Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies
Abstract
:1. Introduction
1.1. Composition and Health Benefit of DF
1.2. Fruit and Vegetable By-Products with High Potential to Be Used as Novel DF Sources
1.3. Technologies with High Potential to Be Applied on Novel DF Sources
2. Impact of Physicochemical Properties of DF on Its Techno-Functional and Health-Promoting Characteristics
2.1. Relationship between Physicochemical and Techno-Functional Properties of DF
2.2. Impact of Physicochemical and Techno-Functional Properties of DF on Its Health-Promoting Effect
2.2.1. Antidiabetic Potential
2.2.2. Hypocholesterolemic Effect
2.2.3. Fermentability
3. Enhancing the Health-Promoting Effect of DF by Applying Novel Technologies
DF Source | Treatment Conditions (Optimum) | Physico-Chemical | Techno-Functional | Hypocholesterolemic Effect | Antidiabetic Potential | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
SDF [%] | WHC [g/g] | OHC [g/g] | BAC [%] | CAC [mg/g] pH2/pH7 | GAC [mM/g] | GRC [%] | AAIR [%] | |||
Ultrafine grinding | ||||||||||
Carrot pomace IDF [79] | Ultrafine comminution to 40.05 µm | 2.07 6.04 | 4.50 * 4.00 * | 1.85 * 1.60 * | 29/30 35/36 | 100 mM 1 2.3 | Reduced WRC, OHC, TPC, and total antioxidant activity | |||
Pear pomace [98] | Superfine grinding: micronizer, 25 min | 10.0 13.7 | 3.44 2.73 | 1.82 1.09 | 1.27/3.88 3.40/5.64 g/mL | Destruction of polysaccharide chains with adverse effect on WRC and OHC | ||||
Citrus pomace IDF [96] | 1. Micronizer, 8 min 2. Jet mill, 210 kW, 2100 r/min | 8.10 14.40 14.90 | 7.33 6.44 5.74 | 1.34 1.13 1.28 | Grinded DF with smoother surface but lower techno-functionality | |||||
High-pressure processing (HPP) | ||||||||||
Bamboo shoot shell IDF [101] | 100 MPa, 5 circles | 2.99 8.27 | 5.79 8.16 | pH 7 8 * 12 * | 20 mM 0.0038 0.0045 | Honeycomb microstructure after HPH with enhanced properties | ||||
Peach pomace IDF [77] | 120 MPa, 1 circle | 5.02 7.65 | 2.44 7.58 | 100 mM 0.72 1.9 | 27.81 42.62 | 28.69 47.07 | Enlarged surface area with higher glucose-lowering properties | |||
Pear pomace [98] | 300 MPa, 15 min | 10.0 16.0 | 3.44 5.77 | 1.82 2.77 | 1.27/3.88 4.92/8.37 g/mL | Enhanced SDF content, leading to improved CAC; higher effect than grinding | ||||
Ultrasonication (US) | ||||||||||
Tea seed IDF [65] | 640 W, 20 min, 40 °C | 44.29 60.15 | 18.37 30.42 | 8.76/6.18 12.71/8.67 | 0.5 mM 0.059 0.073 | Highest improvement of properties after US (better than EH) | ||||
Garlic straw IDF [108] | 535 W, 41 min, 45 °C | 7.38 9.72 | 8.96 10.56 | 10.59 16.75 | 100 mM 4.27 4.65 | 28.68 33.91 | Honey-comb structure after US with higher porosity | |||
Microwave (MW) | ||||||||||
Okara [109] | 600 W, 2.5 min | 2.24 7.69 | 8.80/18.46 9.18/18.09 | 6 * 20 * | 9.55 20.92 | Damage of crystalline structure, improved thermal stability | ||||
Apple pomace SDF [110] | Extraction of SDF by 1. Acid 2. Microwave: 80 °C, 2 min, 550 W | 3.0 6.9 * | 1.3 2.0 * | Enhanced SDF yield after microwave extraction | ||||||
Extrusion | ||||||||||
Orange pomace [102] | 129 °C (barrel T), 15% (feed moisture), 299 rpm (screw speed) | 17.31 30.29 | 5.80 6.73 | 1.23 0.84 | Bile acid mixture pH 7 38.5 61.1 | Buffered micellar solution pH 6.3 6.89 11.92 | 50 mM 0.42 0.46 100 mM 0.720.75 | 19.25 21.12 | 22 * 38 * | All properties improved except from OHC, treated pomace with higher health-related properties than cellulose but lower than psyllium |
Lupin kernel [103] | 150 °C, 20% moisture, 400 rpm | 1.9 29.3 | 7.71 15.04 | 2.28 1.25 * | No effect on molecular interaction (BAC) with chenodesoxcholic acid but improved BRC related to increased viscosity | |||||
Enzymatic hydrolysis (EH) | ||||||||||
Defatted coconut cake (unscreened samples) [70] | Cellulase, 1 h | 19.33 30.00 | 13.08 8.39 | 9.91 4.42 | 1 mg/mL SC 70/19 75/20 | 79/45 82/46 % | 10.52 28.82 | Decrease of techno-functional properties of unscreened samples (particle size > 250 µm), enhanced SDF with enlarged surface area | ||
Carrot pomace IDF [79] | Cellulase and xylanase, 2.5 h | 2.07 15.07 | 4.50 * 5.75 * | 1.85 * 2.00 * | 29/30 37/38 | 100 mM 1 2.4 | High increase of SDF but improvement of properties lower than with HPH | |||
DF of deoiled cumin seeds (unsieved samples) [72] | 1. Alkalic extraction: soaking in 0.5 M NaOH, 2 h 2. Enzymatic: 4.5% alcalase, 2.4 L, 155 min | 0.42 7.85 | 3.3 5.48 | 50 mM 3.48 3.89 | 8.75 11.08 | Improved BAC, BRC, and AAIR after EH assisted extraction | ||||
Combination of treatments | ||||||||||
Peach pomace SDF [111] | 1. NT SDF: Water extraction 2. EH: 2% cellulase, 10 h 3. HPH + EH: 140 MPa, 4 cycles + 2% cellulase, 6 h | 7.3 32.6 36.3 | 376.04 530.87 465.95 mg/g | 7.57/14.75 19.21/30.05 25.31/26.94 | HPH improved the recovery yield of SDF, and time of 10 h EH could be reduced to 6 h; enhancement of CAC with combined treatment | |||||
Tea seed IDF [65] | 1. NT IDF 2. EH: cellulase and xylanase, 36 h 3. US + EH: 640 W, 20 min, 40 °C + cellulase and xylanase, 36 h | 44.29 59.34 51.89 | 18.37 21.67 19.58 | 8.76/6.18 6.56/5.94 7.6/7.03 | 0.5 mM 0.057 0.063 0.061 | No further improvement of properties with combination; highest improvement with sole US | ||||
Rose pomace IDF [73] | 1. NT 2. EH: 230 U/g DF cellulase, 900 U/g DF xylanase, 2 h 3. US + EH: 150 W, 30 min + cellulase, xylanase, 2 h | 4.45 15.41 13.59 | 8.32 10.45 11.09 | 3.13 4.47 4.87 | 12.01/13.24 12.79/13.42 13.98/14.50 | 200 mM 46.5 * 49.0 * 45.0 * | No further promotion of IDF to SDF conversion by coupled treatment but further enhancement of techno-functional properties | |||
Seeds of Akebia trifoliata (Thunb.) Koidz. Fruits [112] | 1. Alkalic extraction 2. EH: cellulase, 1 h 3. US + EH: 500 W, 40 °C + cellulase, 1 h 4. MW + EH: 500 W, 40 °C, 1 h + cellulase, 1 h | 5.33 5.85 5.51 6.04 | 7.46 7.99 7.82 5.64 | 3.55 3.57 3.95 4.18 | 26.00 * 29.21 31.23 37.00 | 28/41 * 38/47 * 40/60 * 45/62 * | 0.1 M 0.50 * 1.35 0.87 0.38 * | 6.62 5.00 * 6.81 7.45 | Further improvement of OHC, BAC, CAC, and AAIR after enzymatic extraction combined with physical pre-treatments |
4. Challenges—Predictability of the Health-Promoting Effect In Vivo
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Global Initiative on Food Loss and Waste Reduction; FAO: Rome, Italy, 2014. [Google Scholar]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Vilariño, M.V.; Franco, C.; Quarrington, C. Food Loss and Waste Reduction as an Integral Part of a Circular Economy. Front. Environ. Sci. 2017, 5, 21. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary Fibre in Europe: Current State of Knowledge on Definitions, Sources, Recommendations, Intakes and Relationships to Health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Blackwood, A.D.; Salter, J.; Dettmar, P.W.; Chaplin, M.F. Dietary Fibre, Physicochemical Properties and Their Relationship to Health. J. R. Soc. Promot. Health 2000, 120, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Figuerola, F.; Hurtado, M.L.; Estévez, A.M.; Chiffelle, I.; Asenjo, F. Fibre Concentrates from Apple Pomace and Citrus Peel as Potential Fibre Sources for Food Enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- Macagnan, F.T.; Dos Santos, L.R.; Roberto, B.S.; De Moura, F.A.; Bizzani, M.; Da Silva, L.P. Biological Properties of Apple Pomace, Orange Bagasse and Passion Fruit Peel as Alternative Sources of Dietary Fibre. Bioact. Carbohydr. Diet. Fibre 2015, 6, 1–6. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable By-Products and Their Recent Applications as Novel Ingredients in Food Products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Comparison of Dietary Fibre from By-Products of Processing Fruits and Greens and from Cereals. LWT Food Sci. Technol. 1999, 32, 503–508. [Google Scholar] [CrossRef]
- Bengtsson, H.; Hall, C.; Tornberg, E. Effect of Physicochemical Properties on the Sensory Perception of the Texture of Homogenized Fruit and Vegetable Fiber Suspensions. J. Texture Stud. 2011, 42, 291–299. [Google Scholar] [CrossRef]
- Scott, K.P.; Duncan, S.H.; Flint, H.J. Dietary Fibre and the Gut Microbiota. Nutr. Bull. 2008, 33, 201–211. [Google Scholar] [CrossRef]
- Mosca, A.; Leclerc, M.; Hugot, J.P. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front. Microbiol. 2016, 7, 455. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Esfahani, A.; Jenkins, D.J.A. The Link between Dietary Fibre and Human Health. Food Hydrocoll. 2010, 24, 42–48. [Google Scholar] [CrossRef]
- Ma, H. Cholesterol and Human Health. Nat. Sci. 2004, 2, 17–21. [Google Scholar]
- Gunness, P.; Gidley, M.J. Mechanisms Underlying the Cholesterol-Lowering Properties of Soluble Dietary Fibre Polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Vaz, F.M.; Ferdinandusse, S. Bile Acid Analysis in Human Disorders of Bile Acid Biosynthesis. Mol. Asp. Med. 2017, 56, 10–24. [Google Scholar] [CrossRef]
- Hofmann, A.F. Chemistry and Enterohepatic Circulation of Bile Acids. Hepatology 1984, 4, 4S–14S. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Effect of the Postprandial State on Nontraditional Risk Factors. Am. J. Cardiol. 2001, 88, 20–25. [Google Scholar] [CrossRef]
- Mudgil, D. The Interaction Between Insoluble and Soluble Fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 35–59. ISBN 9780128051306. [Google Scholar]
- Macagnan, F.T.; De Moura, F.A.; Dos Santos, L.R.; Bizzani, M.; Da Silva, L.P. Caracterização Nutricional e Resposta Sensorial de Pães de Mel Com Alto Teor Defibra Alimentar Elaborados Com Farinhas de Subprodutos Do Processamento de Frutas. Bol. Cent. De. Pesqui. De. Process. De. Aliment. 2014, 32, 201–210. [Google Scholar] [CrossRef]
- Henríquez, C.; Speisky, H.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Simpson, R.; Almonacid, S. Development of an Ingredient Containing Apple Peel, as a Source of Polyphenols and Dietary Fiber. J. Food Sci. 2010, 75, H172–H181. [Google Scholar] [CrossRef]
- Hernández-Alcántara, A.M.; Totosaus, A.; Pérez-Chabela, M.L. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic. Acta Univ. Cibiniensis. Ser. E Food Technol. 2016, 20, 3–16. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant Activity of Apple Peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.F.; Huang, Y.L. Comparison of the Chemical Composition and Physicochemical Properties of Different Fibers Prepared from the Peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615–2618. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. Evaluation of the Effect of High Pressure on Total Phenolic Content, Antioxidant and Antimicrobial Activity of Citrus Peels. Innov. Food Sci. Emerg. Technol. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M.; Dugo, P.; Mondello, L. Underestimated Sources of Flavonoids, Limonoids and Dietary Fibre: Availability in Lemon’s by-Products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- Chinapongtitiwat, V.; Jongaroontaprangsee, S.; Chiewchan, N.; Devahastin, S. Important Flavonoids and Limonin in Selected Thai Citrus Residues. J. Funct. Foods 2013, 5, 1151–1158. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Optimisation of Aqueous Extraction Conditions for the Recovery of Phenolic Compounds and Antioxidants from Lemon Pomace. Int. J. Food Sci. Technol. 2016, 51, 2009–2018. [Google Scholar] [CrossRef]
- Vergara-Valencia, N.; Granados-Pérez, E.; Agama-Acevedo, E.; Tovar, J.; Ruales, J.; Bello-Pérez, L.A. Fibre Concentrate from Mango Fruit: Characterization, Associated Antioxidant Capacity and Application as a Bakery Product Ingredient. LWT Food Sci. Technol. 2007, 40, 722–729. [Google Scholar] [CrossRef]
- Ajila, C.M.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable Components of Raw and Ripe Peels from Two Indian Mango Varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Gorinstein, S.; Martín-Belloso, O. Characterisation of Peach Dietary Fibre Concentrate as a Food Ingredient. Food Chem. 1999, 65, 175–181. [Google Scholar] [CrossRef]
- Pagán, J.; Ibarz, A.; Llorca, M.; Pagán, A.; Barbosa-Cánovas, G.V. Extraction and Characterization of Pectin from Stored Peach Pomace. Food Res. Int. 2001, 34, 605–612. [Google Scholar] [CrossRef]
- Adil, I.H.; Çetin, H.I.; Yener, M.E.; Bayindirli, A. Subcritical (Carbon Dioxide + Ethanol) Extraction of Polyphenols from Apple and Peach Pomaces, and Determination of the Antioxidant Activities of the Extracts. J. Supercrit. Fluids 2007, 43, 55–63. [Google Scholar] [CrossRef]
- Chau, C.F.; Chen, C.H.; Lee, M.H. Comparison of the Characteristics, Functional Properties, and in vitro Hypoglycemic Effects of Various Carrot Insoluble Fiber-Rich Fractions. LWT Food Sci. Technol. 2004, 37, 155–160. [Google Scholar] [CrossRef]
- Sun, T.; Simon, P.W.; Tanumihardjo, S.A. Antioxidant Phytochemicals and Antioxidant Capacity of Biofortified Carrots (Daucus carota L.) of Various Colors. J. Agric. Food Chem. 2009, 57, 4142–4147. [Google Scholar] [CrossRef]
- Jaime, L.; Mollá, E.; Fernández, A.; Martín-Cabrejas, M.A.; López-Andréu, J.; Esteban, R.M. Structural Carbohydrate Differences and Potential Source of Dietary Fiber of Onion (Allium cepa L.) Tissues. J. Agric. Food Chem. 2002, 50, 122–128. [Google Scholar] [CrossRef]
- Chung, Y.K.; Choi, J.S.; Yu, S.B.; Choi, Y. Il Physicochemical and Storage Characteristics of Hanwoo Tteokgalbi Treated with Onion Skin Powder and Blackcurrant Powder. Korean J. Food Sci. Anim. Resour. 2018, 38, 737–748. [Google Scholar] [CrossRef]
- Neves, M.F.; Trombin, V.G.; Marques, V.N.; Martinez, L.F. Global Orange Juice Market: A 16-Year Summary and Opportunities for Creating Value. Trop. Plant Pathol. 2020, 45, 166–174. [Google Scholar] [CrossRef]
- de Moraes Crizel, T.; Jablonski, A.; de Oliveira Rios, A.; Rech, R.; Flôres, S.H. Dietary Fiber from Orange Byproducts as a Potential Fat Replacer. LWT Food Sci. Technol. 2013, 53, 9–14. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- May, C.D.; Pectin, H.P.B. Industrial Pectins: Sources, Production and Applications; Elsevier: Amsterdam, The Netherlands, 1990; Volume 12. [Google Scholar]
- Kurz, C.; Carle, R.; Schieber, A. Characterisation of Cell Wall Polysaccharide Profiles of Apricots (Prunus armeniaca L.), Peaches (Prunus persica L.), and Pumpkins (Cucurbita sp.) for the Evaluation of Fruit Product Authenticity. Food Chem. 2008, 106, 421–430. [Google Scholar] [CrossRef]
- Berardini, N.; Fezer, R.; Conrad, J.; Beifuss, U.; Carle, R.; Schieber, A. Screening of Mango (Mangifera indica L.) Cultivars for Their Contents of Flavonol O- and Xanthone C-Glycosides, Anthocyanins, and Pectin. J. Agric. Food Chem. 2005, 53, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.; Parker, M.L.; Parr, A.J.; Saunders, P.K.; Smith, A.C.; Waldron, K.W. Physicochemical Characteristics of Onion (Allium cepa L.) Tissues. J. Agric. Food Chem. 2000, 48, 5612–5617. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical Composition, Functional Properties and Processing of Carrot-A Review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Surles, R.L.; Weng, N.; Simon, P.W.; Tanumihardjo, S.A. Carotenoid Profiles and Consumer Sensory Evaluation of Specialty Carrots (Daucus carota, L.) of Various Colors. J. Agric. Food Chem. 2004, 52, 3417–3421. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M. Structural and Physical Properties of Dietary Fibres, and Consequences of Processing on Human Physiology. Food Res. Int. 2000, 33, 233–245. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Ma, S.; Wang, X.X.; Zheng, X.L. Modification and Application of Dietary Fiber in Foods. J. Chem. 2017, 2017, 9340427. [Google Scholar] [CrossRef]
- Kentish, S.; Feng, H. Applications of Power Ultrasound in Food Processing. Annu. Rev. Food Sci. Technol. 2014, 5, 263–284. [Google Scholar] [CrossRef]
- Gong, C.; Hart, D.P. Ultrasound Induced Cavitation and Sonochemical Yields. J. Acoust. Soc. Am. 1998, 104, 2675–2682. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. (Kees) Modification of Food Ingredients by Ultrasound to Improve Functionality: A Preliminary Study on a Model System. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
- Moreira, S.A.; Alexandre, E.M.C.; Pintado, M.; Saraiva, J.A. Effect of Emergent Non-Thermal Extraction Technologies on Bioactive Individual Compounds Profile from Different Plant Materials. Food Res. Int. 2019, 115, 177–190. [Google Scholar] [CrossRef]
- Bryant, G.; Wolfe, J. Electromechanical Stresses Produced in the Plasma Membranes of Suspended Cells by Applied Electric Fields. J. Membr. Biol. 1987, 96, 129–139. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of Lycopene from Industrially Derived Tomato Processing By-Products by Pulsed Electric Fields-Assisted Extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Gan, J.; Xie, L.; Peng, G.; Xie, J.; Chen, Y.; Yu, Q. Systematic Review on Modification Methods of Dietary Fiber. Food Hydrocoll. 2021, 119, 106872. [Google Scholar] [CrossRef]
- Huang, H.W.; Hsu, C.P.; Wang, C.Y. Healthy Expectations of High Hydrostatic Pressure Treatment in Food Processing Industry. J. Food Drug Anal. 2020, 28, 1–13. [Google Scholar] [CrossRef]
- Martínez-Monteagudo, S.I.; Yan, B.; Balasubramaniam, V.M. Engineering Process Characterization of High-Pressure Homogenization—From Laboratory to Industrial Scale. Food Eng. Rev. 2017, 9, 143–169. [Google Scholar] [CrossRef]
- Ciron, C.I.E.; Gee, V.L.; Kelly, A.L.; Auty, M.A.E. Comparison of the Effects of High-Pressure Microfluidization and Conventional Homogenization of Milk on Particle Size, Water Retention and Texture of Non-Fat and Low-Fat Yoghurts. Int. Dairy. J. 2010, 20, 314–320. [Google Scholar] [CrossRef]
- Letellier, M.; Budzinski, H. Microwave Assisted Extraction of Organic Compounds. Analusis 1999, 27, 259–271. [Google Scholar] [CrossRef]
- Leão, D.P.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Potential of Pequi (Caryocar brasiliense Camb.) Peels as Sources of Highly Esterified Pectins Obtained by Microwave Assisted Extraction. LWT Food Sci. Technol. 2018, 87, 575–580. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of Extrusion Technology in Plant Food Processing Byproducts: An Overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Zhang, F.; Yi, W.; Cao, J.; He, K.; Liu, Y.; Bai, X. Microstructure Characteristics of Tea Seed Dietary Fibre and Its Effect on Cholesterol, Glucose and Nitrite Ion Adsorption Capacities in vitro: A Comparison Study among Different Modifications. Int. J. Food Sci. Technol. 2020, 55, 1781–1791. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Niu, Y.; Kurek, M.A. Enzymatic, Enzymatic-Ultrasonic and Alkaline Extraction of Soluble Dietary Fibre from Flaxseed—A Physicochemical Approach. Food Hydrocoll. 2019, 90, 105–112. [Google Scholar] [CrossRef]
- Spagnuolo, M.; Crecchio, C.; Pizzigallo, M.; Ruggiero, P. Synergistic Effects of Cellulolytic and Pectinolytic Enzymes in Degrading Sugar Beet Pulp. Bioresour. Technol. 1997, 60, 215–222. [Google Scholar] [CrossRef]
- Chaplin, M.F. Fibre and Water Binding. Proc. Nutr. Soc. 2003, 62, 223–227. [Google Scholar] [CrossRef] [PubMed]
- López, G.; Ros, G.; Rincón, F.; Periago, M.J.; Martínez, M.C.; Ortuño, J. Relationship between Physical and Hydration Properties of Soluble and Insoluble Fiber of Artichoke. J. Agric. Food Chem. 1996, 44, 2773–2778. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y. Physicochemical and Functional Properties of Coconut (Cocos nucifera L) Cake Dietary Fibres: Effects of Cellulase Hydrolysis, Acid Treatment and Particle Size Distribution. Food Chem. 2018, 257, 135–142. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical Profile, Functional and Antioxidant Properties of Tomato Peel Fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Ma, M.M.; Mu, T.H. Effects of Extraction Methods and Particle Size Distribution on the Structural, Physicochemical, and Functional Properties of Dietary Fiber from Deoiled Cumin. Food Chem. 2016, 194, 237–246. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, W.; Zhang, X.; Li, T.; Ren, D.; Lu, J. Physicochemical, Functional, and Microstructural Properties of Modified Insoluble Dietary Fiber Extracted from Rose Pomace. J. Food Sci. Technol. 2020, 57, 1421–1429. [Google Scholar] [CrossRef]
- Qi, J.; Yokoyama, W.; Masamba, K.G.; Majeed, H.; Zhong, F.; Li, Y. Structural and Physico-Chemical Properties of Insoluble Rice Bran Fiber: Effect of Acid-Base Induced Modifications. RSC Adv. 2015, 5, 79915–79923. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Xu, J.; Gao, G.; Niu, F. Adsorption Activity of Coconut (Cocos nucifera L.) Cake Dietary Fibers: Effect of Acidic Treatment, Cellulase Hydrolysis, Particle Size and PH. RSC Adv. 2018, 8, 2844–2850. [Google Scholar] [CrossRef]
- Peerajit, P.; Chiewchan, N.; Devahastin, S. Effects of Pretreatment Methods on Health-Related Functional Properties of High Dietary Fibre Powder from Lime Residues. Food Chem. 2012, 132, 1891–1898. [Google Scholar] [CrossRef]
- Chen, J.; Gao, D.; Yang, L.; Gao, Y. Effect of Microfluidization Process on the Functional Properties of Insoluble Dietary Fiber. Food Res. Int. 2013, 54, 1821–1827. [Google Scholar] [CrossRef]
- Jakobek, L.; Mati, P. Non-Covalent Dietary Fiber—Polyphenol Interactions and Their Influence on Polyphenol Bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Yu, G.; Bei, J.; Zhao, J.; Li, Q.; Cheng, C. Modification of Carrot (Daucus carota Linn. Var. Sativa Hoffm.) Pomace Insoluble Dietary Fiber with Complex Enzyme Method, Ultrafine Comminution, and High Hydrostatic Pressure. Food Chem. 2018, 257, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-L.; Ma, Y.-S.; Tsai, Y.-H.; Chang, S.K.C. In Vitro Hypoglycemic, Cholesterol-Lowering and Fermentation Capacities of Fiber-Rich Orange Pomace as Affected by Extrusion. Int. J. Biol. Macromol. 2019, 124, 796–801. [Google Scholar] [CrossRef]
- Gourgue, C.M.P.; Champ, M.M.J.; Delort-Laval, J.; Lozano, Y. Dietary Fiber from Mango Byproducts: Characterization and Hypoglycemic Effects Determined by in vitro Methods. J. Agric. Food Chem. 1992, 40, 1864–1868. [Google Scholar] [CrossRef]
- Dhital, S.; Gidley, M.J.; Warren, F.J. Inhibition of α-Amylase Activity by Cellulose: Kinetic Analysis and Nutritional Implications. Carbohydr. Polym. 2015, 123, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, A.; Martin, D.; Navarro del Hierro, J.; Moreno-Arribas, M.V.; Muñoz, L.A. Intake of Soluble Fibre from Chia Seed Reduces Bioaccessibility of Lipids, Cholesterol and Glucose in the Dynamic Gastrointestinal Model Simgi®. Food Res. Int. 2020, 137, 109364. [Google Scholar] [CrossRef] [PubMed]
- Zacherl, C.; Eisner, P.; Engel, K.H. In Vitro Model to Correlate Viscosity and Bile Acid-Binding Capacity of Digested Water-Soluble and Insoluble Dietary Fibres. Food Chem. 2011, 126, 423–428. [Google Scholar] [CrossRef]
- Uskoković, V. Composites Comprising Cholesterol and Carboxymethyl Cellulose. Colloids Surf. B Biointerfaces 2008, 61, 250–261. [Google Scholar] [CrossRef]
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health Benefits of Finger Millet (Eleusine coracana L.) Polyphenols and Dietary Fiber: A Review. J. Food Sci. Technol. 2014, 51, 1021–1040. [Google Scholar] [CrossRef]
- Naumann, S.; Schweiggert-Weisz, U.; Eisner, P. Characterisation of the Molecular Interactions between Primary Bile Acids and Fractionated Lupin Cotyledons (Lupinus angustifolius L.). Food Chem. 2020, 323, 126780. [Google Scholar] [CrossRef] [PubMed]
- Chamnansilpa, N.; Aksornchu, P.; Adisakwattana, S.; Thilavech, T.; Mäkynen, K.; Dahlan, W.; Ngamukote, S. Anthocyanin-Rich Fraction from Thai Berries Interferes with the Key Steps of Lipid Digestion and Cholesterol Absorption. Heliyon 2020, 6, e05408. [Google Scholar] [CrossRef] [PubMed]
- Benitez, V.; Rebollo-hernanz, M.; Hernanz, S.; Chantres, S. Coffee Parchment as a New Dietary Fiber Ingredient: Functional and Physiological Characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Furda, I. Interaction of Dietary Fiber with Lipids—Mechanistic Theories and Their Limitations. In New Developments in Dietary Fiber. Advances in Experimental Medicine and Biology; Furda, I., Brine, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 270, pp. 67–82. [Google Scholar]
- Thibault, J.-F.; Lahaye, M.; Guillon, F. Physico-Chemical Properties of Food Plant Cell Walls. In Dietary Fibre—A Component of Food, Nutritional Function in Health and Disease; Schweizer, T.F., Edwards, C.A., Eds.; Springer: London, UK, 1992; pp. 21–39. [Google Scholar]
- Lamothe, L.M.; Cantu-Jungles, T.M.; Chen, T.; Green, S.; Naqib, A.; Srichuwong, S.; Hamaker, B.R. Boosting the Value of Insoluble Dietary Fiber to Increase Gut Fermentability through Food Processing. Food Funct. 2021, 12, 10658–10666. [Google Scholar] [CrossRef] [PubMed]
- Míguez, B.; Gómez, B.; Gullón, P.; Gullón, B.; Alonso, J.L. Pectic Oligosaccharides and Other Emerging Prebiotics. In Probiotics and Prebiotics in Human Nutrition and Health; InTech: Vienna, Austria, 2016. [Google Scholar]
- Hamaker, B.R.; Tuncil, Y.E. A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut Microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef]
- Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants 2022, 11, 109. [Google Scholar] [CrossRef]
- Ye, F.; Tao, B.; Liu, J.; Zou, Y. Effect of Micronization on the Physicochemical Properties of Insoluble Dietary Fiber from Citrus (Citrus junos Sieb. Ex Tanaka) Pomace. Food Sci. Technol. Int. 2014, 22, 246–255. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of Micronization on Dietary Fiber Composition, Physicochemical Properties, Phenolic Compounds, and Antioxidant Capacity of Grape Pomace and Its Dietary Fiber Concentrate. LWT Food Sci. Technol. 2020, 117, 108652. [Google Scholar] [CrossRef]
- Yan, L.; Li, T.; Liu, C.; Zheng, L. Effects of High Hydrostatic Pressure and Superfine Grinding Treatment on Physicochemical/ Functional Properties of Pear Pomace and Chemical Composition of Its Soluble Dietary Fibre. LWT Food Sci. Technol. 2019, 107, 171–177. [Google Scholar] [CrossRef]
- Carpita, N.C.; Gibeaut, D.M. Structural Models of Primary Cell Walls in Flowering Plants: Consistency of Molecular Structure with the Physical Properties of the Walls during Growth. Plant J. 1993, 3, 1–30. [Google Scholar] [CrossRef]
- Huang, J.; Liao, J.; Qi, J.; Jiang, W.; Yang, X. Structural and Physicochemical Properties of Pectin-Rich Dietary Fiber Prepared from Citrus Peel. Food Hydrocoll. 2021, 110, 106140. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Fang, D.; Zhuang, W.; Chen, C.; Jiang, W.; Zheng, Y. Modification of Insoluble Dietary Fibers from Bamboo Shoot Shell: Structural Characterization and Functional Properties. Int. J. Biol. Macromol. 2018, 120, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Ma, Y.S. The Effect of Extrusion Processing on the Physiochemical Properties of Extruded Orange Pomace. Food Chem. 2016, 192, 363–369. [Google Scholar] [CrossRef]
- Naumann, S.; Schweiggert-Weisz, U.; Martin, A.; Schuster, M.; Eisner, P. Effects of Extrusion Processing on the Physiochemical and Functional Properties of Lupin Kernel Fibre. Food Hydrocoll. 2020, 111, 106222. [Google Scholar] [CrossRef]
- Strati, I.F.; Gogou, E.; Oreopoulou, V. Enzyme and High Pressure Assisted Extraction of Carotenoids from Tomato Waste. Food Bioprod. Process. 2015, 94, 668–674. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Leite, A.K.F.; da Silva, A.R.A.; Fernandes, F.A.N.; Rodrigues, S. Sonication Effect on Bioactive Compounds of Cashew Apple Bagasse. Food Bioproc Tech. 2017, 10, 1854–1864. [Google Scholar] [CrossRef]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and Pulsed Ultrasound-Assisted Extractions of Antioxidants from Pomegranate Peel. Ultrason. Sonochem 2012, 19, 365–372. [Google Scholar] [CrossRef]
- Galván D’Alessandro, L.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of Ultrasound Assisted Extraction of Anthocyanins from Aronia melanocarpa (Black Chokeberry) Wastes. Chem. Eng. Res. Des. 2014, 92, 1818–1826. [Google Scholar] [CrossRef]
- Huang, L.; Ding, X.; Zhao, Y.; Li, Y.; Ma, H. Modification of Insoluble Dietary Fiber from Garlic Straw with Ultrasonic Treatment. J. Food Process Preserv. 2018, 42, e13399. [Google Scholar] [CrossRef]
- Lin, D.; Long, X.; Huang, Y.; Yang, Y.; Wu, Z.; Chen, H.; Zhang, Q.; Wu, D.; Qin, W.; Tu, Z. Effects of Microbial Fermentation and Microwave Treatment on the Composition, Structural Characteristics, and Functional Properties of Modified Okara Dietary Fiber. LWT Food Sci. Technol. 2020, 123, 109059. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Lv, Y.; He, Q. Extraction and Functional Properties of Water-Soluble Dietary Fiber from Apple Pomace. J. Food Process Eng. 2014, 37, 293–298. [Google Scholar] [CrossRef]
- Xu, H.; Jiao, Q.; Yuan, F.; Gao, Y. In Vitro Binding Capacities and Physicochemical Properties of Soluble Fiber Prepared by Microfluidization Pretreatment and Cellulase Hydrolysis of Peach Pomace. LWT 2015, 63, 677–684. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, H.; Zheng, Y.; Wang, D.; Liu, Z.; Deng, Y.; Zhao, Y. Structure, Physicochemical and Bioactive Properties of Dietary Fibers from Akebia trifoliata (Thunb.) Koidz. Seeds Using Ultrasonication/Shear Emulsifying/Microwave-Assisted Enzymatic Extraction. Food Res. Int. 2020, 136, 109348. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, G.; Muthukumar, K. Ultrasound Assisted Metal Chloride Treatment of Sugarcane Bagasse for Bioethanol Production. Renew. Energy 2016, 99, 1092–1102. [Google Scholar] [CrossRef]
- Flórez Pardo, L.M.; Salcedo Mendoza, J.G.; López Galán, J.E. Influence of Pretreatments on Crystallinity and Enzymatic Hydrolysis in Sugar Cane Residues. Braz. J. Chem. Eng. 2019, 36, 131–141. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; González, M. Improving the Efficiency of Antioxidant Extraction from Mango Peel by Using Microwave-Assisted Extraction. Plant Foods Hum. Nutr. 2013, 68, 190–199. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Ma, S.; Yu, S.J.; Zhang, B.; Wang, Z.H. Physicochemical Properties of Sugar Beet Pulp Pectin by Pulsed Electric Field Treatment. Int. J. Food Sci. Technol. 2012, 47, 2538–2544. [Google Scholar] [CrossRef]
- Wang, S.; Xia, J.; De Paepe, K.; Zhang, B.; Fu, X.; Huang, Q.; Van de Wiele, T. Ultra-High Pressure Treatment Controls In Vitro Fecal Fermentation Rate of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace and Induces Butyrogenic Shifts in Microbiota Composition. J. Agric. Food Chem. 2021, 69, 10638–10647. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Ortigoza, V.; Garcia-Amezquita, L.E.; Campanella, O.H.; Hamaker, B.R.; Welti-Chanes, J. Extrusion Effect on in vitro Fecal Fermentation of Fruit Peels Used as Dietary Fiber Sources. LWT 2022, 153, 109059. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.M.; Zhang, X.; Kazem, A.E.; Iacomini, M.; Hamaker, B.R.; Cordeiro, L.M.C. Microwave Treatment Enhances Human Gut Microbiota Fermentability of Isolated Insoluble Dietary Fibers. Food Res. Int. 2021, 143, 110293. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Methodologies for Simulation of Gastrointestinal Digestion of Different Controlled Delivery Systems and Further Uptake of Encapsulated Bioactive Compounds. Trends Food Sci. Technol. 2021, 114, 510–520. [Google Scholar] [CrossRef]
- Koziolek, M.; Grimm, M.; Becker, D.; Iordanov, V.; Zou, H.; Shimizu, J.; Wanke, C.; Garbacz, G.; Weitschies, W. Investigation of PH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap® System. J. Pharm. Sci. 2015, 104, 2855–2863. [Google Scholar] [CrossRef]
- Demigné, C.; Levrat, M.-A.; Behr, S.R.; Moundras, C.; Rémésy, C. Cholesterol-Lowering Action of Guar Gum in the Rat: Changes in Bile Acids and Sterols Excretion and in Enterohepatic Cycling of Bile Acids. Nutr. Res. 1998, 18, 1215–1225. [Google Scholar] [CrossRef]
- Ellegård, L.; Andersson, H. Oat Bran Rapidly Increases Bile Acid Excretion and Bile Acid Synthesis: An Ileostomy Study. Eur. J. Clin. Nutr. 2007, 61, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Q.; Huang, J.; Fang, D.; Zhuang, W. Hypoglycemic Effect of Dietary Fibers from Bamboo Shoot Shell: An in vitro and in vivo Study. Food Chem. Toxicol. 2019, 127, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, X.L.; Wan, Z.; Zou, Y.; Cheng, F.F.; Yang, X.Q. The Physicochemical Properties,: In Vitro Binding Capacities and in vivo Hypocholesterolemic Activity of Soluble Dietary Fiber Extracted from Soy Hulls. Food Funct. 2016, 7, 4830–4840. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, X.; Huang, J.; Yuan, X.; Wang, Q.; Ma, L. Dietary Fiber Extracted from Pomelo Fruitlets Promotes Intestinal Functions, Both in vitro and in vivo. Carbohydr. Polym. 2021, 252, 117186. [Google Scholar] [CrossRef]
- Wei, X.; Yu, L.; Ye, Z.; Ni, Y.; Zhai, Q.; Zhao, J.; Chen, W.; Tian, F. Responses of the Colonic Microbiota and Metabolites during Fermentation of Alginate Oligosaccharides in Normal Individuals: An in vitro and in vivo Study. Food Biosci. 2023, 52, 102413. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Q.; Huang, H.; Hou, K.; Dong, R.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. The Effect of Bound Polyphenols on the Fermentation and Antioxidant Properties of Carrot Dietary Fiber: In Vivo and in vitro. Food Funct. 2020, 11, 748–758. [Google Scholar] [CrossRef]
- Kang, J.; Yin, S.; Liu, J.; Li, C.; Wang, N.; Sun, J.; Li, W.; He, J.; Guo, Q.; Cui, S.W. Fermentation Models of Dietary Fibre in vitro and in vivo—A Review. Food Hydrocoll. 2022, 131, 107685. [Google Scholar] [CrossRef]
DF Source | Global Production (MMT) | Waste (% of Fruit Weight) | Fiber Composition (%) | Total Phenolic Content (A—mg GAE/g DM; B—mg GAE/g Peel/Pomace) | ||
---|---|---|---|---|---|---|
TDF | IDF | SDF | ||||
Apple | 87.24 | 20–40 | Pomace | |||
76.84 78.20 60.10 | 57.87 63.90 46.30 | 18.97 [22] 14.33 [8] 13.80 [11] | 4.80 [9] A | |||
Peel | ||||||
47.80 35.22 | 42.10 28.73 | 5.80 [23] 6.48 [24] | 38.60 [23] A 5.00–5.88 * [25] B | |||
Orange | 78.7 | 50 | Pomace | |||
54.82 | 29.65 | 25.17 [22] | 8.62 [9] A | |||
Peel | ||||||
57.00 | 47.60 | 9.41 [26] | 2.84 [27] B | |||
Lemon, Lime | 20.05 | 50 | Pomace | |||
77.93 74.94 | 50.02 46.93 | 27.91 [28] 28.10 [29] | 13.79 [30] A | |||
Peel | ||||||
53.02 82.14 | 34.54 54.01 | 18.48 [28] 28.01 [29] | 2.23–3.63 * [27] B | |||
Mango | 55.85 | 45 | Pomace | |||
28.05 | 13.80 | 14.25 [31] | 16.1 [31] A | |||
Peel | ||||||
44.70–78.40 * | 28.99–50.33 * | 15.70–28.06 * [32] | 54.67–109.07 * [32] B | |||
Peach | 25.74 | - | Pomace | |||
36.10 54.20 | 23.80 35.40 | 12.30 [33] 19.10 [34] | 0.84 [35] B | |||
Carrot | 44.76 | 30–50 | Pomace | |||
63.60 52.00 | 50.10 42.10 | 13.50 [36] 9.91 [24] | 0.02–0.39 * [37] A | |||
Onion | 99.97 | - | Bottom tissue | |||
40.80 | 30.60 | 10.70 [38] | - | |||
Skin | ||||||
68.30 | 66.60 | 1.70 [38] | 69.23 [39] A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manthei, A.; López-Gámez, G.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies. Foods 2023, 12, 3720. https://doi.org/10.3390/foods12203720
Manthei A, López-Gámez G, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R. Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies. Foods. 2023; 12(20):3720. https://doi.org/10.3390/foods12203720
Chicago/Turabian StyleManthei, Alina, Gloria López-Gámez, Olga Martín-Belloso, Pedro Elez-Martínez, and Robert Soliva-Fortuny. 2023. "Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies" Foods 12, no. 20: 3720. https://doi.org/10.3390/foods12203720
APA StyleManthei, A., López-Gámez, G., Martín-Belloso, O., Elez-Martínez, P., & Soliva-Fortuny, R. (2023). Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies. Foods, 12(20), 3720. https://doi.org/10.3390/foods12203720