Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Preparation
2.2. Moromi Fermentation
2.3. Microbial Inoculation
2.4. Physicochemical Analysis
2.5. Organic Acids and Free Amino Acids Analysis
2.6. Key Volatile Compound Analysis
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Changes
3.2. Changes in Organic Acids
3.3. Changes in Free Amino Acids
3.4. Changes in Volatile Compounds
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elhalis, H.; Chin, X.H.; Chow, Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit. Rev. Food Sci. Nutr. 2023, 14, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, M.; Xie, N.; Huang, M.; Feng, Y. Community structure of yeast in fermented soy sauce and screening of functional yeast with potential to enhance the soy sauce flavor. Int. J. Food Microbiol. 2022, 370, 109652. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Feng, Y.; Zhao, M.; Su, G. Comparison and application of the extraction method for the determination of enzymatic profiles in matured soybean koji. Food Biosci. 2022, 49, 101875. [Google Scholar]
- Liu, B.; Li, Y.; Cao, Z.; Wang, C. Effect of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Torulopsis versatilis addition sequence on soy sauce fermentation. Innov. Food Sci. Emerg. Technol. 2021, 69, 102662. [Google Scholar] [CrossRef]
- Harada, R.; Yuzuki, M.; Ito, K.; Shiga, K.; Bamba, T.; Fukusaki, E. Microbe participation in aroma production during soy sauce fermentation. J. Biosci. Bioeng. 2018, 125, 688–694. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, S.; Du, T.; Xu, Y.; Madjirebaye, P.; Huang, G.; Guan, Q.; Xiong, T. Effect of microbiota succession on the dynamics of characteristic flavors and physicochemical properties during the soy sauce fermentation. Food Biosci. 2023, 54, 102883. [Google Scholar] [CrossRef]
- Lee, K.E.; Lee, S.M.; Choi, Y.H.; Hurh, B.S.; Kim, Y.S. Comparative volatile profiles in soy sauce according to inoculated microorganisms. Biosci. Biotechnol. Biochem. 2013, 77, 2192–2200. [Google Scholar] [CrossRef]
- Harada, R.; Yuzuki, M.; Ito, K.; Shiga, K.; Bamba, T.; Fukusaki, E. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation. J. Biosci. Bioeng. 2017, 123, 203–208. [Google Scholar] [CrossRef]
- Song, Y.R.; Jeong, D.Y.; Baik, S.H. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation. Food Microbiol. 2015, 51, 171–178. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Linforth, R.; El Kadri, H.; Gkatzionis, K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem. 2018, 257, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Escott, C.; Del Fresno, J.M.; Loira, I.; Morata, A.; Suárez-Lepe, J.A. Zygosaccharomyces rouxii: Control strategies and applications in food and winemaking. Fermentation 2018, 4, 69. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, R.; Liu, X.; Zheng, X.; Yao, Y.; Zhao, G. Examining the impact of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Starmerella etchellsii on the quality of soy sauce: A comprehensive review of microbial population dynamics in fermentation. Crit. Rev. Food Sci. Nutr. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, T.; Zhao, M.; Feng, Y. Effect of co-inoculation of different halophilic bacteria and yeast on the flavor of fermented soy sauce. Food Biosci. 2023, 51, 102292. [Google Scholar] [CrossRef]
- Song, Y.R.; Jeong, D.Y.; Baik, S.H. Monitoring of yeast communities and volatile flavor changes during traditional Korean soy sauce fermentation. J. Food Sci. 2015, 80, M2005–M2014. [Google Scholar] [CrossRef]
- Yan, Y.Z.; Qian, Y.L.; Chen, J.Y.; Han, B.Z. Microbial composition during Chinese soy sauce koji-making based on culture dependent and independent methods. Food Microbiol. 2013, 34, 189–195. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Linforth, R.; Onyeaka, H.; Gkatzionis, K. Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation. Food Chem. 2018, 240, 1–8. [Google Scholar] [CrossRef]
- Cui, R.Y.; Zheng, J.; Wu, C.D.; Zhou, R.Q. Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. Eur. Food Res. Technol. 2014, 239, 321–331. [Google Scholar] [CrossRef]
- Liu, R.; Gao, G.; Bai, Y.; Hou, L. Fermentation of high-salt liquid–state soy sauce without any additives by inoculation of lactic acid bacteria and yeast. Food Sci. Technol. Int. 2020, 26, 642–654. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Y.; Jin, Y.; Liu, Y.; Xia, B.; Sun, Q. Dynamics of microbial community during the extremely long-term fermentation process of a traditional soy sauce. J. Sci. Food Agric. 2017, 97, 3220–3227. [Google Scholar] [CrossRef]
- Zhou, W.; Sun-Waterhouse, D.; Xiong, J.; Cui, C.; Wang, W.; Dong, K. Desired soy sauce characteristics and autolysis of Aspergillus oryzae induced by low temperature conditions during initial moromi fermentation. J. Food Sci. Technol. 2019, 56, 2888–2898. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Zhao, M.; Li, D.; Zhao, H.; Sun, W. Biochemical changes of traditional Chinese-type soy sauce produced in four seasons during processing. CyTA-J. Food 2014, 12, 166–175. [Google Scholar] [CrossRef]
- Liu, M.; Feng, Y.; Zhao, M.; Huang, M. Decoding the molecular basis for temperature control by metabolomics to improve the taste quality of soy sauce fermented in winter. Food Biosci. 2023, 54, 102889. [Google Scholar] [CrossRef]
- Zhou, K.; Siroli, L.; Patrignani, F.; Sun, Y.; Lanciotti, R.; Xu, Z. Formation of ethyl carbamate during the production process of Cantonese soy sauce. Molecules 2019, 24, 1474. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kwak, H.S.; Oh, M.; Lee, Y.; Jeong, Y.; Kim, M. Physicochemical, microbiological, and sensory characteristics of soy sauce fermented in different regional ceramics. Appl. Biol. Chem. 2016, 59, 33–41. [Google Scholar] [CrossRef]
- Wei, C.L.; Chao, S.H.; Tsai, W.B.; Lee, P.S.; Tsau, N.H.; Chen, J.S.; Lai, W.L.; Tu, J.C.Y.; Tsai, Y.C. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method. Food Microbiol. 2013, 33, 252–261. [Google Scholar] [CrossRef]
- Li, X.; Lee, P.R.; Taniasuri, F.; Liu, S.Q. Effects of yeast fermentation on transforming the volatile compounds of unsalted pork hydrolysate. Int. J. Food Sci. Technol. 2021, 56, 2291–2303. [Google Scholar] [CrossRef]
- Li, X.; Lee, P.R.; Taniasuri, F.; Liu, S.Q. Effect of lactic acid bacterial fermentation on amino acids and volatile compounds of pork trimming hydrolysate. Int. J. Food Sci. Technol. 2021, 56, 429–440. [Google Scholar] [CrossRef]
- Gao, P.; Xia, W.; Li, X.; Liu, S. Use of wine and dairy yeasts as single starter cultures for flavor compound modification in fish sauce fermentation. Front. Microbiol. 2019, 10, 2300. [Google Scholar] [CrossRef]
- Hoang, N.X.; Ferng, S.; Ting, C.H.; Huang, W.H.; Chiou RY, Y.; Hsu, C.K. Optimizing the initial moromi fermentation conditions to improve the quality of soy sauce. LWT-Food Sci. Technol. 2016, 74, 242–250. [Google Scholar] [CrossRef]
- Ouyang, Q.; Chen, Q.; Zhao, J.; Lin, H. Determination of amino acid nitrogen in soy sauce using near infrared spectroscopy combined with characteristic variables selection and extreme learning machine. Food Bioproc. Technol. 2013, 6, 2486–2493. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Y.; Chen, H.; Huang, J.; Xu, Y. Functional microbiota for polypeptide degradation during hypertonic moromi-fermentation of pixian broad bean paste. Foods 2020, 9, 930. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cui, C.; Ren, J.; Zhao, H.; Zhao, Q.; Zhao, M. Changes in the chemical composition of traditional Chinese-type soy sauce at different stages of manufacture and its relation to taste. Int. J. Food Sci. Technol. 2011, 46, 243–249. [Google Scholar] [CrossRef]
- Zhu, L.; He, S.; Lu, Y.; Gan, J.; Tao, N.; Wang, X.; Jiang, Z.; Hong, Y.; Xu, C. Metabolomics mechanism of traditional soy sauce associated with fermentation time. Food Sci. Hum. Wellness 2022, 11, 297–304. [Google Scholar] [CrossRef]
- Ito, K.; Matsuyama, A. Koji molds for Japanese soy sauce brewing: Characteristics and key enzymes. J. Fungi 2021, 7, 658. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xu, Y. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation. J. Sci. Food Agric. 2020, 100, 2782–2790. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation 2018, 4, 68. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Ren, L.; Song, S.; Ma, X.; Rong, Y. Effects of simultaneous and sequential cofermentation of Wickerhamomyces anomalus and Saccharomyces cerevisiae on physicochemical and flavor properties of rice wine. Nutr. Food Sci. 2021, 9, 71–86. [Google Scholar] [CrossRef]
- Peng, M.; Liu, J.; Liu, Z.; Fu, B.; Hu, Y.; Zhou, M.; Fu, C.; Gao, B.; Wang, C.; Li, D.; et al. Effect of citrus peel on phenolic compounds, organic acids and antioxidant activity of soy sauce. LWT-Food Sci. Technol. 2018, 90, 627–635. [Google Scholar] [CrossRef]
- Sassi, S.; Wan-Mohtar WA AQ, I.; Jamaludin, N.S.; Ilham, Z. Recent progress and advances in soy sauce production technologies: A review. J. Food Process. Preserv. 2021, 45, e15799. [Google Scholar] [CrossRef]
- Tian, Y.F.; Chen, Y.X.; Tong, X.; Hou, S.; Zhao, M.M.; Feng, Y.Z. Flavor differences of soybean and defatted soybean fermented soy sauce and its correlation with the enzyme profiles of the kojis. J. Sci. Food Agric. 2023, 103, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Gao, Z.; Li, S.; Chen, X.; Guo, J. Assessment of chemical constitution and aroma properties of kiwi wines obtained from pure and mixed fermentation with Wickerhamomyces anomalus and Saccharomyces cerevisiae. J. Sci. Food Agric. 2022, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, K.; Song, N.; Yao, W.; Xia, H.; Yang, Q.; Zhang, X.; Li, X.; Wang, Z.; Yang, L.; et al. Zygosaccharomyces rouxii, an aromatic yeast isolated from chili sauce, is able to biosynthesize 2-phenylethanol via the Shikimate or Ehrlich pathways. Front. Microbiol. 2020, 11, 597454. [Google Scholar] [CrossRef] [PubMed]
Groups | Amino Acids | Unfermented Control | Fermented Samples (after 30 Days of Fermentation) | |||
---|---|---|---|---|---|---|
Control-0 | Control-30 | T0-30 | W5-30 | T0W5-30 | ||
Umami | Asp | 1.83 ± 0.11 c | 7.04 ± 0.04 b | 7.75 ± 0.38 a | 7.88 ± 0.98 a | 8.22 ± 1.03 a |
Umami | Glu | 4.15 ± 0.02 c | 11.82 ± 0.76 b | 13.65 ± 1.98 a | 14.56 ± 1.90 a | 14.46 ± 1.19 a |
Subtotal | 5.98 | 18.86 | 21.40 | 22.44 | 22.68 | |
Percentage (%) | 20.94 | 30.29 | 28.92 | 30.77 | 28.44 | |
Sweet | Thr | 2.08 ± 0.06 d | 4.69 ± 0.27 c | 5.78 ± 0.83 b | 4.89 ± 0.54 c | 6.22 ± 0.75 a |
Sweet | Ser | 1.74 ± 0.22 c | 4.41 ± 0.22 b | 4.61 ± 0.76 b | 4.37 ± 0.82 b | 4.92 ± 0.67 a |
Sweet | Gly | 0.77 ± 0.12 d | 2.64 ± 0.12 c | 2.98 ± 0.32 ab | 2.96 ± 0.42 b | 3.17 ± 0.84 a |
Sweet | Ala | 1.65 ± 0.42 d | 3.62 ± 0.17 c | 4.15 ± 0.49 ab | 3.93 ± 0.78 b | 4.42 ± 0.66 a |
Sweet | Pro | 1.93 ± 0.15 d | 2.91 ± 0.23 b | 2.15 ± 0.02 c | 3.38 ± 0.01 a | 3.26 ± 0.13 a |
Subtotal | 8.17 | 18.27 | 19.67 | 19.53 | 21.99 | |
Percentage (%) | 28.61 | 29.34 | 26.58 | 26.78 | 27.57 | |
Bitter | Cys | 0.38 ± 0.05 d | 0.76 ± 0.03 c | 0.88 ± 0.16 b | 0.84 ± 0.09 b | 0.95 ± 0.31 a |
Bitter | Val | 1.68 ± 0.43 d | 4.07 ± 0.19 c | 4.68 ± 0.51 ab | 4.44 ± 0.42 b | 4.97 ± 0.28 a |
Bitter | Met | 0.58 ± 0.03 d | 1.17 ± 0.09 c | 1.28 ± 0.05 b | 1.27 ± 0.59 b | 1.37 ± 0.09 a |
Bitter | Ile | 1.42 ± 0.01 d | 4.09 ± 0.20 c | 4.32 ± 0.08 bc | 4.47 ± 0.69 ab | 4.62 ± 0.16 a |
Bitter | Leu | 2.41 ± 0.01 d | 5.10 ± 0.03 c | 6.54 ± 0.91 b | 6.35 ± 0.87 b | 6.96 ± 0.29 a |
Bitter | Tyr | 0.83 ± 0.03 b | 0.64 ± 0.07 c | 1.01 ± 0.19 a | 0.98 ± 0.04 a | 1.02 ± 0.21 a |
Bitter | Phe | 2.09 ± 0.29 d | 2.73 ± 0.11 c | 4.19 ± 0.37 ab | 3.99 ± 0.52 b | 4.43 ± 0.45 a |
Bitter | Lys | 2.32 ± 0.51 e | 3.59 ± 0.02 d | 5.32 ± 0.83 b | 4.93 ± 0.31 c | 5.66 ± 0.37 a |
Bitter | His | 0.82 ± 0.04 d | 1.77 ± 0.05 c | 2.01 ± 0.09 b | 1.95 ± 0.04 b | 2.22 ± 0.23 a |
Bitter | Arg | 1.88 ± 0.20 c | 1.22 ± 0.06 d | 2.69 ± 0.15 b | 1.74 ± 0.01 c | 2.88 ± 0.24 a |
Subtotal | 14.41 | 25.14 | 32.92 | 30.96 | 35.08 | |
Percentage (%) | 50.46 | 40.37 | 44.49 | 42.45 | 43.99 | |
Total | 28.56 ± 1.24 | 62.27 ± 3.32 | 73.99 ± 2.08 | 72.93 ± 3.14 | 79.75 ± 1.98 |
LRI * | Volatile Compounds | Identification Method | Unfermented Control | Fermented Samples | |||
---|---|---|---|---|---|---|---|
Control-0 | Control-30 | T0-30 | W5-30 | T0W5-30 | |||
Alcohols | |||||||
893 | Methanol | MS, LRI | ND | 59.67 ± 6.84 a | 52.99 ± 7.85 b | 49.77 ± 3.05 bc | 47.47 ± 2.64 c |
912 | Ethanol | MS, LRI | 159.17 ± 5.41 c | 491.69 ± 13.51 b | 509.91 ± 18.72 b | 591.81 ± 4.36 a | 568.45 ± 11.25 a |
1439 | 1-Octen-3-ol | MS, LRI | ND | 29.43 ± 0.84 c | 32.82 ± 0.13 b | 36.68 ± 12.34 a | 38.86 ± 0.67 a |
1911 | 2-Phenylethanol | MS, LRI | 0.63 ± 0.08 d | 11.23 ± 3.66 c | 17.17 ± 0.16 b | 18.29 ± 0.03 b | 20.63 ± 1.36 a |
Subtotal | 159.80 | 592.02 | 612.89 | 696.55 | 675.41 | ||
Percentage (%) | 95.51 | 89.87 | 85.27 | 84.42 | 78.72 | ||
Acids | |||||||
1445 | Acetic acid | MS, LRI | ND | 18.38 ± 3.31 d | 23.37 ± 0.43 c | 25.37 ± 2.10 b | 35.47 ± 2.78 a |
Subtotal | ND | 18.38 | 23.37 | 25.37 | 35.47 | ||
Percentage (%) | ND | 2.79 | 3.25 | 3.07 | 4.13 | ||
Aldehydes | |||||||
915 | 2-Methylbutyraldehyde | MS, LRI | 6.02 ± 1.73 d | 9.28 ± 0.42 c | 18.79 ± 1.25 b | 18.62 ± 0.72 b | 20.37 ± 0.57 a |
922 | Isovaleraldehyde | MS, LRI | 1.50 ± 2.54 d | 9.48 ± 0.97 c | 18.90 ± 1.08 b | 19.43 ± 1.07 b | 25.29 ± 1.31 a |
1177 | 3-Methylthiopropionaldehyde | MS, LRI | ND | 4.29 ± 0.41 d | 5.31 ± 0.31 c | 6.46 ± 1.13 b | 9.64 ± 0.21 a |
1515 | Benzaldehyde | MS, LRI | ND | 10.45 ± 2.20 d | 15.23 ± 1.41 c | 18.08 ± 2.11 b | 24.19 ± 1.06 a |
Subtotal | 7.52 | 33.5 | 58.23 | 62.59 | 79.49 | ||
Percentage (%) | 4.49 | 5.09 | 8.10 | 7.59 | 9.27 | ||
Esters | |||||||
960 | Ethyl isobutyrate | MS, LRI | ND | 0.59 ± 0.18 d | 0.93 ± 0.09 c | 1.15 ± 0.12 b | 2.22 ± 0.23 a |
1755 | Methyl phenylacetate | MS, LRI | ND | 1.89 ± 0.22 c | 1.98 ± 0.17 c | 4.89 ± 0.07 b | 6.79 ± 0.17 a |
2224 | Ethyl palmitate | MS, LRI | ND | 5.93 ± 5.16 c | 6.09 ± 1.72 c | 15.24 ± 0.55 b | 21.13 ± 1.42 a |
Subtotal | ND | 8.41 | 9.00 | 21.28 | 30.14 | ||
Percentage (%) | ND | 1.28 | 1.25 | 2.58 | 3.51 | ||
Phenols | |||||||
1940 | HEMF ** | MS, LRI | ND | ND | 5.74 ± 0.08 b | 3.75 ± 0.05 c | 9.93 ± 0.68 a |
1862 | Guaiacol | MS, LRI | ND | 2.47 ± 0.27 d | 5.48 ± 0.25 c | 7.35 ± 0.26 b | 12.06 ± 0.05 a |
1988 | Methyl maltol | MS, LRI | ND | 3.96 ± 2.64 c | 4.02 ± 0.94 c | 8.21 ± 0.53 b | 15.45 ± 0.82 a |
Subtotal | ND | 6.43 | 15.24 | 19.31 | 37.44 | ||
Percentage (%) | ND | 0.98 | 2.12 | 2.34 | 4.36 | ||
Total | 167.32 | 658.74 | 718.73 | 825.1 | 857.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, X.; Wu, C.; Tong, X.; Ou, S. Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature. Foods 2023, 12, 3509. https://doi.org/10.3390/foods12183509
Li X, Xu X, Wu C, Tong X, Ou S. Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature. Foods. 2023; 12(18):3509. https://doi.org/10.3390/foods12183509
Chicago/Turabian StyleLi, Xinzhi, Xinyu Xu, Changzheng Wu, Xing Tong, and Shiyi Ou. 2023. "Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature" Foods 12, no. 18: 3509. https://doi.org/10.3390/foods12183509
APA StyleLi, X., Xu, X., Wu, C., Tong, X., & Ou, S. (2023). Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature. Foods, 12(18), 3509. https://doi.org/10.3390/foods12183509