Utilizing VIS-NIR Technology to Generate a Quality Index (Qi) Model of Barhi Date Fruits at the Khalal Stage Stored in a Controlled Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples Preparation and Storage
2.2. Sensory Analysis
2.3. Objective Analysis
2.4. Evaluation of the Quality Index (Qi)
2.5. VIS-NIR Measurements
2.6. Statistics and Analysis
3. Results
3.1. Sensory Evaluation
Sensory Assessment of Fruits during Storage
3.2. Evaluation of Barhi Fruits Physical Properties during Storage
3.3. Modeling of Quality Index (Qi)
3.4. Quality Index (Qi) Modeling with VIS-NIR Spectra
3.5. Partial Least Squares Regression (PLSR)
3.6. Artificial Neural Networks Analysis (ANN)
3.7. Performance of Prediction Models of Barhi Quality during Storage
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhamdan, A.; Hassan, B.; Alkahtani, H.; Abdelkarim, D.; Younis, M. Freezing of fresh Barhi dates for quality preservation during frozen storage. Saudi J. Biol. Sci. 2018, 25, 1552–1561. [Google Scholar] [CrossRef]
- Abdelkarim, D.O.; Mohamed Ahmed, I.A.; Ahmed, K.A.; Younis, M.; Yehia, H.M.; Zein El-Abedein, A.I.; Alhamdan, A. Extending the Shelf Life of Fresh Khalal Barhi Dates via an Optimized Postharvest Ultrasonic Treatment. Plants 2022, 11, 2029. [Google Scholar] [CrossRef]
- Abu-Shama, H.S.; Abou-Zaid, F.O.F.; El-Sayed, E.Z. Effect of using edible coatings on fruit quality of Barhi date cultivar. Sci. Hortic. 2020, 265, 109262. [Google Scholar] [CrossRef]
- Duan, X.; Su, X.; You, Y.; Qu, H.; Li, Y.; Jiang, Y. Effect of nitric oxide on pericarp browning of harvested longan fruit in relation to phenolic metabolism. Food Chem. 2007, 104, 571–576. [Google Scholar] [CrossRef]
- Adekanye, T.A.; Babaremu, K.O. Evaluation of an active evaporative cooling device for storage of fruits and vegetables. Agric. Eng. Int. CIGR J. 2019, 21, 203–208. [Google Scholar]
- Atia, A.; Abdelkarim, D.; Younis, M.; Alhamdan, A. Effects of pre-storage dipping in calcium chloride and salicylic acid on the quality attributes of stored Khalal Barhi dates. Int. J. Agric. Biol. Eng. 2020, 13, 206–212. [Google Scholar] [CrossRef]
- Alhamdan, A.; Hassan, B.; Alkahtani, H.; Ismaiel, S.M. Utilization of Controlled Atmosphere (CA) Technology in Shelf Life Extension of Fresh Barhi Dates at Khalal Stage of Maturity at a Semi-Commercial Level Final Technical Project # AR.28-84, General Directorate of Research Grants Programs; King Abdulaziz City for Science and Technology: Riyadh, Saudi Arabia, 2012; pp. 287–292. (In Arabic) [Google Scholar]
- Mesa, K.; Serra, S.; Masia, A.; Gagliardi, F.; Bucci, D.; Musacchi, S. Seasonal trends of starch and soluble carbohydrates in fruits and leaves of ‘Abbé Fétel’ pear trees and their relationship to fruit quality parameters. Sci. Hortic. 2016, 211, 60–69. [Google Scholar] [CrossRef]
- Cardello, A.V. Food quality: Relativity, context and consumer expectations. Food Qual. Prefer. 1995, 6, 163–170. [Google Scholar] [CrossRef]
- Ismail, A.I.; Hassaballa, A.A.; Almadini, A.M.; Daffalla, S. Analyzing the Spatial Correspondence between Different Date Fruit Cultivars and Farms’ Cultivated Areas, Case Study: Al-Ahsa Oasis, Saudi Arabia. Appl. Sci. 2022, 12, 5728. [Google Scholar] [CrossRef]
- Abbott, J.A. Quality measurement of fruits and vegetables. Postharvest Biol. Biol. Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Lin, H.; Ying, Y. Theory and application of near infrared spectroscopy in assessment of fruit quality: A review. Sens. Instrum. Food Qual. Saf. 2009, 3, 130–141. [Google Scholar] [CrossRef]
- Alhamdan, A.M.; Atia, A. Non-destructive method to predict Barhi dates quality at different stages of maturity utilising near-infrared (NIR) spectroscopy. Int. J. Food Prop. 2017, 20 (Suppl. S3), S2950–S2959. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Camino, M.D.C.P. Prediction of quality of intact olives by near infrared spectroscopy. Eur. J. Lipid Sci. Technol. 2010, 112, 1209–1217. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, Y. Use of FT-NIR spectrometry in non-invasive measurements of internal quality of ‘Fuji’ apples. Postharvest Biol. Technol. 2005, 37, 65–71. [Google Scholar] [CrossRef]
- Alhamdan, A.M. NIR Spectroscopy Assessment of Quality Index of Fermented Milk (Laban) Drink Flavored with Date Syrup during Cold Storage. Fermentation 2022, 8, 438. [Google Scholar] [CrossRef]
- Alhamdan, A.M.; Fickak, A.; Atia, A.R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates nondestructively using Vis/NIR spectroscopy. J. Food Process. Eng. 2019, 42, e13215. [Google Scholar] [CrossRef]
- Lu, R.; Guyer, D.E.; Beaudry, R.M. Determination of firmness and sugar content of apples using Near-Infrared diffuse reflectance 1. J. Texture Stud. 2000, 31, 615–630. [Google Scholar] [CrossRef]
- Peirs, A.; Schenk, A.; Nicolaı, B.M. Effect of natural variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions. Postharvest Biol. Technol. 2005, 35, 1–13. [Google Scholar] [CrossRef]
- Carlini, P.; Massantini, R.; Mencarelli, F. Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. J. Agric. Food Chem. 2000, 48, 5236–5242. [Google Scholar] [CrossRef]
- Schaare, P.N.; Fraser, D.G. Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biol. Technol. 2000, 20, 175–184. [Google Scholar] [CrossRef]
- Mireei, S.A.; Mohtasebi, S.S.; Massudi, R.; Rafiee, S.; Arabanian, A.S.; Berardinelli, A. Non-destructive measurement of moisture and soluble solids content of Mazafati date fruit by NIR spectroscopy. Aust. J. Crop Sci. 2010, 4, 175–179. [Google Scholar]
- Gómez, A.H.; He, Y.; Pereira, A.G. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. J. Food Eng. 2006, 77, 313–319. [Google Scholar] [CrossRef]
- Marini, F.; Bucci, R.; Magrì, A.L.; Magrì, A.D. Artificial neural networks in chemometrics: History, examples and perspectives. Microchem. J. 2008, 88, 178–185. [Google Scholar] [CrossRef]
- Hanrahan, G. Artificial Neural Networks in Biological and Environmental Analysis; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Lawless, H.; Heymann, H. Chapter 1. Sensory Evaluation of Food Science Principles and Practices, 2nd ed.; Ithaca: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Preference 2011, 22, 733–747. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists—International). Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Maskan, M. Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 2001, 48, 169–175. [Google Scholar] [CrossRef]
- Camarinha-Matos, L.M.; Falcão, A.J.; Vafaei, N.; Najdi, S. (Eds.) Technological Innovation for Cyber-Physical Systems: 7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2016, Costa de Caparica, Portugal, 11–13 April 2016, Proceedings; Springer: Berlin/Heidelberg, Germany, 2016; Volume 470. [Google Scholar]
- Nordey, T.; Joas, J.; Davrieux, F.; Chillet, M.; Léchaudel, M. Robust NIRS models for non-destructive prediction of mango internal quality. Sci. Hortic. 2017, 216, 51–57. [Google Scholar] [CrossRef]
- Kusumiyati, K.; Munawar, A.A.; Suhandy, D. Fast, simultaneous and contactless assessment of intact mango fruit by means of near infrared spectroscopy. AIMS Agric. Food 2021, 6, 172–184. [Google Scholar] [CrossRef]
- Silalahi, D.D.; Reaño, C.E.; Lansigan, F.P.; Panopio, R.G.; Bantayan, N.C. Using genetic algorithm neural network on near infrared spectral data for ripeness grading of oil palm (Elaeis guineensis Jacq.) fresh fruit. Inf. Process. Agric. 2016, 3, 252–261. [Google Scholar] [CrossRef]
- Singham, P.; Birwal, P.; Yadav, B.K. Importance of objective and subjective measurement of food quality and their inter-relationship. J. Food Process. Technol. 2015, 6, 488. [Google Scholar]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of artificial neural networks and NIR spectroscopy for non-destructive grape texture prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating soil organic carbon of cropland soil at different levels of soil moisture using VIS-NIR spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef]
- Bakeev, K.A. (Ed.) Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Irudayaraj, J.; Reh, C. (Eds.) Nondestructive Testing of Food Quality; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 18. [Google Scholar]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Jayalakshmi, T.; Santhakumaran, A. Statistical normalization and back propagation for classification. Int. J. Comput. Theory Eng. 2011, 3, 1793–8201. [Google Scholar]
- Hameed, F.; Kumar, A.; Hamid, N. Effect of thermal treatment and storage on the quality of apple juice. J. Pharmacogn. Phytochem. 2019, 8, 1976–1979. [Google Scholar]
- Ruenroengklin, N.; Zhong, J.; Duan, X.; Yang, B.; Li, J.; Jiang, Y. Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. Int. J. Mol. Sci. 2008, 9, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wang, G.B.; Fawole, O.A.; Verboven, P.; Zhang, X.R.; Wu, D.; Opara, U.L.; Nicolai, B.; Chen, K. Postharvest precooling of fruit and vegetables: A review. Trends Food Sci. Technol. 2020, 100, 278–291. [Google Scholar] [CrossRef]
- Neog, M.; Saikia, L. Control of post-harvest pericarp browning of litchi (Litchi chinensis Sonn). J. Food Sci. Technol. 2010, 47, 100–104. [Google Scholar] [CrossRef]
- Brinson, K.; Dey, P.M.; John, M.A.; Pridham, J.B. Post-harvest changes in Mangifera indica mesocarp cell walls and cytoplasmic polysaccharides. Phytochemistry 1988, 27, 719–723. [Google Scholar] [CrossRef]
- Ketzenberg, M.; Gaukler, G.; Salin, V. Expiration dates and order quantities for perishables. Eur. J. Oper. Res. 2018, 266, 569–584. [Google Scholar] [CrossRef]
# Ripening Stage | Texture | Taste | Color | Overall Acceptance |
---|---|---|---|---|
1 (80% yellowish) | 8.9 ± 0.41 a | 7 ± 0.08 b | 6.9 ± 1.06 b | 6.8 ± 1.08 b |
2 (90% yellowish) | 8.4 ± 1.01 ab | 8.7 ± 0.86 a | 8.9 ± 0.49 a | 8.5 ± 0.38 a |
3 (100% yellowish) | 8.2 ± 0.21 b | 8.8 ± 0.97 a | 8.8 ± 0.69 a | 8.5 ± 0.44 a |
Days | Storage | Texture | Taste | Color | Overall Acceptance |
---|---|---|---|---|---|
0 | CA, Cold, 25 °C | 8.4 ± 1.01 a | 8.7 ± 0.86 a | 8.9 ± 0.49 a | 8.5 ± 0.58 a |
20 | CA | 7.02 ± 0.61 a | 7.5 ± 0.54 a | 7.12 ±0.05 ab | 7.42 ± 0.79 ab |
Cold | 6.52 ± 0.41 ab | 6.74 ± 0.93 abc | 6.94 ± 0.52 ab | 6.64 ± 0.39 abc | |
25 °C | 3.20 ± 0.64 de | 3.89 ± 0.71 de | 3.52 ± 0.29 e | 3.70 ± 0.43 e | |
40 | CA | 6.44 ± 0.81 ab | 6.89 ± 1.02 ab | 6.31 ± 0.25 bc | 6.78 ± 0.27 ab |
Cold | 3.06 ± 1.04 e | 4.05 ± 0.13 de | 3.45 ± 0.69 e | 3.83 ± 0.57 de | |
25 °C | N/A | N/A | N/A | N/A | |
60 | CA | 5.64 ± 0.97 bc | 6.31 ± 0.52 bc | 5.53 ± 1.12 cd | 6.44 ± 0.87 bc |
Cold | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | |
80 | CA | 5.1 ± 0.93 c | 5.70 ± 1.62 c | 4.87 ± 1.03 d | 5.63 ± 1.62 c |
Cold | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | |
100 | CA | 4.14 ± 1.07 d | 4.79 ± 0.71 d | 3.93 ± 0.94 e | 4.70 ± 0.92 d |
Cold | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | |
120 | CA | 3.13 ± 0.79 e | 3.80 ± 0.09 e | 3.30 ± 0.82 e | 3.84 ± 0.19 de |
Cold | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A |
Days | Storage | TSS% | ∆E | BI | Hardness (N) | MC % |
---|---|---|---|---|---|---|
0 | CA, Cold, 25 °C | 20.31 ± 1.08 d | 0 g | 83.31 ± 0.64 e | 99.81 ± 0.06 a | 70.99 ± 0.36 a |
20 | CA | 20.46 ± 0.35 d | 6.80 ± 0.79 f | 83.33 ± 0.06 e | 98.52 ± 0.63 a | 68.35 ± 0.91 b |
Cold | 21.56 ± 1.21 d | 9.06 ± 0.02 e | 87.21 ± 0.39 cd | 83.65 ± 1.20 d | 65.25 ± 0.89 d | |
25 °C | 25.03 ± 1.26 a | 12.16 ± 0.06 a | 89.76 ± 0.63 b | 52.29 ± 1.64 g | 60.91 ± 0.94 g | |
40 | CA | 20.69 ± 0.86 d | 9.36 ± 0.08 de | 83.71 ± 0.16 e | 95.52 ± 0.43 b | 66.27 ± 0.49 c |
Cold | 23.39 ± 1.13 bc | 11.28 ± 0.04 bc | 91.45 ± 0.67 a | 76.85 ± 0.92 e | 62.58 ± 0.39 f | |
25 °C | N/A | N/A | N/A | N/A | N/A | |
60 | CA | 21.22 ± 0.73 d | 9.95 ± 0.82 d | 84.60 ± 0.67 e | 95.49 ± 0.92 b | 65.72 ± 0.71 cd |
Cold | N/A | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | N/A | |
80 | CA | 21.58 ± 1.06 d | 10.93 ± 0.49 c | 86.21 ± 0.92 d | 88.15 ± 0.26 c | 65.35 ± 0.84 d |
Cold | N/A | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | N/A | |
100 | CA | 22.64 ± 0.96 c | 11.48 ± 0.63 b | 87.94 ± 0.08 c | 84.18 ± 0.07 d | 64.13 ± 0.53 e |
Cold | N/A | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | N/A | |
120 | CA | 24.12 ± 1.16 ab | 11.68 ± 0.37 ab | 89.45 ± 0.83 b | 73.59 ± 1.21 f | 62.64 ± 0.19 f |
Cold | N/A | N/A | N/A | N/A | N/A | |
25 °C | N/A | N/A | N/A | N/A | N/A |
Parameter | Calibration | Cross-Validation | ||
---|---|---|---|---|
R2 | RMSEC | R2 | RMSECV | |
TSS% | 0.979 | 0.659 | 0.910 | 0.758 |
∆E | 0.961 | 0.994 | 0.912 | 0.979 |
BI | 0.881 | 0.978 | 0.882 | 0.902 |
Hardness (N) | 0.903 | 0.708 | 0.893 | 0.777 |
MC % | 0.902 | 2.119 | 0.901 | 1.921 |
Qi | 0.793 | 0.110 | 0.783 | 0.298 |
Parameter, | Calibration | Cross-Validation | ||
---|---|---|---|---|
R2 | RMSEC | R2 | RMSECV | |
TSS% | 0.981 | 0.857 | 0.979 | 0.705 |
∆E | 0.950 | 1.093 | 0.949 | 0.989 |
BI | 0.891 | 0.681 | 0.889 | 0.605 |
Hardness (N) | 0.891 | 0.747 | 0.893 | 0.708 |
MC% | 0.901 | 1.822 | 0.901 | 1.129 |
Qi | 0.912 | 0.308 | 0.912 | 0.308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhamdan, A.M. Utilizing VIS-NIR Technology to Generate a Quality Index (Qi) Model of Barhi Date Fruits at the Khalal Stage Stored in a Controlled Environment. Foods 2024, 13, 345. https://doi.org/10.3390/foods13020345
Alhamdan AM. Utilizing VIS-NIR Technology to Generate a Quality Index (Qi) Model of Barhi Date Fruits at the Khalal Stage Stored in a Controlled Environment. Foods. 2024; 13(2):345. https://doi.org/10.3390/foods13020345
Chicago/Turabian StyleAlhamdan, Abdullah M. 2024. "Utilizing VIS-NIR Technology to Generate a Quality Index (Qi) Model of Barhi Date Fruits at the Khalal Stage Stored in a Controlled Environment" Foods 13, no. 2: 345. https://doi.org/10.3390/foods13020345
APA StyleAlhamdan, A. M. (2024). Utilizing VIS-NIR Technology to Generate a Quality Index (Qi) Model of Barhi Date Fruits at the Khalal Stage Stored in a Controlled Environment. Foods, 13(2), 345. https://doi.org/10.3390/foods13020345