 ± 0.1j | 43.3 ± 1.0b | 46.0 ± 0.6b | 60.2 ± 0.8ef |
P50 | 43.5 ± 0.5k | 36.2 ± 0.5de | 49.1 ± 1.3cde | 53.6 ± 0.8gh | 61.0 ± 1.1f |
P50A | 38.5 ± 0.4i | 37.1 ± 0.4fg | 48.6 ± 1.1cd | 52.7 ± 0.7fg | 61.2 ± 0.9f |
P50B | 35.9 ± 0.5f | 40.2 ± 0.5i | 49.5 ± 1.9cde | 50.9 ± 0.9e | 63.8 ± 1.8g |
P50C | 33.4 ± 1.0d | 41.4 ± 0.5j | 50.5 ± 1.0ef | 50.7 ± 0.5e | 65.3 ± 1.0gh |
P75 | 36.8 ± 0.6g | 36.1 ± 0.5d | 50.0 ± 1.3def | 54.1 ± 0.6hi | 61.6 ± 1.3f |
P75A | 34.1 ± 0.4e | 37.6 ± 0.4g | 55.8 ± 1.7i | 56.0 ± 0.8kl | 67.3 ± 1.5ij |
P75B | 33.2 ± 0.4cd | 39.9 ± 0.5i | 56.4 ± 0.7i | 54.7 ± 0.3ij | 69.1 ± 0.8j |
P75C | 32.5 ± 0.4bc | 39.9 ± 0.4i | 53.8 ± 1.0h | 53.4 ± 0.3fgh | 67.0 ± 1.0hi |
P100 | 29.7 ± 0.6a | 36.7 ± 1.1def | 47.9 ± 2.4c | 52.5 ± 0.6f | 60.4 ± 2.5ef |
P100A | 32.9 ± 0.5cd | 31.4 ± 0.4b | 51.6 ± 1.4fg | 58.7 ± 0.4m | 60.4 ± 1.4ef |
P100B | 32.6 ± 0.7bcd | 37.4 ± 0.5fg | 55.8 ± 1.2i | 56.2 ± 0.46l | 67.2 ± 1.2hij |
P100C | 32.0 ± 0.7b | 37.2 ± 0.5fg | 53.6 ± 1.0h | 55.2 ± 0.3jk | 65.3 ± 1.1gh |
Pericarp | Seed | |
---|---|---|
Capsaicin (mg/kg) | 47.6 ± 0.2 | 2.0 ± 0.1 |
Dihydrocapsaicin (mg/kg) | 32.0 ± 0.1 | 1.3 ± 0.1 |
Feature Number | Accuracy | Recall | Precision | F1_Score | ||
---|---|---|---|---|---|---|
Linear discriminant analysis (LDA) | 35 | Train | 100.0 | 100.0 | 100.0 | 100.0 |
Test | 98.9 | 97.8 | 98.0 | 97.8 | ||
Linear support vector machine (LSVM) | 20 | Train | 85.5 | 85.5 | 87.1 | 85.3 |
Test | 85.6 | 85.6 | 86.4 | 85.2 | ||
K-nearest neighbors (KNN) | 20 | Train | 76.9 | 77.0 | 77.0 | 76.9 |
Test | 80.6 | 80.6 | 81.0 | 80.0 |
Feature Number | Accuracy | Recall | Precision | F1_Score | ||
---|---|---|---|---|---|---|
Linear discriminant analysis (LDA) | 35 | Train | 100.0 | 100.0 | 100.0 | 100.0 |
Test | 100.0 | 100.0 | 100.0 | 100.0 | ||
Linear support vector machine (LSVM) | 20 | Train | 99.5 | 99.2 | 99.5 | 99.3 |
Test | 99.4 | 99.1 | 99.7 | 99.4 | ||
K-nearest neighbors (KNN) | 35 | Train | 99.0 | 99.3 | 99.1 | 99.2 |
Test | 99.4 | 99.1 | 99.7 | 99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-J.; Cho, J.-S.; Lee, G.; Yun, D.-Y.; Park, S.-K.; Park, K.-J.; Lim, J.-H. Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging. Foods 2023, 12, 3471. https://doi.org/10.3390/foods12183471
Park J-J, Cho J-S, Lee G, Yun D-Y, Park S-K, Park K-J, Lim J-H. Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging. Foods. 2023; 12(18):3471. https://doi.org/10.3390/foods12183471
Chicago/Turabian StylePark, Jong-Jin, Jeong-Seok Cho, Gyuseok Lee, Dae-Yong Yun, Seul-Ki Park, Kee-Jai Park, and Jeong-Ho Lim. 2023. "Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging" Foods 12, no. 18: 3471. https://doi.org/10.3390/foods12183471
APA StylePark, J. -J., Cho, J. -S., Lee, G., Yun, D. -Y., Park, S. -K., Park, K. -J., & Lim, J. -H. (2023). Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging. Foods, 12(18), 3471. https://doi.org/10.3390/foods12183471