From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications—A Comprehensive Review
Abstract
:1. Introduction
2. Lignocellulosic Agri-Food Residues
2.1. Characteristics and Composition
2.2. Thermal Treatments for Valorization
2.3. Biochar and Hydrochar as Adsorbents
Waste | Biochar/Hydrochar | Medium | T (°C) | Time (h) | BET Surface Area (m2/g) | Pollutant | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|---|---|---|
Olive waste | Hydrochar | Water | 250 | 1.5 | 4.5 | Methylene blue | 15.1 | [60] |
Congo red | 11.78 | |||||||
Olive oil production waste | Hydrochar | Water | 220 | 2.5 | - | Fluoxetine | 4.6 | [61] |
Cefazolin | 0.4 | |||||||
Orange peel | Hydrochar | Water | 180 | 1 | 46.16 | Methylene blue | 66.23 | [62] |
Grape skin | Hydrochar | Water | 180 | 1 | 34.08 | Methylene blue | 36.63 | [62] |
Potato peels | Hydrochar | Water | 200 | 25 | 611.84 | Congo red | 147 | [63] |
Pomegranate pulp waste | Hydrochar | Water | 220 | 12 | 3.52 | Rhodamine B | 121.95 | [64] |
Orange peel | Biochar | - | 700 | 6 | - | Cd | 31.50 | [65] |
Rice husk | Biochar | H3PO4 solution | 700 | 2 | 372.21 | Tetracycline | 552 | [66] |
Tomato waste | Biochar | - | 600 | 1 | 1093 | Methylene blue | 385 | [67] |
Corncob | Biochar | - | 400 | 1 | - | NH4+ | 3.93 | [68] |
3. Engineered Biochar and Hydrochar
3.1. Activation Strategies
3.1.1. Chemical Activation
Acid Agents
Alkaline Agents
Oxidizing Agents
3.1.2. Physical Activation
Steam and Gas Purging
Ball-Milling
3.2. Char-Composites
3.2.1. Metal Salts and Metal Oxides
3.2.2. Clays
3.2.3. Carbon-Based Nanomaterials
3.2.4. Surfactants, Nitrogen-Rich Compounds, and Others
4. Novel Environmental Applications
5. Conclusions and Future Perspectives
- The environmental impact of biochar and hydrochar, including the potential release of toxic compounds, requires further investigation to fully understand its effects when applied in environmental remediation.
- Future research should focus on scaling up the production of biochar and hydrochar, either pristine, activated, or as composites, and evaluating their performance in real-world scenarios, including real wastewaters. This will provide valuable insights into their practical applicability, cost-effectiveness, and environmental implications.
- Despite the potential benefits, research is scarce in the field of incorporating functionalized components and composites with hydrochar. Thus, it creates an exciting opportunity for further investigation and develop functionalized and composited materials with hydrochar.
- Exploring synergistic combinations of different functional groups and materials holds promise for developing biochar composites with improved adsorption capabilities. This could involve integrating biochar and hydrochar with carbonaceous materials, nanomaterials, or polymers to create hybrid composites with enhanced properties, such as increased surface area, porosity, and selectivity for specific pollutants.
- Techno-economic analysis of food waste processing at the pilot and industrial scale is crucial. Therefore, more emphasis should be placed on the economic analysis of char production and the fabrication process for its diverse uses.
- The design of equipment for using the developed chars as remediating materials at the industrial scale should also be a priority research line in the following years in order to validate the postulate processes.
- Conducting a comprehensive life cycle analysis that integrates the production of food manufacturing waste chars, adsorbents or electrode fabrication, and the working systems is necessary. Additionally, there should be a focus on the reuse, stability, and post-treatment of char-based materials.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allegretti, G.; Montoya, M.A.; Bertussi, L.A.S.; Talamini, E. When Being Renewable May Not Be Enough: Typologies of Trends in Energy and Carbon Footprint towards Sustainable Development. Renew. Sust. Energ. Rev. 2022, 168, 112860. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef] [PubMed]
- Parashar, S.; Sood, G.; Agrawal, N. Modelling the Enablers of Food Supply Chain for Reduction in Carbon Footprint. J. Clean. Prod. 2020, 275, 122932. [Google Scholar] [CrossRef]
- Berenguer, C.V.; Andrade, C.; Pereira, J.A.M.; Perestrelo, R.; Câmara, J.S. Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes 2023, 11, 20. [Google Scholar] [CrossRef]
- Cicatiello, C.; Franco, S.; Pancino, B.; Blasi, E. The Value of Food Waste: An Exploratory Study on Retailing. J. Retail. Consum. Serv. 2016, 30, 96–104. [Google Scholar] [CrossRef]
- Eurostat Statistic Explained. Food Waste and Food Waste Prevention-Estimates. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates (accessed on 30 September 2023).
- Jo, J.H.; Kim, S.S.; Shim, J.W.; Lee, Y.E.; Yoo, Y.S. Pyrolysis Characteristics and Kinetics of Food Wastes. Energies 2017, 10, 1191. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, M.; Bhandari, B.; Yang, C.-H. Food Waste as a Carbon Source in Carbon Quantum Dots Technology and Their Applications in Food Safety Detection. Trends Food Sci. Technol. 2020, 95, 86–96. [Google Scholar] [CrossRef]
- Ebikade, E.O.; Sadula, S.; Gupta, Y.; Vlachos, D.G. A Review of Thermal and Thermocatalytic Valorization of Food Waste. Green Chem. 2021, 23, 2806–2833. [Google Scholar] [CrossRef]
- European Commission Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 12 May 2023).
- European Commission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF (accessed on 12 May 2023).
- Carpio-Aguilar, J.C.; Rincón-Moreno, J.; Franco-García, M.L. Potential of Carbon Footprint Reduction within Retailers: Food Waste at Walmart in Mexico. In Sustainable Development Goals and Sustainable Supply Chains in the Post-Global Economy. Greening of Industry Networks Studies; Yakovleva, N., Frei, R., Rama Murthy, S., Eds.; Springer: Cham, Switzerland, 2019; Volume 7, pp. 225–240. [Google Scholar] [CrossRef]
- Sarker, A.; Ghosh, M.K.; Islam, T.; Bilal, M.; Nandi, R.; Raihan, M.L.; Hossain, M.N.; Rana, J.; Barman, S.K.; Kim, J.E. Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh. Sustainability 2022, 14, 12035. [Google Scholar] [CrossRef]
- Saval, S. Aprovechamiento de Residuos Agroindustriales: Pasado, Presente y Futuro. BioTecnologia 2012, 16, 14–46. [Google Scholar]
- Lu, Y.; He, Q.; Fan, G.; Cheng, Q.; Song, G. Extraction and Modification of Hemicellulose from Lignocellulosic Biomass: A Review. Green Process. Synth. 2021, 10, 779–804. [Google Scholar] [CrossRef]
- Alslaibi, T.M.; Ismail, A.; Mohd, A.A.; Ahmed, A.F. Heavy Metals Removal from Wastewater Using Agricultural Wastes as Adsorbents: A Review. Int. J. Chem. Environ. Eng. 2014, 5, 7–10. [Google Scholar]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Res. Int. 2017, 2017, 2370927. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ponce, L.; Díaz-de-Alba, M.; Casanueva-Marenco, M.J.; Gestoso-Rojas, J.; Ortega-Iguña, M.; Galindo-Riaño, M.D.; Granado-Castro, M.D. Potential Use of Low-Cost Agri-Food Waste as Biosorbents for the Removal of Cd(II), Co(II), Ni(II) and Pb(II) from Aqueous Solutions. Separations 2022, 9, 309. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An Overview on Olive Mill Wastes and Their Valorisation Methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Pfaltzgraff, L.; De Bruyn, M.; Cooper, E.; Budarin, V.; Clark, J. Food Waste Biomass: A Resource for High-Value Chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Ismail, I.S.; Othman, M.F.H.; Rashidi, N.A.; Yusup, S. Recent Progress on Production Technologies of Food Waste–Based Biochar and Its Fabrication Method as Electrode Materials in Energy Storage Application. Biomass Convers. Biorefin. 2023, 1–17. [Google Scholar] [CrossRef]
- Rabemanolontsoa, H.; Saka, S. Comparative Study on Chemical Composition of Various Biomass Species. RSC Adv. 2013, 3, 3946–3956. [Google Scholar] [CrossRef]
- Khan, M.A.; Hameed, B.H.; Siddiqui, M.R.; Alothman, Z.A.; Alsohaimi, I.H. Hydrothermal Conversion of Food Waste to Carbonaceous Solid Fuel—A Review of Recent Developments. Foods 2022, 11, 4036. [Google Scholar] [CrossRef]
- Gong, C.; Singh, A.; Singh, P.; Singh, A. Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels. Indian J. Microbiol. 2021, 61, 427–440. [Google Scholar] [CrossRef]
- Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88. [Google Scholar] [CrossRef]
- Gowman, A.C.; Picard, M.C.; Rodriguez-Uribe, A.; Misra, M.; Khalil, H.; Thimmanagari, M.; Mohanty, A.K. Physicochemical Analysis of Apple and Grape Pomaces. Bioresources 2019, 14, 3210–3230. [Google Scholar] [CrossRef]
- Abduh, M.Y.; Ramadhan, C.R.; Fadhlilah, A.P.; Abdul, S.D.N.; Burhan, K.H. Solid-State Fermentation of Groundnut (Arachis Hypogaea) Shell Using Trichoderma Sp., Tape Yeast, and Tempeh Yeast to Produce Cellulase. J. Appl. Biol. Biotechnol. 2022, 10, 153–160. [Google Scholar] [CrossRef]
- Sogut, E.; Seydim, A.C. Utilization of Kiwi Peel Lignocellulose as Fillers in Poly(Lactic Acid) Films. J. Turk. Chem. Soc. A Chem. 2022, 9, 283–294. [Google Scholar] [CrossRef]
- Upasana, D.V.; Zaidi, M.G.H.; Shukla, A.K. Utilization of Pea Industry Waste for Developing Biodegradable Product. Pantnagar J. Res. 2019, 17, 262–266. [Google Scholar]
- Soni, S.K.; Sharma, B.; Sharma, A.; Thakur, B.; Soni, R.; Soni, S.K.; Sharma, B.; Sharma, A.; Thakur, B.; Soni, R. Exploring the Potential of Potato Peels for Bioethanol Production through Various Pretreatment Strategies and an In-House-Produced Multi-Enzyme System. Sustainability 2023, 15, 9137. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Dave Oomah, B. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Allison, B.J.; Cádiz, J.C.; Karuna, N.; Jeoh, T.; Simmons, C.W. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas. Appl. Biochem. Biotechnol. 2016, 179, 1227–1247. [Google Scholar] [CrossRef]
- Ibrahim, A.; Yusof, L.; Beddu, N.S.; Galasin, N.; Lee, P.Y.; Lee, R.N.S.; Zahrim, A.Y. Adsorption Study of Ammonia Nitrogen by Watermelon Rind. Proc. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 012020. [Google Scholar] [CrossRef]
- Del Río, J.C.; Rencoret, J.; Prinsen, P.; Martínez, Á.T.; Ralph, J.; Gutiérrez, A. Structural Characterization of Wheat Straw Lignin as Revealed by Analytical Pyrolysis, 2D-NMR, and Reductive Cleavage Methods. J. Agric. Food Chem. 2012, 60, 5922–5935. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food Waste as a Valuable Resource for the Production of Chemi.als, Materials and Fuels. Current Situation and Global Perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Abbas, Y.; Jamil, F.; Rafiq, S.; Ghauri, M.; Khurram, M.S.; Aslam, M.; Bokhari, A.; Faisal, A.; Rashid, U.; Yun, S.; et al. Valorization of Solid Waste Biomass by Inoculation for the Enhanced Yield of Biogas. Clean Technol, Environ. Policy 2020, 22, 513–522. [Google Scholar] [CrossRef]
- Liu, Y.; Han, W.; Xu, X.; Chen, L.; Tang, J.; Hou, P. Ethanol Production from Waste Pizza by Enzymatic Hydrolysis and Fermentation. Biochem. Eng. J. 2020, 156, 107528. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Food Waste to Biochars through Pyrolysis: A Review. Resour. Conserv. Recycl. 2019, 144, 310–320. [Google Scholar] [CrossRef]
- Han, H.; Rafiq, M.K.; Zhou, T.; Xu, R.; Mašek, O.; Li, X. A Critical Review of Clay-Based Composites with Enhanced Adsorption Performance for Metal and Organic Pollutants. J. Hazard. Mater. 2019, 369, 780–796. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, Q.; Gu, Y.; Nie, X.; Shan, R. Review of Advances in the Utilization of Biochar-Derived Catalysts for Biodiesel Production. ACS Omega 2023, 8, 8190–8200. [Google Scholar] [CrossRef]
- Benavente, V.; Calabuig, E.; Fullana, A. Upgrading of Moist Agro-Industrial Wastes by Hydrothermal Carbonization. J. Anal. Appl. Pyrolysis 2015, 113, 89–98. [Google Scholar] [CrossRef]
- Missaoui, A.; Bostyn, S.; Belandria, V.; Cagnon, B.; Sarh, B.; Gökalp, I. Hydrothermal Carbonization of Dried Olive Pomace: Energy Potential and Process Performances. J. Anal. Appl. Pyrolysis 2017, 128, 281–290. [Google Scholar] [CrossRef]
- Pala, M.; Kantarli, I.C.; Buyukisik, H.B.; Yanik, J. Hydrothermal Carbonization and Torrefaction of Grape Pomace: A Comparative Evaluation. Bioresour. Technol. 2014, 161, 255–2623. [Google Scholar] [CrossRef]
- Wiedner, K.; Naisse, C.; Rumpel, C.; Pozzi, A.; Wieczorek, P.; Glaser, B. Chemical Modification of Biomass Residues during Hydrothermal Carbonization—What Makes the Difference, Temperature or Feedstock? Org. Geochem. 2013, 54, 91–100. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Ning, Q.; Liu, Y.; Liu, S.; Jiang, L.; Zeng, G.; Zeng, Z.; Wang, X.; Li, J.; Kare, Z. Fabrication of Hydrochar Functionalized Fe–Mn Binary Oxide Nanocomposites: Characterization and 17β-Estradiol Removal. RSC Adv. 2017, 7, 37122–37129. [Google Scholar] [CrossRef]
- Huang, J.; Zimmerman, A.R.; Chen, H.; Gao, B. Ball Milled Biochar Effectively Removes Sulfamethoxazole and Sulfapyridine Antibiotics from Water and Wastewater. Environ. Pollut. 2020, 258, 113809. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the Preparation and Application of Modified Biochar for Improved Contaminant Removal from Water and Wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef] [PubMed]
- Ouiriemmi, I.; Escudero-Curiel, S.; Pazos, M.; Angeles Sanromán, M. On-Site Regeneration by Ultrasound Activated Persulfate of Iron-Rich Antipyrine-Loaded Biochar. J. Environ. Chem. Eng. 2022, 10, 108400. [Google Scholar] [CrossRef]
- Hayoun, B.; Escudero-Curiel, S.; Bourouina, M.; Bourouina-Bacha, S.; Sanromán, M.Á.; Pazos, M. Preparation and Characterization of High Performance Hydrochar for Efficient Adsorption of Drugs Mixture. J. Mol. Liq. 2022, 353, 118797. [Google Scholar] [CrossRef]
- Escudero-Curiel, S.; Acevedo-García, V.; Sanromán, M.Á.; Pazos, M. Eco-Approach for Pharmaceutical Removal: Thermochemical Waste Valorisation, Biochar Adsorption and Electro-Assisted Regeneration. Electrochim. Acta 2021, 389, 138694. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The Adsorption, Regeneration and Engineering Applications of Biochar for Removal Organic Pollutants: A Review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Rangabhashiyam, S.; Dulta, K.; Umeh, C.T.; Iwuozor, K.O.; Aniagor, C.O.; Eshiemogie, S.O.; Iwuchukwu, F.U.; Igwegbe, C.A. Recent Advances in Hydrochar Application for the Adsorptive Removal of Wastewater Pollutants. Chem. Eng. Res. Des. 2022, 184, 419–456. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceuticalwaste in the Water System. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Haris, M.; Khan, M.W.; Paz-Ferreiro, J.; Mahmood, N.; Eshtiaghi, N. Synthesis of Functional Hydrochar from Olive Waste for Simultaneous Removal of Azo and Non-Azo Dyes from Water. Adv. Chem. Eng. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Escudero-Curiel, S.; Pazos, M.; Sanromán, A. Facile One-Step Synthesis of a Versatile Nitrogen-Doped Hydrochar from Olive Oil Production Waste, “Alperujo”, for Removing Pharmaceuticals from Wastewater. Environ. Pollut. 2023, 330, 121751. [Google Scholar] [CrossRef]
- Saha, N.; Volpe, M.; Fiori, L.; Volpe, R.; Messineo, A.; Reza, M.T. Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics. Energies 2020, 13, 4686. [Google Scholar] [CrossRef]
- Goyi, A.A.; Sher Mohammad, N.M.; Omer, K.M. Preparation and Characterization of Potato Peel Derived Hydrochar and Its Application for Removal of Congo Red: A Comparative Study with Potato Peel Powder. Int. J. Environ. Sci. Technol. 2023, 1–12. [Google Scholar] [CrossRef]
- Akkaya Sayğılı, G.; Sayğılı, H. Hydrothermal Conversion of Lignocellulosic Waste to Value-Added Biomaterial for High-Performance Contaminant Removal: Focusing on Synthesis Route and Uptake Mechanism. Mater. Chem. Phys. 2022, 286, 126219. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Chao, H.P. Effect of Pyrolysis Temperatures and Times on the Adsorption of Cadmium onto Orange Peel Derived Biochar. Waste Manag. Res. 2016, 34, 129–138. [Google Scholar] [CrossRef]
- Chen, T.; Luo, L.; Deng, S.; Shi, G.; Zhang, S.; Zhang, Y.; Deng, O.; Wang, L.; Zhang, J.; Wei, L. Sorption of Tetracycline on H3PO4 Modified Biochar Derived from Rice Straw and Swine Manure. Bioresour. Technol. 2018, 267, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Sayğili, H.; Güzel, F. High Surface Area Mesoporous Activated Carbon from Tomato Processing Solid Waste by Zinc Chloride Activation: Process Optimization, Characterization and Dyes Adsorption. J. Clean. Prod. 2016, 113, 995–1004. [Google Scholar] [CrossRef]
- Vu, T.M.; Trinh, V.T.; Doan, D.P.; Van, H.T.; Nguyen, T.V.; Vigneswaran, S.; Ngo, H.H. Removing Ammonium from Water Using Modified Corncob-Biochar. Sci. Total Environ. 2017, 579, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar Modification to Enhance Sorption of Inorganics from Water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A Review on the Influence of Chemical Modification on the Performance of Adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- He, C.; Lin, H.; Dai, L.; Qiu, R.; Tang, Y.; Wang, Y.; Duan, P.G.; Ok, Y.S. Waste Shrimp Shell-Derived Hydrochar as an Emergent Material for Methyl Orange Removal in Aqueous Solutions. Environ. Int. 2020, 134, 105340. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Tran, H.N.; Chao, H.-P.; Lin, C.-C. Effect of Nitric Acid Oxidation on the Surface of Hydrochars to Sorb Methylene Blue: An Adsorption Mechanism Comparison. Adsorp. Sci. Technol. 2019, 37, 607–622. [Google Scholar] [CrossRef]
- Abbaci, F.; Nait-Merzoug, A.; Guellati, O.; Harat, A.; El Haskouri, J.; Delhalle, J.; Mekhalif, Z.; Guerioune, M. Bio/KOH Ratio Effect on Activated Biochar and Their Dye Based Wastewater Depollution. J. Anal. Appl. Pyrolysis 2022, 162, 105452. [Google Scholar] [CrossRef]
- Petrović, J.T.; Stojanović, M.D.; Milojković, J.V.; Petrović, M.S.; Šoštarić, T.D.; Laušević, M.D.; Mihajlović, M.L. Alkali Modified Hydrochar of Grape Pomace as a Perspective Adsorbent of Pb2+ from Aqueous Solution. J. Environ. Manag. 2016, 182, 292–300. [Google Scholar] [CrossRef]
- Gomravi, Y.; Karimi, A.; Azimi, H. Adsorption of Heavy Metal Ions via Apple Waste Low-Cost Adsorbent: Characterization and Performance. Korean J. Chem. Eng. 2021, 38, 1843–1858. [Google Scholar] [CrossRef]
- Shin, J.; Choi, M.; Go, C.Y.; Bae, S.; Kim, K.C.; Chon, K. NaOH-Assisted H2O2 Post-Modification as a Novel Approach to Enhance Adsorption Capacity of Residual Coffee Waste Biochars toward Radioactive Strontium: Experimental and Theoretical Studies. J. Hazard. Mater. 2022, 435, 129081. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Wang, X.; Jing, F.; Chang, R.; Chen, J. Oxidative Ageing of Biochar and Hydrochar Alleviating Competitive Sorption of Cd(II) and Cu(II). Sci. Total Environ. 2020, 725, 138419. [Google Scholar] [CrossRef] [PubMed]
- Bouhadjra, K.; Lemlikchi, W.; Ferhati, A.; Mignard, S. Enhancing Removal Efficiency of Anionic Dye (Cibacron Blue) Using Waste Potato Peels Powder. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Nabais, J.M.V.; Ledesma, B.; Laginhas, C.; Titirici, M.M. Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules 2020, 25, 2264. [Google Scholar] [CrossRef] [PubMed]
- Lian, F.; Cui, G.; Liu, Z.; Duo, L.; Zhang, G.; Xing, B. One-Step Synthesis of a Novel N-Doped Microporous Biochar Derived from Crop Straws with High Dye Adsorption Capacity. J. Environ. Manag. 2016, 176, 61–68. [Google Scholar] [CrossRef]
- Yu, W.; Lian, F.; Cui, G.; Liu, Z. N-Doping Effectively Enhances the Adsorption Capacity of Biochar for Heavy Metal Ions from Aqueous Solution. Chemosphere 2018, 193, 8–16. [Google Scholar] [CrossRef]
- Xiang, W.; Wan, Y.; Zhang, X.; Tan, Z.; Xia, T.; Zheng, Y.; Gao, B. Adsorption of Tetracycline Hydrochloride onto Ball-Milled Biochar: Governing Factors and Mechanisms. Chemosphere 2020, 255, 127057. [Google Scholar] [CrossRef]
- Zhang, D.; He, Q.; Hu, X.; Zhang, K.; Chen, C.; Xue, Y. Enhanced Adsorption for the Removal of Tetracycline Hydrochloride (TC) Using Ball-Milled Biochar Derived from Crayfish Shell. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126254. [Google Scholar] [CrossRef]
- Qi, G.; Pan, Z.; Zhang, X.; Miao, X.; Xiang, W.; Gao, B. Effect of Ball Milling with Hydrogen Peroxide or Ammonia Hydroxide on Sorption Performance of Volatile Organic Compounds by Biochar from Different Pyrolysis Temperatures. Chem. Eng. J. 2022, 450, 138027. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Liu, H.; Cheng, W.; Bao, Y. Modification of Calcium-Rich Biochar by Loading Si/Mn Binary Oxide after NaOH Activation and Its Adsorption Mechanisms for Removal of Cu(II) from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124960. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Sadaf, S.; Naz, M.; Iqbal, M.; Safa, Y.; Ain, H.U.; Nawaz, S.; Nazir, A. Enhanced Adsorption of Foron Black Rd 3grn Dye onto Sugarcane Bagasse Biomass and Na-Alginate Composite. Desalination Water Treat. 2021, 216, 423–435. [Google Scholar] [CrossRef]
- De Figueredo, N.A.; da Costa, L.M.; Melo, L.C.A.; Siebeneichlerd, E.A.; Tronto, J. Characterization of Biochars from Different Sources and Evaluation of Release of Nutrients and Contaminants. Cienc. Agron. 2017, 48, 395–403. [Google Scholar] [CrossRef]
- Yu, J.; Tang, L.; Pang, Y.; Zeng, G.; Feng, H.; Zou, J.; Wang, J.; Feng, C.; Zhu, X.; Ouyang, X.; et al. Hierarchical Porous Biochar from Shrimp Shell for Persulfate Activation: A Two-Electron Transfer Path and Key Impact Factors. Appl. Catal. B 2020, 260, 118160. [Google Scholar] [CrossRef]
- Montes, V.; Hill, J.M. Activated Carbon Production: Recycling KOH to Minimize Waste. Mater. Lett. 2018, 220, 238–240. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Lin, P.-Y.; Hsieh, S.-L.; Kirankumar, R.; Patel, A.K.; Singhania, R.-R.; Dong, C.-D.; Chen, C.-W.; Hsieh, S. Engineered Mesoporous Biochar Derived from Rice Husk for Efficient Removal of Malachite Green from Wastewaters. Bioresour. Technol. 2022, 347, 126749. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen Peroxide Modification Enhances the Ability of Biochar (Hydrochar) Produced from Hydrothermal Carbonization of Peanut Hull to Remove Aqueous Heavy Metals: Batch and Column Tests. Chem. Eng. J. 2012, 200–202, 673–680. [Google Scholar] [CrossRef]
- Huff, M.D.; Lee, J.W. Biochar-Surface Oxygenation with Hydrogen Peroxide. J. Environ. Manag. 2016, 165, 17–21. [Google Scholar] [CrossRef]
- Liu, Y.; Sohi, S.P.; Jing, F.; Chen, J. Oxidative Ageing Induces Change in the Functionality of Biochar and Hydrochar: Mechanistic Insights from Sorption of Atrazine. Environ. Pollut. 2019, 249, 1002–1010. [Google Scholar] [CrossRef]
- Chatterjee, R. Incorporation of Acoustic and Chemical Modifications to Biochar for Pollution Abatement for Pollution Abatement. Ph.D. Thesis, University of Mississippi, Oxford, MS, USA, 2020. [Google Scholar]
- Fungo, B.; Guerena, D.; Thiongo, M.; Lehmann, J.; Neufeldt, H. Kalbi N2O and CH4 Emission from Soil Amended with Steam-Activated Biochar. J. Plant. Nutr. Soil Sci. 2014, 177, 34–38. [Google Scholar] [CrossRef]
- Azargohar, R.; Dalai, A.K. Steam and KOH Activation of Biochar: Experimental and Modeling Studies. Microporous Mesoporous Mater. 2008, 110, 413–421. [Google Scholar] [CrossRef]
- Borchard, N.; Wolf, A.; Laabs, V.; Aeckersberg, R.; Scherer, H.W.; Moeller, A.; Amelung, W. Physical Activation of Biochar and Its Meaning for Soil Fertility and Nutrient Leaching—A Greenhouse Experiment. Soil Use Manag. 2012, 28, 177–184. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Recent Advancements in Biochar Preparation, Feedstocks, Modification, Characterization and Future Applications. Environ. Technol. Revs. 2019, 8, 47–64. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball Milling as a Mechanochemical Technology for Fabrication of Novel Biochar Nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Gao, B.; He, F.; Ding, C.; Tang, J.; Crittenden, J.C. Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. [Google Scholar] [CrossRef]
- Lopez-Tenllado, F.J.; Motta, I.L.; Hill, J.M. Modification of Biochar with High-Energy Ball Milling: Development of Porosity and Surface Acid Functional Groups. Bioresour. Technol. Rep. 2021, 15, 100704. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Rouissi, T.; Verma, M.; Surampalli, R.Y.; Valero, J.R. A Green Method for Production of Nanobiochar by Ball Milling—Optimization and Characterization. J. Clean. Prod. 2017, 164, 1394–1405. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Tang, J.; Crittenden, J.C. Experimental and Modeling Investigations of Ball-Milled Biochar for the Removal of Aqueous Methylene Blue. Chem. Eng. J. 2018, 335, 110–119. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-Based Engineered Composites for Sorptive Decontamination of Water: A Review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Fang, J.; Zhang, M.; Chen, H.; Zhou, Y.; Creamer, A.E.; Sun, Y.; Yang, L. Characterization and Environmental Applications of Clay–Biochar Composites. Chem. Eng. J. 2014, 242, 136–143. [Google Scholar] [CrossRef]
- Li, A.; Xie, H.; Qiu, Y.; Liu, L.; Lu, T.; Wang, W.; Qiu, G. Resource Utilization of Rice Husk Biomass: Preparation of MgO Flake-Modified Biochar for Simultaneous Removal of Heavy Metals from Aqueous Solution and Polluted Soil. Environ. Pollut. 2022, 310, 119869. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, B.; Yuan, C. Adsorption of Atrazine by Fe-Mn-Modified Biochar: The Dominant Mechanism of π–π Interaction and Pore Structure. Agronomy 2022, 12, 3097. [Google Scholar] [CrossRef]
- Liu, Y.; Sohi, S.P.; Liu, S.; Guan, J.; Zhou, J.; Chen, J. Adsorption and Reductive Degradation of Cr(VI) and TCE by a Simply Synthesized Zero Valent Iron Magnetic Biochar. J. Environ. Manag. 2019, 235, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Eltaweil, A.S.; Ali Mohamed, H.; Abd El-Monaem, E.M.; El-Subruiti, G.M. Mesoporous Magnetic Biochar Composite for Enhanced Adsorption of Malachite Green Dye: Characterization, Adsorption Kinetics, Thermodynamics and Isotherms. Adv. Powder Technol. 2020, 31, 1253–1263. [Google Scholar] [CrossRef]
- Kohzadi, S.; Marzban, N.; Libra, J.A.; Bundschuh, M.; Maleki, A. Removal of RhB from Water by Fe-Modified Hydrochar and Biochar—An Experimental Evaluation Supported by Genetic Programming. J. Mol. Liq. 2023, 369, 120971. [Google Scholar] [CrossRef]
- Khairy, G.M.; Hesham, A.M.; Jahin, H.E.S.; El-Korashy, S.A.; Mahmoud Awad, Y. Green Synthesis of a Novel Eco-Friendly Hydrochar from Pomegranate Peels Loaded with Iron Nanoparticles for the Removal of Copper Ions and Methylene Blue from Aqueous Solutions. J. Mol. Liq. 2022, 368, 120722. [Google Scholar] [CrossRef]
- Krishna Murthy, T.P.; Gowrishankar, B.S.; Krishna, R.H.; Chandraprabha, M.N.; Mathew, B.B. Magnetic Modification of Coffee Husk Hydrochar for Adsorptive Removal of Methylene Blue: Isotherms, Kinetics and Thermodynamic Studies. Environ. Chem. Ecotoxicol. 2020, 2, 205–212. [Google Scholar] [CrossRef]
- Murray, H.H. Overview—Clay Mineral Applications. Appl. Clay Sci. 1991, 5, 379–395. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer Nanocomposites from Modified Clays: Recent Advances and Challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. Mg–Fe Layered Double Hydroxide Assembled on Biochar Derived from Rice Husk Ash: Facile Synthesis and Application in Efficient Removal of Heavy Metals. Environ. Sci. Pollut. Res. 2018, 25, 24293–24304. [Google Scholar] [CrossRef]
- Jung, K.W.; Lee, S.Y.; Choi, J.W.; Hwang, M.J.; Shim, W.G. Synthesis of Mg–Al Layered Double Hydroxides-Functionalized Hydrochar Composite via an in Situ One-Pot Hydrothermal Method for Arsenate and Phosphate Removal: Structural Characterization and Adsorption Performance. Chem. Eng. J. 2021, 420, 129775. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, D.; Zheng, X.; Zheng, L.; Yang, Y.; Zhang, H.; Ai, B.; Sheng, Z. Halloysite and Coconut Shell Biochar Magnetic Composites for the Sorption of Pb(II) in Wastewater: Synthesis, Characterization and Mechanism Investigation. J. Environ. Chem. Eng. 2021, 9, 106865. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Xie, X.; Zhu, J.; Li, R.; Qin, T. Removal of Norfloxacin from Aqueous Solution by Clay-Biochar Composite Prepared from Potato Stem and Natural Attapulgite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 126–136. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, M.; Wan, J.; Sun, Y.; Lan, H.; Deng, X. Effects of PH, Dissolved Humic Acid and Cu2+ on the Adsorption of Norfloxacin on Montmorillonite-Biochar Composite Derived from Wheat Straw. Biochem. Eng. J. 2018, 130, 104–112. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, Q.; Lu, Y.; Wu, S.; Wang, W. High-Efficiency and Selective Adsorption of Organic Pollutants by Magnetic CoFe2O4/Graphene Oxide Adsorbents: Experimental and Molecular Dynamics Simulation Study. Sep. Purif. Technol. 2020, 238, 116400. [Google Scholar] [CrossRef]
- Ma, S.; Zhan, S.; Jia, Y.; Zhou, Q. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 10576–10586. [Google Scholar] [CrossRef]
- Lawal, I.A.; Lawal, M.M.; Akpotu, S.O.; Okoro, H.K.; Klink, M.; Ndungu, P. Noncovalent Graphene Oxide Functionalized with Ionic Liquid: Theoretical, Isotherm, Kinetics, and Regeneration Studies on the Adsorption of Pharmaceuticals. Ind. Eng. Chem. Res. 2020, 59, 4945–4957. [Google Scholar] [CrossRef]
- Reynosa-Martínez, A.C.; Tovar, G.N.; Gallegos, W.R.; Rodríguez-Meléndez, H.; Torres-Cadena, R.; Mondragón-Solórzano, G.; Barroso-Flores, J.; Alvarez-Lemus, M.A.; Montalvo, V.G.; López-Honorato, E. Effect of the Degree of Oxidation of Graphene Oxide on As(III) Adsorption. J. Hazard. Mater. 2020, 384, 121440. [Google Scholar] [CrossRef]
- Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A. Modeling of Fenuron Pesticide Adsorption on CNTs for Mechanistic Insight and Removal in Water. Environ. Res. 2019, 170, 389–397. [Google Scholar] [CrossRef]
- Tang, J.; Lv, H.; Gong, Y.; Huang, Y. Preparation and Characterization of a Novel Graphene/Biochar Composite for Aqueous Phenanthrene and Mercury Removal. Bioresour. Technol. 2015, 196, 355–363. [Google Scholar] [CrossRef]
- Shang, M.R.; Liu, Y.G.; Liu, S.B.; Zeng, G.M.; Tan, X.F.; Jiang, L.H.; Huang, X.X.; Ding, Y.; Guo, Y.M.; Wang, S.F. A Novel Graphene Oxide Coated Biochar Composite: Synthesis, Characterization and Application for Cr(VI) Removal. RSC Adv. 2016, 6, 85202–85212. [Google Scholar] [CrossRef]
- Cheng, L.; Ji, Y.; Liu, X. Insights into Interfacial Interaction Mechanism of Dyes Sorption on a Novel Hydrochar: Experimental and DFT Study. Chem. Eng. Sci. 2021, 233, 116432. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Zimmerman, A.; Zhang, M.; Chen, H. Synthesis, Characterization, and Dye Sorption Ability of Carbon Nanotube–Biochar Nanocomposites. Chem. Eng. J. 2014, 236, 39–46. [Google Scholar] [CrossRef]
- Fan, Y.; Su, J.; Xu, L.; Liu, S.; Hou, C.; Liu, Y.; Cao, S. Removal of Oxytetracycline from Wastewater by Biochar Modified with Biosynthesized Iron Oxide Nanoparticles and Carbon Nanotubes: Modification Performance and Adsorption Mechanism. Environ. Res. 2023, 231, 116307. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, F.; Li, J.; Chen, J.; Tang, M. The Effects of Different Factors on the Removal Mechanism of Pb(Ii) by Biochar-Supported Carbon Nanotube Composites. RSC Adv. 2020, 10, 5988–5995. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, J.; Li, Z.; Yang, H.; Zhang, S.; Chen, H. Nano Nickel Embedded in N-Doped CNTs-Supported Porous Biochar for Adsorption-Reduction of Hexavalent Chromium. J. Hazard. Mater. 2021, 416, 125693. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Song, Y.; Shi, S.; Jiang, B.; Yang, J.; Xiao, S. Preparation and Characterization of a Novel Fe3O4-Graphene-Biochar Composite for Crystal Violet Adsorption. Sci. Total Environ. 2020, 711, 134662. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, B.; Zhao, L.; Sun, L.; Gao, Y.; Li, J.; Yang, F. Biochar-Supported Reduced Graphene Oxide Composite for Adsorption and Coadsorption of Atrazine and Lead Ions. Appl. Surf. Sci. 2018, 427, 147–155. [Google Scholar] [CrossRef]
- Elsayed, I.; Madduri, S.; El-Giar, E.M.; Hassan, E.B. Effective Removal of Anionic Dyes from Aqueous Solutions by Novel Polyethylenimine-Ozone Oxidized Hydrochar (PEI-OzHC) Adsorbent. Arab. J. Chem. 2022, 15, 103757. [Google Scholar] [CrossRef]
- El-Nemr, M.A.; Ismail, I.M.A.; Abdelmonem, N.M.; El Nemr, A.; Ragab, S. Amination of Biochar Surface from Watermelon Peel for Toxic Chromium Removal Enhancement. Chin. J. Chem. Eng. 2021, 36, 199–222. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, H.; Li, Y.; Yang, G.; Wang, Y.; Yao, H. Excellent Performance of Porous Carbon from Urea-Assisted Hydrochar of Orange Peel for Toluene and Iodine Adsorption. Chem. Eng. J. 2020, 382, 122997. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhu, X.; Wang, Q.; Wei, X.; Zhang, S. Microwave-Assisted Hydrothermal Treatment of Soybean Residue and Chitosan: Characterization of Hydrochars and Role of N and P Transformation for Pb(II) Removal. J. Anal. Appl. Pyrolysis 2021, 160, 105330. [Google Scholar] [CrossRef]
- He, X.; Zhang, T.; Xue, Q.; Zhou, Y.; Wang, H.; Bolan, N.S.; Jiang, R.; Tsang, D.C.W. Enhanced Adsorption of Cu(II) and Zn(II) from Aqueous Solution by Polyethyleneimine Modified Straw Hydrochar. Sci. Total Environ. 2021, 778, 146116. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E.P.J.; Zeitler, J.A.; Gladden, L.F.; Knop-Gericke, A.; et al. Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination. J. Am. Chem. Soc. 2010, 132, 9616–9630. [Google Scholar] [CrossRef]
- Yang, G.; Chen, H.; Qin, H.; Feng, Y. Amination of Activated Carbon for Enhancing Phenol Adsorption: Effect of Nitrogen-Containing Functional Groups. Appl. Surf. Sci. 2014, 293, 299–305. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, T.; Ren, H.; Kruse, A.; Cui, R. Polyethylene Imine Modified Hydrochar Adsorption for Chromium (VI) and Nickel (II) Removal from Aqueous Solution. Bioresour. Technol. 2018, 247, 370–379. [Google Scholar] [CrossRef]
- Qu, J.; Bi, F.; Hu, Q.; Wu, P.; Ding, B.; Tao, Y.; Ma, S.; Qian, C.; Zhang, Y. A Novel PEI-Grafted N-Doping Magnetic Hydrochar for Enhanced Scavenging of BPA and Cr(VI) from Aqueous Phase. Environ. Pollut. 2023, 321, 121142. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.J.; Zhang, N.; Li, Y.S.; Jiang, H.; Sheng, G.P. Polyethylenimine Modified Biochar Adsorbent for Hexavalent Chromium Removal from the Aqueous Solution. Bioresour. Technol. 2014, 169, 403–408. [Google Scholar] [CrossRef]
- Que, W.; Jiang, L.; Wang, C.; Liu, Y.; Zeng, Z.; Wang, X.; Ning, Q.; Liu, S.; Zhang, P.; Liu, S. Influence of Sodium Dodecyl Sulfate Coating on Adsorption of Methylene Blue by Biochar from Aqueous Solution. J. Environ. Sci. 2018, 70, 166–174. [Google Scholar] [CrossRef]
- Afzal, M.Z.; Sun, X.F.; Liu, J.; Song, C.; Wang, S.G.; Javed, A. Enhancement of Ciprofloxacin Sorption on Chitosan/Biochar Hydrogel Beads. Sci. Total Environ. 2018, 639, 560–569. [Google Scholar] [CrossRef]
- Kamdod, A.S.; Kumar, M.V.P. Adsorption of Methylene Blue, Methyl Orange, and Crystal Violet on Microporous Coconut Shell Activated Carbon and Its Composite with Chitosan: Isotherms and Kinetics. J. Polym. Environ. 2022, 30, 5274–5289. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, R.; Dong, G.; Xiang, M.; Hui, J.; Ou, J.; Qin, H. Biochar Nanocomposite Derived from Watermelon Peels for Electrocatalytic Hydrogen Production. ACS Omega 2021, 6, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, M.A.O.; Zeng, J.; Jagdale, P.; Castellino, M.; Sacco, A.; Farkhondehfal, M.A.; Pirri, C.F. Biochar/Zinc Oxide Composites as Effective Catalysts for Electrochemical CO2 Reduction. ACS Sustain. Chem. Eng. 2021, 9, 5445–5453. [Google Scholar] [CrossRef]
- Zago, S.; Bartoli, M.; Muhyuddin, M.; Vanacore, G.M.; Jagdale, P.; Tagliaferro, A.; Santoro, C.; Specchia, S. Engineered Biochar Derived from Pyrolyzed Waste Tea as a Carbon Support for Fe-N-C Electrocatalysts for the Oxygen Reduction Reaction. Electrochim. Acta. 2022, 412, 140128. [Google Scholar] [CrossRef]
- Panganoron, H.O.; Pascasio, J.D.A.; Esparcia, E.A.; Del Rosario, J.A.D.; Ocon, J.D. Hydrothermally Carbonized Waste Biomass as Electrocatalyst Support for α-MnO2 in Oxygen Reduction Reaction. Catalysts 2020, 10, 177. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, H.; Ma, Z.; Li, N.; Li, G.; Zhang, T.; Lu, P.; Gong, X. Biochar Sacrificial Anode Assisted Water Electrolysis for Hydrogen Production. Int. J. Hydrogen Energy 2022, 47, 36482–36492. [Google Scholar] [CrossRef]
- Ehsani, A.; Parsimehr, H. Electrochemical Energy Storage Electrodes from Fruit Biochar. Adv. Colloid. Interface Sci. 2020, 284, 102263. [Google Scholar] [CrossRef]
- Mehdi, R.; Khoja, A.H.; Naqvi, S.R.; Gao, N.; Amin, N.A.S. A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022, 12, 798. [Google Scholar] [CrossRef]
- Kaushal, I.; Saharan, P.; Kumar, V.; Sharma, A.K.; Umar, A. Superb Sono-Adsorption and Energy Storage Potential of Multifunctional Ag-Biochar Composite. J. Alloys Compd. 2019, 785, 240–249. [Google Scholar] [CrossRef]
- Konnerth, P.; Jung, D.; Straten, J.W.; Raffelt, K.; Kruse, A. Metal Oxide-Doped Activated Carbons from Bakery Waste and Coffee Grounds for Application in Supercapacitors. Mater. Sci. Energy Technol. 2021, 4, 69–80. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Du, Y.; Ma, X.; Lin, J.; Chen, S. Apple-Pomace-Based Porous Biochar as Electrode Materials for Supercapacitors. Diam. Relat. Mater. 2022, 130, 109507. [Google Scholar] [CrossRef]
- Zheng, F.Y.; Li, R.; Ge, S.; Xu, W.R.; Zhang, Y. Nitrogen and Phosphorus Co-Doped Carbon Networks Derived from Shrimp Shells as an Efficient Oxygen Reduction Catalyst for Microbial Fuel Cells. J. Power Sources 2020, 446, 227356. [Google Scholar] [CrossRef]
- Tang, D.; Luo, Y.; Lei, W.; Xiang, Q.; Ren, W.; Song, W.; Chen, K.; Sun, J. Hierarchical Porous Carbon Materials Derived from Waste Lentinus Edodes by a Hybrid Hydrothermal and Molten Salt Process for Supercapacitor Applications. Appl. Surf. Sci. 2018, 462, 862–871. [Google Scholar] [CrossRef]
- Fu, S.; Li, M.; de Jong, W.; Kortlever, R. Tuning the Properties of N-Doped Biochar for Selective CO2 Electroreduction to CO. ACS Catal. 2023, 13, 10309–10323. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Wan, Z.; Jing, F.; Li, Z.; Chen, J.; Tsang, D.C.W. Tailored Design of Food Waste Hydrochar for Efficient Adsorption and Catalytic Degradation of Refractory Organic Contaminant. J. Clean. Prod. 2021, 310, 127482. [Google Scholar] [CrossRef]
- Qu, J.; Xu, Y.; Zhang, X.; Sun, M.; Tao, Y.; Zhang, X.; Zhang, G.; Ge, C.; Zhang, Y. Ball Milling-Assisted Preparation of N-Doped Biochar Loaded with Ferrous Sulfide as Persulfate Activator for Phenol Degradation: Multiple Active Sites-Triggered Radical/Non-Radical Mechanism. Appl. Catal. B 2022, 316, 121639. [Google Scholar] [CrossRef]
- Pegis, M.L.; Wise, C.F.; Martin, D.J.; Mayer, J.M. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem. Rev. 2018, 118, 2340–2391. [Google Scholar] [CrossRef]
- Dues, C.; Schmidt, W.G.; Sanna, S. Water Splitting Reaction at Polar Lithium Niobate Surfaces. ACS Omega 2019, 4, 3850–3859. [Google Scholar] [CrossRef]
- Kuang, M.; Han, P.; Wang, Q.; Li, J.; Zheng, G. CuCo Hybrid Oxides as Bifunctional Electrocatalyst for Efficient Water Splitting. Adv. Funct. Mater. 2016, 26, 8555–8561. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Zhao, Y.; Ge, X.; Lu, Q.; Zhang, T.; Xie, D.; Li, M.; Bu, Y. Design Strategies of Perovskite Nanofibers Electrocatalysts for Water Splitting: A Mini Review. Chem. Eng. J. 2023, 451, 138710. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, Y.; Tsang, D.C.W.; Khan, E.; Yip, A.C.K.; Ng, Y.H.; Rinklebe, J.; Ok, Y.S. Customised Fabrication of Nitrogen-Doped Biochar for Environmental and Energy Applications. Chem. Eng. J. 2020, 401, 126136. [Google Scholar] [CrossRef]
- Yuan, H.; Zhao, Y.; Yang, J.; Xiong, C.; Li, D.; Chen, Y. N, S-Co-Doping of Activated Biochar from Herb Residue for Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction. J. Anal. Appl. Pyrolysis 2022, 166, 105606. [Google Scholar] [CrossRef]
- Bi, Z.; Kong, Q.; Cao, Y.; Sun, G.; Su, F.; Wei, X.; Li, X.; Ahmad, A.; Xie, L.; Chen, C.-M. Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: A Review. J. Mater. Chem. A Mater. 2019, 7, 16028–16045. [Google Scholar] [CrossRef]
- Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. From Coconut Shell to Porous Graphene-like Nanosheets for High-Power Supercapacitors. J. Mater. Chem. A Mater. 2013, 1, 6462–6470. [Google Scholar] [CrossRef]
- Faheem; Du, J.; Kim, S.H.; Hassan, M.A.; Irshad, S.; Bao, J. Application of Biochar in Advanced Oxidation Processes: Supportive, Adsorptive, and Catalytic Role. Environ. Sci. Pollut. Res. 2020, 27, 37286–37312. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Shen, X.; Qiu, Y.; Yin, D.; Wang, S. Persistent Free Radicals on N-Doped Hydrochar for Degradation of Endocrine Disrupting Compounds. Chem. Eng. J. 2020, 398, 125538. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, L.; Wang, Q.; Li, X.; Guo, Y.; Song, W.; Li, Y. Ball Milling Boosted the Activation of Peroxymonosulfate by Biochar for Tetracycline Removal. J. Environ. Chem. Eng. 2021, 9, 106870. [Google Scholar] [CrossRef]
Agri-Food Residues | Cellulose (%) | Standard Deviation | Hemicellulose (%) | Standard Deviation | Lignin (%) | Standard Deviation | References |
---|---|---|---|---|---|---|---|
Apple pomace | 39.25 | ±4.60 | 14.90 | ±5.52 | 21.35 | ±3.32 | [25] |
Banana peels | 27.75 | ±22.98 | 21.95 | ±5.02 | 8.93 | ±1.24 | [25] |
Cocoa pod husk | 22.90 | ±4.53 | 10.75 | ±2.90 | 21.00 | ±9.90 | [26] |
Grape pomace | 10.50 | - | 6.10 | - | 31.90 | - | [27] |
Groundnut shell | 35.70 | - | 18.70 | - | 30.20 | - | [28] |
Kiwi peel | 37.98 | ±21.15 | - | - | 21.37 | ±5.92 | [29] |
Olive pomace | 23.47 | ±8.92 | 29.70 | ±12.60 | 38.82 | ±10.35 | [20] |
Orange peel | 37.08 | - | 11.04 | - | 7.52 | - | [21] |
Pea peel | 30.00 | - | - | - | 25.00 | - | [30] |
Potato peel | 55.00 | - | 12.00 | - | 14.00 | - | [31] |
Rice husk | 38.10 | ±4.24 | 27.95 | ±14.64 | 22.70 | ±5.52 | [25] |
Spent coffee grounds | 22.65 | - | 22.65 | - | 23.90 | - | [25,32] |
Tomato pomace | 7.66 | - | 7.51 | - | 37.34 | - | [33] |
Watermelon rinds | 20.00 | - | 23.00 | - | 10.00 | - | [34] |
Wheat straw | 40.00 | ±7.07 | 25.00 | ±7.07 | 15.00 | - | [35] |
Agri-Food Residues | Char | T (°C) | Yield (%) | Ash (%) | C (%) | H (%) | O (%) | Reference |
---|---|---|---|---|---|---|---|---|
Corncob | Biochar | 500 | 18.9 | 13.3 | 77.6 | 3.05 | 5.11 | [41] |
Orange peel | Biochar | 300 | 37.2 | 1.6 | 69.3 | 4.51 | 22.2 | [41] |
Wheat straw | Biochar | 525 | - | 9.2 | 74.4 | 2.83 | - | [41] |
Poplar wood | Hydrochar | 180 | 89.9 | 2.2 | 50.9 | - | - | [46] |
Olive waste | Hydrochar | 180 | 75.4 | 2.2 | 57.9 | - | - | [46] |
Wheat straw | Hydrochar | 180 | 80.1 | 5.8 | 49.5 | - | - | [46] |
Adsorbent | Modification Pathway | Activation Method | Pollutant | Uptake (mg/g) | Adsorption Enhancement | Reference |
---|---|---|---|---|---|---|
Loquat cores hydrochar | one-step | H3PO4, HCl, Citric acid | Diclofenac, prednisolone, antipyrine | - | 9.4× | [52] |
Shrimp shells hydrochar | pre- post- | NaOH Acetic acid | Methyl orange | 755.08 | 6× | [71] |
Orange peel hydrochar | post- | HNO3 | Methylene blue | 115 | 1.9× | [72] |
Potato peel biochar | one-step | KOH | Azorubine | 2521 | - | [73] |
Potato peel biochar | one-step | KOH | Methylene blue | 667 | - | [73] |
Grape pomace hydrochar | post- | KOH | Pb2+ | 137 | 4.9× | [74] |
Apple pomace biochar | pre- | KMnO4 | Cu2+ | 27.52 | - | [75] |
Apple pomace biochar | pre- | KMnO4 | Cd2+ | 30.76 | - | [75] |
Apple pomace biochar | pre- | KMnO4 | Zn2+ | 19.69 | - | [75] |
Apple pomace biochar | pre- | KMnO4 | Pb2+ | 32.88 | - | [75] |
Coffee waste biochar | post- | NaOH/H2O2 | Radioactive Sr2+ | 12.71 | 2.15× | [76] |
Corn stalk hydrochar | post- | H2O2 | Cu2+ | - | 2.34× | [77] |
Potato peel biochar | post- | steam | Cibacron blue | 270.3 | 2.7× | [78] |
Olive stone hydrochar | post- | Air | Fluoxetine | 44.1 | - | [79] |
Olive stone hydrochar | post- | CO2 | Nicotinic acid | 91.9 | - | [79] |
Corn straw biochar | one-step | NH3 | Acid orange 7 | 292 | 15–20× | [80] |
Corn straw biochar | one-step | NH3 | Methyl blue | 436 | 15–20× | [80] |
Corn straw Biochar | one-step | NH3 | Cu2+ | 103.57 | 4× | [81] |
Corn straw biochar | one-step | NH3 | Cd2+ | 197.82 | 4× | [81] |
Crayfish shell biochar | post- | Ball-milling | Tetracycline | 60.5 | 1.5× | [82] |
Wheat stalk biochar | post- | Ball-milling | Tetracycline | 84.54 | 3× | [83] |
Wheat straw biochar | post- | Ball-milling | Volatile organic compounds | 11.62–102.22 | 1.96–3.97× | [84] |
Agri-Food Residue | Modification | Application | References |
---|---|---|---|
Watermelon peels Biochar | Cobalt oxide nanoparticles | Water splitting catalyst | [148] |
Corncobs hydrochar | KOH | ORR catalyst | [151] |
Lentinus edodes hydrochar | Na2CO3-K2CO3 | Capacitor | [159] |
Apple pomace hydrochar | Ball-milling with K2FeO4 | Supercapacitor | [157] |
Brewed waste coffee powder | ZnO | CO2-RR catalyst | [149] |
Sugarcane bagasse biochar | - | CO2-RR catalyst | [160] |
Taro hydrochar | - | PMS catalyst | [161] |
Corn straw biochar | Two-step ball-milling: ammonia water and ferrous sulfide | PS catalyst | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escudero-Curiel, S.; Giráldez, A.; Pazos, M.; Sanromán, Á. From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications—A Comprehensive Review. Foods 2023, 12, 3646. https://doi.org/10.3390/foods12193646
Escudero-Curiel S, Giráldez A, Pazos M, Sanromán Á. From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications—A Comprehensive Review. Foods. 2023; 12(19):3646. https://doi.org/10.3390/foods12193646
Chicago/Turabian StyleEscudero-Curiel, Silvia, Alba Giráldez, Marta Pazos, and Ángeles Sanromán. 2023. "From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications—A Comprehensive Review" Foods 12, no. 19: 3646. https://doi.org/10.3390/foods12193646
APA StyleEscudero-Curiel, S., Giráldez, A., Pazos, M., & Sanromán, Á. (2023). From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications—A Comprehensive Review. Foods, 12(19), 3646. https://doi.org/10.3390/foods12193646