Carcass Yields and Meat Composition of Roosters of the Portuguese Autochthonous Poultry Breeds: “Branca”, “Amarela”, “Pedrês Portuguesa”, and “Preta Lusitânica”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size and Animal Management
2.2. Slaughtering and Carcass Traits Evaluations
2.3. Analytical Determinations
2.4. Data Analysis
3. Results
3.1. Carcass Traits Evaluations
3.2. Meat Quality Parameters
3.3. Mineral Composition
3.4. Amino Acid profile
3.5. Fatty Acid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escobedo Del Bosque, C.I.; Grahl, S.; Nolte, T.; Mörlein, D. Meat Quality Parameters, Sensory Properties and Consumer Acceptance of Chicken Meat from Dual-Purpose Crossbreeds Fed with Regional Faba Beans. Foods 2022, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- Brito, N.V.; Gouveia, A.; Leite, J.; Ribeiro, V.; Alves, J.d.M.; Dantas, R. Galinhas de Portugal; Município de Ponte de Lima, Associação Concelhia das Feiras Novas, Associação dos Criadores de Bovinos de Raça Barrosa: Ponte de Lima, Portugal, 2018; ISBN 9789728846732. [Google Scholar]
- Dalle Zotte, A.; Gleeson, E.; Franco, D.; Cullere, M.; Lorenzo, J.M. Proximate Composition, Amino Acid Profile, and Oxidative Stability of Slow-Growing Indigenous Chickens Compared with Commercial Broiler Chickens. Foods 2020, 9, 546. [Google Scholar] [CrossRef] [PubMed]
- Van, D.N.; Moula, N.; Moyse, E.; Duc, L.D.; Dinh, T.V.; Farnir, F. Productive Performance and Egg and Meat Quality of Two Indigenous Poultry Breeds in Vietnam, Ho and Dong Tao, Fed on Commercial Feed. Animals 2020, 10, 408. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Chiofalo, B.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Egg Quality from Siciliana and Livorno Italian Autochthonous Chicken Breeds Reared in Organic System. Animals 2020, 10, 864. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Eleventh Session of the Intergovernmental Technical Working Group on Animal Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; Volume 6, pp. 1–34. [Google Scholar]
- Carolino, N.; Afonso, F.; Calção, S. Avaliação do estatuto de risco de extinção das raças autóctones portuguesas—PDR2020. Gab. Planeam. Políticas Adm. Geral 2013, 1–9. [Google Scholar]
- Fanatico, A.C.; Pillai, P.B.; Emmert, J.L.; Owens, C.M. Meat Quality of Slow- and Fast-Growing Chicken Genotypes Fed Low-Nutrient or Standard Diets and Raised Indoors or with Outdoor Access. Poult. Sci. 2007, 86, 2245–2255. [Google Scholar] [CrossRef]
- González Ariza, A.; Navas González, F.J.; Arando Arbulu, A.; León Jurado, J.M.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Variability of Meat and Carcass Quality from Worldwide Native Chicken Breeds. Foods 2022, 11, 1700. [Google Scholar] [CrossRef]
- Franzoni, A.; Gariglio, M.; Castillo, A.; Soglia, D.; Sartore, S.; Buccioni, A.; Mannelli, F.; Cassandro, M.; Cendron, F.; Castellini, C.; et al. Overview of Native Chicken Breeds in Italy: Small Scale Production and Marketing. Animals 2021, 11, 629. [Google Scholar] [CrossRef]
- Pellattiero, E.; Tasoniero, G.; Cullere, M.; Gleeson, E.; Baldan, G.; Contiero, B.; Dalle Zotte, A. Are Meat Quality Traits and Sensory Attributes in Favor of Slow-Growing Chickens? Animals 2020, 10, 960. [Google Scholar] [CrossRef]
- Meira, M.; Afonso, I.M.; Casal, S.; Lopes, J.C.; Domingues, J.; Ribeiro, V.; Dantas, R.; Leite, J.V.; Brito, N.V. Carcass and Meat Quality Traits of Males and Females of the “Branca” Portuguese Autochthonous Chicken Breed. Animals 2022, 12, 2640. [Google Scholar] [CrossRef]
- Brito, N.V.; Lopes, J.C.; Ribeiro, V.; Dantas, R.; Leite, J.V. Biometric Characterization of the Portuguese Autochthonous Hens Breeds. Animals 2021, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Lordelo, M.; Cid, J.; Cordovil, C.M.D.S.; Alves, S.P.; Bessa, R.J.B.; Carolino, I. A Comparison between the Quality of Eggs from Indigenous Chicken Breeds and That from Commercial Layers. Poult. Sci. 2020, 99, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Commission Internationale de l’Eclairage (CIE). Colorimetry, 2nd ed.; Commission Internationale de l’Eclairage: Vienna, Austria, 1986. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- ISO 2917:1974; Meat and Meat Products—Measurement of pH (Reference Method), 1st ed. ISO: Geneve, Switzerland, 1974.
- Nakamura, M.; Katoh, K. Influence of Thawing Methods on Several Properties of Rabbit Meat. Bull. Ishikawa Prefect. Coll. Agric. 1985, 11, 45–49. [Google Scholar]
- Goutefongea, R. Étude Comparative de Différentes Méthodes de Mesure Du Pouvoir de Rétention d’eau de La Viande de Porc. Ann. Zootech. 1966, 15, 291–295. [Google Scholar] [CrossRef]
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content (Reference Method), 2nd ed. ISO: Geneve, Switzerland, 1997.
- ISO 936:1998; Meat and Meat Products: Determination of Total Ash, 2nd ed. ISO: Geneve, Switzerland, 1998.
- Vale, A.P.; Santos, J.; Brito, N.V.; Peixoto, V.; Carvalho, R.; Rosa, E.; Oliveira, M.B.P.P. Light Influence in the Nutritional Composition of Brassica Oleracea Sprouts. Food Chem. 2015, 178, 292–300. [Google Scholar] [CrossRef]
- Graner, C.A.F.; Meira, D.R.; Mucciolo, P. Determinação do teor de fósforo em produtos cárneos, I. Método para dosagem do fósforo. Rev. Inst. Adolfo Lutz 1975, 35, 55. [Google Scholar]
- ISO 937:1978; Meat and Meat Products: Determination of Nitrogen Content (Reference Method), 1st ed. ISO: Geneve, Switzerland, 1978.
- Cohen, S.A.; De Antonis, K.M. Applications of Amino Acid Derivatization with 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate. Analysis of Feed Grains, Intravenous Solutions and Glycoproteins. J. Chromatogr. A 1994, 661, 25–34. [Google Scholar] [CrossRef]
- Cruz, R.; Casal, S.; Mendes, E.; Costa, A.; Santos, C.; Morais, S. Validation of a Single-Extraction Procedure for Sequential Analysis of Vitamin E, Cholesterol, Fatty Acids, and Total Fat in Seafood. Food Anal. Methods 2013, 6, 1196–1204. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Review Article—Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- IBM Corpoperation. IBM Corpoperation IBM SPSS Statistics for Windows; IBM Corpoperation: Armonk, NY, USA, 2015. [Google Scholar]
- Dalle Zotte, A.; Tasoniero, G.; Baldan, G.; Cullere, M. Meat Quality of Male and Female Italian Padovana and Polverara Slow-Growing Chicken Breeds. Ital. J. Anim. Sci. 2019, 18, 398–404. [Google Scholar] [CrossRef]
- Tasoniero, G.; Cullere, M.; Baldan, G.; Dalle Zotte, A. Productive Performances and Carcase Quality of Male and Female Italian Padovana and Polverara Slow-Growing Chicken Breeds. Ital. J. Anim. Sci. 2018, 17, 530–539. [Google Scholar] [CrossRef]
- Bongiorno, V.; Schiavone, A.; Renna, M.; Sartore, S.; Soglia, D.; Sacchi, P.; Gariglio, M.; Castillo, A.; Mugnai, C.; Forte, C.; et al. Carcass Yields and Meat Composition of Male and Female Italian Slow-Growing Chicken Breeds: Bianca Di Saluzzo and Bionda Piemontese. Animals 2022, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Miguel, J.A.; Ciria, J.; Asenjo, B.; Calvo, J.L. Effect of Caponisation on Growth and on Carcass and Meat Characteristics in Castellana Negra Native Spanish Chickens. Animal 2008, 2, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Cerolini, S.; Vasconi, M.; Sayed, A.A.; Iaffaldano, N.; Mangiagalli, M.G.; Pastorelli, G.; Moretti, V.M.; Zaniboni, L.; Mosca, F. Free-Range Rearing Density for Male and Female Milanino Chickens: Carcass Yield and Qualitative Meat Traits. J. Appl. Poult. Res. 2019, 28, 1349–1358. [Google Scholar] [CrossRef]
- Zanetti, E.; de Marchi, M.; Dalvit, C.; Molette, C.; Remignon, H.; Cassandro, M. Carcase Characteristics and Qualitative Meat Traits of Three Italian Local Chicken Breeds. Br. Poult. Sci. 2010, 51, 629–634. [Google Scholar] [CrossRef]
- da Costa Soares, M.L. Caracterização Fenotípica e Genotípica Das Raças Autóctones de Galináceos Portugueses: Pedrês Portuguesa, Preta Lusitânica e Amarela. Ph.D. Thesis, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Repositório Aberto da Universidade do Porto, Porto, Portugal, 2015. [Google Scholar]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in Carcass and Meat Characteristics between Chicken Indigenous to Northern Thailand (Black-Boned and Thai Native) and Imported Extensive Breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- Hussein, E.O.S.; Suliman, G.M.; Alowaimer, A.N.; Ahmed, S.H.; Abd El-Hack, M.E.; Taha, A.E.; Swelum, A.A. Growth, Carcass Characteristics, and Meat Quality of Broilers Fed a Low-Energy Diet Supplemented with a Multienzyme Preparation. Poult. Sci. 2020, 99, 1988–1994. [Google Scholar] [CrossRef]
- Qiao, M.; Fletcher, D.L.; Northcutt, J.K.; Smith, D.P. The Relationship between Raw Broiler Breast Meat Color and Composition. Poult. Sci. 2002, 81, 422–427. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Meat Quality of Three Chicken Genotypes Reared According to the Organic System. Ital. J. Food Sci. 2002, 14, 401–412. [Google Scholar]
- Pateiro, M.; Rois, D.; Lorenzo, J.M.; Vazquez, J.A.; Franco, D. Effect of Breed and Finishing Diet on Growth Performance, Carcass and Meat Quality Characteristics of Mos Young Hens. Span. J. Agric. Res. 2018, 16, 1–13. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Rois, D.; Arias, A.; Justo, J.R.; Pateiro, M.; López-Pedrouso, M.; Franco, D. Effect of Finishing Diet on Carcass Characteristics and Meat Quality of Mos Cockerel. Span. J. Agric. Res. 2021, 19, 601. [Google Scholar] [CrossRef]
- Amorim, A.; Rodrigues, S.; Pereira, E.; Valentim, R.; Teixeira, A. Effect of Caponisation on Physicochemical and Sensory Characteristics of Chickens. Animal 2016, 10, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Panpipat, W.; Chaijan, M.; Karnjanapratum, S.; Keawtong, P.; Tansakul, P.; Panya, A.; Phonsatta, N.; Aoumtes, K.; Quan, T.H.; Petcharat, T. Quality Characterization of Different Parts of Broiler and Ligor Hybrid Chickens. Foods 2022, 11, 1929. [Google Scholar] [CrossRef]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production Factors Affecting Poultry Carcass and Meat Quality Attributes. Animal 2021, 16 (Suppl. 1), 100331. [Google Scholar] [CrossRef]
- Bowker, B.; Zhuang, H. Relationship between Water-Holding Capacity and Protein Denaturation in Broiler Breast Meat1. Poult. Sci. 2015, 94, 1657–1664. [Google Scholar] [CrossRef]
- Stadig, L.M.; Bas Rodenburg, T.; Reubens, B.; Aerts, J.; Duquenne, B.; Tuyttens, F.A.M. Effects of Free-Range Access on Production Parameters and Meat Quality, Composition and Taste in Slow-Growing Broiler Chickens. Poult. Sci. 2016, 95, 2971–2978. [Google Scholar] [CrossRef]
- Franco, D.; Pateiro, M.; Rois, D.; Vázquez, J.A.; Lorenzo, J.M. Effects of Caponization on Growth Performance, Carcass and Meat Quality of Mos Breed Capons Reared in Free-Range Production System. Ann. Anim. Sci. 2016, 16, 909–929. [Google Scholar] [CrossRef]
- Wideman, N.; O’Bryan, C.A.; Crandall, P.G. Factors Affecting Poultry Meat Colour and Consumer Preferences—A Review. Worlds Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, Color, and Texture of Thai Indigenous and Broiler Chicken Muscles. Poult. Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef]
- Haunshi, S.; Devatkal, S.; Prince, L.L.L.; Ullengala, R.; Ramasamy, K.; Chatterjee, R. Carcass Characteristics, Meat Quality and Nutritional Composition of Kadaknath, a Native Chicken Breed of India. Foods 2022, 11, 3603. [Google Scholar] [CrossRef]
- Choe, J.; Kim, H.Y. Physicochemical Characteristics of Breast and Thigh Meats from Old Broiler Breeder Hen and Old Laying Hen and Their Effects on Quality Properties of Pressed Ham. Poult. Sci. 2020, 99, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Cygan-Szczegielniak, D.; Bogucka, J. Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex. Animals 2021, 11, 3274. [Google Scholar] [CrossRef] [PubMed]
- Souza, X.R.; Faria, P.B.; Bressan, M.C. Proximate Composition and Meat Quality of Broilers Reared under Different Production Systems. Rev. Bras. Cienc. Avic. 2011, 13, 15–20. [Google Scholar] [CrossRef]
- Falowo, A.B. A Comprehensive Review of Nutritional Benefits of Minerals in Meat and Meat Products. Sci. Lett. 2021, 9, 55–64. [Google Scholar] [CrossRef]
- Połtowicz, K.; Doktor, J. Macromineral Concentration and Technological Properties of Poultry Meat Depending on Slaughter Age of Broiler Chickens of Uniform Body Weight. Anim. Sci. Pap. Rep. 2013, 31, 249–259. [Google Scholar]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens. Asian Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef]
- Gálvez, F.; Domínguez, R.; Maggiolino, A.; Pateiro, M.; Carballo, J.; De Palo, P.; Barba, F.J.; Lorenzo, J.M. Meat Quality of Commercial Chickens Reared in Different Production Systems: Industrial, Range and Organic. Ann. Anim. Sci. 2020, 20, 263–285. [Google Scholar] [CrossRef]
- Sager, M.; Lucke, A.; Ghareeb, K.; Allymehr, M.; Zebeli, Q.; Böhm, J. Dietary Deoxynivalenol Does Not Affect Mineral Element Accumulation in Breast and Thigh Muscles of Broiler Chicken. Mycotoxin Res. 2018, 34, 117–121. [Google Scholar] [CrossRef]
- Goluch, Z.; Słupczyńska, M.; Okruszek, A.; Haraf, G.; Wereńska, M.; Wołoszyn, J. The Energy and Nutritional Value of Meat of Broiler Chickens Fed with Various Addition of Wheat Germ Expeller. Animals 2023, 13, 499. [Google Scholar] [CrossRef]
- Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; Neuhäuser-Berthold, M.; et al. Dietary Reference Values for Potassium. EFSA J. 2016, 14, e04592. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Potassium Intake for Adults and Children; World Health Organization (WHO): Geneva, Switzerland, 2012; ISBN 9789241504829. [Google Scholar]
- Zhang, Y.; Xun, P.; Wang, R.; Mao, L.; He, K. Can Magnesium Enhance Exercise Performance? Nutrients 2017, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Cabrol, M.B.; Martins, J.C.; Malhão, L.P.; Alfaia, C.M.; Prates, J.A.M.; Almeida, A.M.; Lordelo, M.; Raymundo, A. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods 2022, 11, 1345. [Google Scholar] [CrossRef]
- Wei, C.; Wang, C.; Su, Y.; Bao, J. Trace Mineral Content of Conventional and Free-Range Broiler Chickens Analyzed by Inductively Coupled Plasma Mass Spectrometry. Chem. Eng. Trans. 2016, 51, 805–810. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3. [Google Scholar]
- Djinovic-Stojanovic, J.M.; Nikolic, D.M.; Vranic, D.V.; Babic, J.A.; Milijasevic, M.P.; Pezo, L.L.; Jankovic, S.D. Zinc and Magnesium in Different Types of Meat and Meat Products from the Serbian Market. J. Food Compos. Anal. 2017, 59, 50–54. [Google Scholar] [CrossRef]
- Bogosavljević-Bošković, S.; Pavlovski, Z.; Petrović, M.D.; Dosković, V.; Rakonjac, S. Broiler Meat Quality: Proteins and Lipids of Muscle Tissue. Afr. J. Biotechnol. 2010, 9, 9177–9182. [Google Scholar]
- Molee, W.; Khosinklang, W.; Tongduang, P.; Thumanu, K.; Yongsawatdigul, J.; Molee, A. Biomolecules, Fatty Acids, Meat Quality, and Growth Performance of Slow-Growing Chickens in an Organic Raising System. Animals 2022, 12, 570. [Google Scholar] [CrossRef]
- da Silva, D.C.F.; de Arruda, A.M.V.; Gonçalves, A.A. Quality Characteristics of Broiler Chicken Meat from Free-Range and Industrial Poultry System for the Consumers. J. Food Sci. Technol. 2017, 54, 1818–1826. [Google Scholar] [CrossRef]
- Chodová, D.; Tůmová, E.; Ketta, M.; Skřivanová, V. Breast Meat Quality in Males and Females of Fast-, Medium- and Slow-Growing Chickens Fed Diets of 2 Protein Levels. Poult. Sci. 2021, 100, 100997. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Mugnai, C.; Amato, M.G.; Piottoli, L.; Cartoni, A.; Castellini, C. Effect of Slaughtering Age in Different Commercial Chicken Genotypes Reared According to the Organic System: 1. Welfare, Carcass and Meat Traits. Ital. J. Anim. Sci. 2014, 13, 467–472. [Google Scholar] [CrossRef]
- Dias, R.C.; Krabbe, E.L.; Bavaresco, C.; Stefanello, T.B.; Kawski, V.L.; Panisson, J.C.; Maiorka, A.; Roll, V.F.B. Effect of Strain and Nutritional Density of the Diet on the Water-Protein Ratio, Fat and Collagen Levels in the Breast and Legs of Broilers Slaughtered at Different Ages. Poult. Sci. 2020, 99, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Rois, D.; Vázquez, J.A.; Lorenzo, J.M. Comparison of Growth Performance, Carcass Components, and Meat Quality between Mos Rooster (Galician Indigenous Breed) and Sasso T-44 Line Slaughtered at 10 Months. Poult. Sci. 2012, 91, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations; World Health Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation, 1st ed.; WHO Press: Geneva, Switzerland, 2007; pp. 135–152. [Google Scholar]
- Tomičić, Z.; Pezo, L.; Spasevski, N.; Lazarević, J.; Čabarkapa, I.; Tomičić, R. Diversity of Amino Acids Composition in Cereals. Food Feed Res. 2022, 49, 12. [Google Scholar] [CrossRef]
- Barido, F.H.; Kim, H.J.; Shin, D.J.; Kwon, J.S.; Kim, H.J.; Kim, D.; Choo, H.J.; Nam, K.C.; Jo, C.; Lee, J.H.; et al. Physicochemical Characteristics and Flavor-Related Compounds of Fresh and Frozen-Thawed Thigh Meats from Chickens. Foods 2022, 11, 3006. [Google Scholar] [CrossRef]
- Cruz, F.L.; Espósito, M.; Nardelli, N.B.d.S.; Fassani, É.J.; Faria, P.B.; Esteves, C. Qualidade Da Carne De Aves Da Raça Rodhe Island Red Criadas Em Sistema Alternativo. Ciência Anim. Bras. 2017, 18, 1–16. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Ruggeri, S.; Mattioli, S.; Castellini, C. Fatty Acid Composition of Meat and Estimated Indices of Lipid Metabolism in Different Poultry Genotypes Reared under Organic System. Poult. Sci. 2012, 91, 2039–2045. [Google Scholar] [CrossRef]
- Bostami, A.R.; Seok Mun, H.; Yang, C.J. Breast and Thigh Meat Chemical Composition and Fatty Acid Profile in Broilers Fed Diet with Dietary Fat Sources. J. Food Process. Technol. 2017, 8, 5. [Google Scholar] [CrossRef]
- Afonso, I.M.; Casal, S.; Lopes, J.C.; Domingues, J.; Vale, A.P.; Meira, M.; Marinho, M.C.; Vaz, P.S.; Brito, N.V. Chemical Composition of the “Galo de Barcelos” (Barcelos Rooster Raw Meat). Animals 2022, 12, 1556. [Google Scholar] [CrossRef]
- Mancinelli, A.C.; Mattioli, S.; Twining, C.; Bosco, A.D.; Donoghue, A.M.; Arsi, K.; Angelucci, E.; Chiattelli, D.; Castellini, C. Poultry Meat and Eggs as an Alternative Source of N-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022, 14, 1969. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Ignatova, M.; Petkov, E.; Stanišic, N. Difference in Fatty Acid Composition and Related Nutritional Indices of Meat between Two Lines of Slow-Growing Chickens Slaughtered at Different Ages. Arch. Anim. Breed. 2016, 59, 319–327. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cartoni Mancinelli, A.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of Fatty Acids in Poultry Meat for Its Characterization in Healthy Human Nutrition: A Comprehensive Application of the Scientific Literature and New Proposals. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Popova, T.; Petkov, E.; Ignatova, M.; Lukic, M. Fatty Acid Composition of Thigh Meat in Two Lines of Slow-Growing Chickens as Affected by the Access to Pasture. Int. J. Innov. Approaches Agric. Res. 2018, 2, 123–132. [Google Scholar] [CrossRef]
Breeds | ||||
---|---|---|---|---|
Traits | BR | AM | PP | PL |
LW | 3.5 a ± 0.4 | 2.8 b ± 0.3 | 2.8 b ± 0.4 | 3.1 ab ± 0.4 |
CW1 | 3.2 a ± 0.4 | 2.5 b ± 0.3 | 2.5 b ± 0.4 | 2.8 ab ± 0.4 |
CW2 | 2.9 a ± 0.4 | 2.3 b ± 0.3 | 2.2 b ± 0.4 | 2.6 ab ± 0.4 |
CW3 | 2.8 a ± 0.3 | 2.0 b ± 0.3 | 1.8 b ± 0.4 | 2.3 ab ± 0.4 |
EW | 0.33 a ± 0.04 | 0.28 b ± 0.03 | 0.27 b ± 0.04 | 0.29 ab ± 0.04 |
CY1 | 91.5 a ± 0.8 | 90.2 a ± 0.9 | 90.8 a ± 1.2 | 91.3 a ± 1.8 |
CY2 | 83.2 a ± 2.5 | 81.5 a ± 3.0 | 81.2 a ± 2.1 | 82.8 a ± 2.5 |
CY3 | 73.8 a ± 1.9 | 71.6 a ± 3.2 | 71.2 a ± 2.0 | 73.5 a ± 2.6 |
EY | 9.4 a ± 0.7 | 9.9 a ± 1.2 | 9.9 a ± 1.3 | 9.3 a ± 0.8 |
Breeds | |||||
---|---|---|---|---|---|
BR | AM | PP | PL | ||
Breast (n = 20) | pH | 5.81 bA ± 0.09 | 5.89 aA ± 0.08 | 5.83 bA ± 0.07 | 5.80 bA ± 0.10 |
WHC (%) | 55.9 abB ± 1.8 | 56.9 aB ± 1.9 | 55.9 abB ± 2.2 | 54.2 bB ± 1.0 | |
PLoss (%) | 12.9 aA ± 2.2 | 14.6 aA ± 1.8 | 14.8 aA ± 1.5 | 14.8 aA ± 1.1 | |
Colour | |||||
L* | 50.1 aA ± 1.9 | 50.1 aA ± 2.6 | 49.8 aA ± 0.6 | 49.9 aA ± 3.0 | |
a* | 4.9 aB ± 2.0 | 4.9 aB ± 1.4 | 5.3 aB ± 2.8 | 4.8 aB ± 1.5 | |
b* | 11.0 bcA ± 3.2 | 11.5 abA ± 2.1 | 13.0 aA ± 3.1 | 9.5 cA ± 3.1 | |
Drumstick (n = 20) | pH | 6.06 aA ± 0.08 | 6.04 aA ± 0.03 | 5.98 bA ± 0.05 | 5.97 bA ± 0.07 |
WHC (%) | 56.7 abA ± 2.0 | 57.9 aA ± 1.81 | 56.3 abA ± 1.7 | 55.6 bB ± 1.7 | |
PLoss (%) | 10.8 aB ± 2.4 | 13.2 aA ± 3.67 | 12.4 aA ± 2.1 | 11.3 aB ± 1.8 | |
Colour | |||||
L* | 40.4 aB ± 2.9 | 40.0 aB ± 1.9 | 40.0 aB ± 1.7 | 41.0 aB ± 2.5 | |
a* | 16.7 aA ± 1.0 | 16.5 aA ± 1.2 | 16.4 aA ± 1.6 | 16.5 aA ± 0.6 | |
b* | 10.4 aA ± 1.7 | 9.9 aB ± 2.2 | 11.8 bB ± 1.9 | 10.1 aA ± 2.3 |
Breeds | |||||
---|---|---|---|---|---|
BR | AM | PP | PL | ||
Breast (n = 20) | Moisture (%) | 73.40 abB ± 0.77 | 73.96 aB ± 1.14 | 73.05 bB ± 0.85 | 73.64 abB ± 1.06 |
Ash (%) | 1.21 aA ± 0.06 | 1.15 bA ± 0.04 | 1.14 bA ± 0.06 | 1.08 cA ± 0.04 | |
Protein (%) | 24.13 aA ± 0.68 | 23.95 aA ± 0.75 | 24.49 aA ± 0.86 | 24.39 aA ± 0.92 | |
Lipids (%) | 0.22 aA ± 0.15 | 0.20 aA ± 0.11 | 0.29 aA ± 0.24 | 0.28 aA ± 0.25 | |
Drumstick (n = 20) | Moisture (%) | 74.22 abA ± 1.12 | 74.75 aA ± 0.88 | 73.95 bA ± 1.07 | 74.25 abA ± 0.86 |
Ash (%) | 1.15 aB ± 0.06 | 1.13 abA ± 0.06 | 1.10 bB ± 0.07 | 1.05 cB ± 0.04 | |
Protein (%) | 20.12 aB ± 0.53 | 20.24 aB ± 0.53 | 20.10 aB ± 0.70 | 20.39 aB ± 0.39 | |
Lipids (%) | 1.03 aB ± 0.47 | 1.10 aB ± 0.92 | 1.15 aB ± 0.48 | 0.89 aB ± 0.29 |
Breeds | |||||
---|---|---|---|---|---|
Minerals (mg/100 g of Meat) | BR | AM | PP | PL | |
Breast (n = 20) | Macroelements | ||||
Phosphorous | 190.0 aA ± 13.6 | 191.8 aA ± 7.74 | 194.5 aA ± 17.4 | 191.8 aA ± 13.1 | |
Potassium | 474.9 aA ± 9.0 | 482.1 aA ± 11.94 | 466.7 aA ± 26.7 | 474.6 aA ± 23.8 | |
Calcium | 12.0 aA ± 3.0 | 11.6 aA ± 3.33 | 12.2 aA ± 4.4 | 10.1 aA ± 3.7 | |
Magnesium | 33.7 aA ± 1.4 | 33.4 aA ± 1.75 | 34.7 aA ± 3.9 | 34.1 aA ± 2.9 | |
Sodium | 145.2 aB ± 7.4 | 147.0 aB ± 7.79 | 145.4 aB ± 15.2 | 145.8 aB ± 10.7 | |
Trace elements | |||||
Iron | 0.96 aB ± 0.23 | 0.98 aB ± 0.25 | 1.04 aB ± 0.24 | 1.01 aB ± 0.21 | |
Zinc | 1.49 aB ± 0.23 | 1.35 abB ± 0.18 | 1.20 bB ± 0.12 | 1.33 abB ± 0.38 | |
Manganese | 0.08 aB ± 0.02 | 0.09 aB ± 0.02 | 0.09 aB ± 0.03 | 0.08 aB ± 0.03 | |
Copper | 0.10 aB ± 0.01 | 0.10 aB ± 0.02 | 0.11 aB ± 0.03 | 0.10 aB ± 0.04 | |
Drumstick (n = 20) | Macroelements | ||||
Phosphorous | 171.7 aB ± 10.69 | 173.4 aB ± 13.8 | 171.6 aB ± 17.9 | 176.8 aB ± 13.0 | |
Potassium | 445.0 aB ± 11.65 | 450.9 aB ± 17.8 | 442.9 aB ± 28.5 | 444.9 aB ± 17.3 | |
Calcium | 12.6 aA ± 2.94 | 12.0 aA ± 3.2 | 12.7 aA ± 4.0 | 10.4 aA ± 3.5 | |
Magnesium | 28.4 aB ± 1.04 | 28.8 aB ± 1.8 | 30.3 aB ± 4.0 | 29.6 aB ± 2.1 | |
Sodium | 190.6 aA ± 9.47 | 191.7 aA ± 8.3 | 190.2 aA ± 14.6 | 186.3 aA ± 9.5 | |
Trace elements | |||||
Iron | 1.81 aA ± 0.31 | 1.74 aA ± 0.24 | 1.76 aA ± 0.21 | 1.82 aA ± 0.15 | |
Zinc | 4.27 aA ± 0.30 | 4.33 aA ± 0.66 | 4.21 aA ± 0.59 | 4.16 aA ± 0.82 | |
Manganese | 0.10 cA ± 0.02 | 0.12 abA ± 0.02 | 0.13 aA ± 0.02 | 0.13 aA ± 0.02 | |
Copper | 0.14 aA ± 0.02 | 0.14 aA ± 0.03 | 0.15 aA ± 0.03 | 0.15 aA ± 0.03 |
Breeds | |||||
---|---|---|---|---|---|
Amino Acids (g/100 g of Meat) | BR | AM | PP | PL | |
Breast (n = 20) | EAAs | ||||
Arginine | 1.24 bA ± 0.07 | 1.16 bA ± 0.20 | 1.29 bA ± 0.27 | 1.71 aA ± 0.08 | |
Histidine | 0.56 abA ± 0.12 | 0.52 bA ± 0.08 | 0.49 bA ± 0.03 | 0.70 aA ± 0.09 | |
Isoleucine | 0.96 bA ± 0.06 | 0.83 bA ± 0.03 | 1.00 bA ± 0.19 | 1.38 aA ± 0.07 | |
Leucine | 1.60 bA ± 0.09 | 1.39 bA ± 0.05 | 1.70 bA ± 0.32 | 2.22 aA ± 0.02 | |
Lysine | 1.48 bcA ± 0.03 | 1.30 cA ± 0.05 | 1.57 bA ± 0.20 | 2.18 aA ± 0.02 | |
Methionine | 0.37 bA ± 0.05 | 0.33 bA ± 0.01 | 0.37 bA ± 0.03 | 0.49 aA ± 0.03 | |
Phenylalanine | 0.84 bA ± 0.07 | 0.77 bA ± 0.12 | 0.83 bA ± 0.16 | 1.18 aA ± 0.09 | |
Threonine | 0.46 bA ± 0.05 | 0.43 bA ± 0.06 | 0.47 bA ± 0.04 | 0.66 aA ± 0.04 | |
Valine | 1.03 bA ± 0.11 | 0.93 bA ± 0.09 | 1.12 bA ± 0.22 | 1.43 aA ± 0.06 | |
⅀EAAs | 8.54 bA ± 0.56 | 7.64 bA ± 0.55 | 8.84 abA ± 1.02 | 11.95 aA ± 1.20 | |
NEAAs | |||||
Alanine | 1.14 bA ± 0.07 | 0.99 bA ± 0.04 | 1.16 bA ± 0.23 | 1.64 aA ± 0.05 | |
Aspartic acid | 1.54 bcA ± 0.10 | 1.32 cA ± 0.02 | 1.55 bA ± 0.15 | 1.97 aA ± 0.14 | |
Cysteine | 0.43 aA ± 0.04 | 0.34 aA ± 0.05 | 0.46 aA ± 0.08 | 0.45 aA ± 0.03 | |
Glutamic acid | 2.46 bA ± 0.22 | 2.17 bA ± 0.07 | 2.48 bA ± 0.41 | 3.28 aA ± 0.20 | |
Glycine | 0.60 bA ± 0.05 | 0.54 bA ± 0.06 | 0.67 bA ± 0.20 | 0.94 aA ± 0.07 | |
Proline | 0.57 bA ± 0.03 | 0.57 bA ± 0.06 | 0.52 bA ± 0.06 | 0.83 aA ± 0.07 | |
Serine | 0.61 bA ± 0.04 | 0.52 cA ± 0.02 | 0.58 bcA ± 0.06 | 0.86 aA ± 0.03 | |
Taurine | 0.91 bA ± 0.04 | 0.83 bA ± 0.14 | 0.94 bA ± 0.22 | 1.30 aA ± 0.05 | |
Tyrosine | 0.39 bA ± 0.04 | 0.37 bA ± 0.05 | 0.45 bA ± 0.09 | 0.51 aA ± 0.03 | |
⅀NEAAs | 8.65 bA ± 0.47 | 7.64 bA ± 0.36 | 8.80 bA ± 1.38 | 11.78 aA ± 0.46 | |
n.i. | 1.04 cA ± 0.07 | 1.22 bA ± 0.05 | 1.24 bA ± 0.10 | 1.54 aA ± 0.08 | |
⅀EAAs/⅀NEAAs | 0.99 aA ± 0.08 | 1.00 aA ± 0.04 | 1.01 aA ± 0.21 | 1.01 aA ± 0.08 | |
⅀EAAs/⅀TotalAAs | 0.50 aA ± 0.02 | 0.50 aA ± 0.01 | 0.50 aA ± 0.04 | 0.50 aA ± 0.02 | |
⅀Taste-active amino acids | 6.81 bA ± 0.46 | 5.97 bA ± 0.17 | 6.91 bA ± 0.80 | 9.35 aA ± 0.47 | |
Drumstick (n = 20) | EAAs | ||||
Arginine | 1.00 abB ± 0.11 | 0.82 bB ± 0.04 | 1.21 aA ± 0.24 | 1.34 aB ± 0.20 | |
Histidine | 0.34 bcB ± 0.07 | 0.29 cB ± 0.04 | 0.42 baB ± 0.01 | 0.46 aB ± 0.06 | |
Isoleucine | 0.87 abA ± 0.10 | 0.68 bB ± 0.03 | 0.95 aA ± 0.18 | 1.02 aB ± 0.10 | |
Leucine | 1.49 abA ± 0.18 | 1.18 bB ± 0.05 | 1.65 aA ± 0.30 | 1.86 aB ± 0.22 | |
Lysine | 1.31 bB ± 0.14 | 1.06 bB ± 0.08 | 1.30 bB ± 0.18 | 1.65 aB ± 0.17 | |
Methionine | 0.32 aA ± 0.05 | 0.27 aA ± 0.05 | 0.33 aA ± 0.06 | 0.34 aB ± 0.03 | |
Phenylalanine | 0.75 abA ± 0.11 | 0.70 bA ± 0.10 | 0.90 abA ± 0.21 | 1.00 aB ± 0.15 | |
Threonine | 0.77 abB ± 0.12 | 0.60 bB ± 0.10 | 0.73 abB ± 0.09 | 0.85 aB ± 0.12 | |
Valine | 0.89 abA ± 0.14 | 0.71 bB ± 0.14 | 0.98 aA ± 0.19 | 1.15 aB ± 0.13 | |
⅀EAAs | 7.74 aB ± 0.38 | 6.30 aB 1.78 | 8.47 aB ± 1.53 | 9.67 aB ± 1.77 | |
NEAAs | |||||
Alanine | 0.99 bcA ± 0.17 | 0.89 cA ± 0.11 | 1.15 bA ± 0.15 | 1.45 aB ± 0.02 | |
Aspartic acid | 1.28 bB ± 0.09 | 1.08 cB ± 0.08 | 1.28 bB ± 0.03 | 1.66 aB ± 0.01 | |
Cysteine | 0.33 aB ± 0.08 | 0.25 aB ± 0.04 | 0.36 aB ± 0.04 | 0.35 aB ± 0.08 | |
Glutamic acid | 2.16 bcB ± 0.09 | 1.89 cB ± 0.18 | 2.37 bB ± 0.37 | 3.02 aB ± 0.07 | |
Glycine | 0.65 bcA ± 0.13 | 0.51 cA ± 0.06 | 0.80 bA ± 0.04 | 1.03 aA ± 0.03 | |
Proline | 0.57 bA ± 0.07 | 0.54 bA ± 0.06 | 0.62 bA ± 0.11 | 0.80 aA ± 0.10 | |
Serine | 0.52 bcB ± 0.02 | 0.48 cA ± 0.06 | 0.58 abA ± 0.10 | 0.80 aB ± 0.02 | |
Taurine | 0.27 abB ± 0.05 | 0.22 bB ± 0.03 | 0.29 abB ± 0.06 | 0.33 aB ± 0.07 | |
Tyrosine | 0.30 aB ± 0.05 | 0.28 aB ± 0.05 | 0.36 aB ± 0.06 | 0.40 aB ± 0.02 | |
⅀NEAAs | 7.07 cB ± 1.67 | 6.14 cB ± 1.08 | 7.81 abB ± 2.06 | 9.84 aB ± 3.31 | |
n.i. | 0.95 cA ± 0.07 | 0.99 cA ± 0.05 | 1.24 bA ± 0.10 | 1.40 aA ± 0.08 | |
⅀EAAs/⅀NEAAs | 1.09 aA ± 0.60 | 1.03 aA ± 0.20 | 1.08 aA ± 0.46 | 0.98 aA ± 1.89 | |
⅀EAAs/⅀TotalAAs | 0.52 aA ± 0.09 | 0.51 aA ± 0.06 | 0.52 aA ± 0.07 | 0.50 aA ± 0.19 | |
⅀Taste-active amino acids | 6.37 bB ± 1.48 | 5.45 bB ± 1.11 | 6.91 aB ± 2.00 | 8.81 aB ± 3.16 |
Breeds | |||||
---|---|---|---|---|---|
Fatty Acid (%) | BR | AM | PP | PL | |
Breast (n = 20) | C14:0 | 0.47 abB ± 0.08 | 0.40 bB ± 0.15 | 0.54 aB ± 0.10 | 0.48 abB ± 0.07 |
C16:0 | 19.83 bA ± 1.96 | 19.44 abA ± 1.72 | 20.86 aA ± 1.21 | 20.68 aA ± 0.64 | |
C18:0 | 9.21 abB ± 0.69 | 9.56 aA ± 0.69 | 8.91 bA ± 0.85 | 9.13 abA ± 0.69 | |
Others | 1.56 abA ± 0.35 | 1.77 aA ± 0.34 | 1.46 bA ± 0.27 | 1.38 bA ± 0.26 | |
⅀SFA | 31.1 aA ± 2.0 | 31.2 aA ± 1.8 | 31.8 aA ± 1.1 | 31.7 aA ± 0.6 | |
C16:1 | 2.54 abB ± 0.63 | 2.24 bB ± 0.76 | 3.01 aB ± 0.90 | 2.53 abB ± 0.55 | |
C18:1 | 34.19 aA ± 2.18 | 32.82 aB ± 3.25 | 32.04 aB ± 3.15 | 33.57 aB ± 3.64 | |
C20:1 | 0.31 aA ± 0.04 | 0.26 abB ± 0.08 | 0.23 bA ± 0.10 | 0.27 abB ± 0.07 | |
Others | 1.49 aA ± 0.41 | 1.72 aA ± 0.51 | 1.53 aA ± 0.50 | 1.43 aA ± 0.29 | |
⅀MUFA | 38.5 aA ± 2.1 | 37.0 aB ± 3.2 | 36.8 aB ± 3.5 | 37.8 aB ± 3.9 | |
C18:2n-6 | 17.05 aB ± 3.30 | 15.71 aB ± 1.80 | 16.35 aB ± 3.49 | 16.97 aB ± 2.51 | |
C20:3n-6 | 0.28 bA ± 0.06 | 0.34 abA ± 0.13 | 0.38 aA ± 0.09 | 0.31 abA ± 0.09 | |
C20:4n-6 | 6.24 aA ± 1.74 | 8.02 aA ± 2.45 | 7.32 aA ± 3.12 | 6.87 aA ± 2.47 | |
⅀n-6-PUFA | 23.7 aA ± 2.2 | 24.1 aA ± 2.3 | 24.2 aA ± 2.2 | 24.3 aA ± 2.1 | |
C18:3n-3 | 0.53 aB ± 0.15 | 0.36 bB ± 0.10 | 0.51 aB ± 0.21 | 0.49 abB ± 0.17 | |
C22:5n-3 | 0.81 aA ± 0.31 | 0.91 aA ± 0.37 | 0.92 aA ± 0.45 | 0.83 aA ± 0.30 | |
C22:6n-3 | 0.73 aA ± 0.21 | 0.79 aA ± 0.23 | 0.84 aA ± 0.44 | 0.84 aA ± 0.33 | |
⅀n-3-PUFA | 2.0 aA ± 0.5 | 2.0 aA ± 0.6 | 2.2 aA ± 0.7 | 2.1 aA ± 0.6 | |
⅀LC-PUFAS | 8.4 aA ± 2.2 | 10.3 aA ± 3.0 | 9.8 aA ± 4.0 | 9.1 aA ± 3.0 | |
⅀PUFA | 26.1 aA ± 2.0 | 26.5 aA ± 2.7 | 26.7 aA ± 2.5 | 26.7 aA ± 2.4 | |
⅀Trans | 0.25 aA ± 0.07 | 0.21 aA ± 0.09 | 0.23 aA ± 0.10 | 0.23 aA ± 0.09 | |
EFA | 23.8 aB ± 2.2 | 24.1 aA ± 2.3 | 24.2 aA ± 2.3 | 24.3 aA ± 2.2 | |
Drumstick (n = 20) | C14:0 | 0.58 bA ± 0.09 | 0.55 bA ± 0.10 | 0.66 aA ± 0.11 | 0.61 abA ± 0.05 |
C16:0 | 19.86 bA ± 2.08 | 19.48 bA ± 1.65 | 21.34 aA ± 1.38 | 20.59 abA ± 1.28 | |
C18:0 | 9.83 aA ± 0.85 | 10.14 aA ± 1.64 | 9.36 aA ± 1.26 | 9.53 aA ± 0.74 | |
Others | 1.22 abB ± 0.18 | 1.35 aB ± 0.35 | 1.13 bB ± 0.08 | 1.14 aB ± 0.18 | |
⅀SFA | 31.5 aA ± 1.8 | 31.5 aA ± 2.1 | 32.5 aA ± 1.8 | 31.9 aA ± 1.6 | |
C16:1 | 3.73 abA ± 0.87 | 3.50 bA ± 1.10 | 4.42 aA ± 0.94 | 3.74 abA ± 0.70 | |
C18:1 | 34.71 bA ± 1.34 | 37.71 aA ± 3.88 | 35.92 abA ± 3.60 | 36.90 abA ± 1.82 | |
C20:1 | 0.28 bcA ± 0.12 | 0.38 aA ± 0.05 | 0.24 cA ± 0.15 | 0.35 abA ± 0.04 | |
Others | 0.95 aB ± 0.11 | 0.89 aB ± 0.22 | 0.91 aB ± 0.21 | 0.83 aB ± 0.11 | |
⅀MUFA | 39.7 bA ± 1.8 | 42.5 aA ± 4.3 | 41.5 abA ± 4.2 | 41.8 abA ± 2.2 | |
C18:2n-6 | 20.80 aA ± 2.38 | 18.59 bA ± 2.13 | 18.76 bA ± 2.16 | 19.31 abA ± 1.75 | |
C20:3n-6 | 0.20 aB ± 0.04 | 0.19 aB ± 0.08 | 0.21 aB ± 0.07 | 0.20 aB ± 0.06 | |
C20:4n-6 | 3.80 aB ± 0.75 | 3.50 aB ± 1.49 | 3.32 aB ± 1.74 | 3.23 aB ± 1.23 | |
⅀n-6-PUFA | 24.9 aA ± 2.2 | 22.4 bA ± 3.3 | 22.4 bB ± 2.7 | 22.9 abA ± 2.4 | |
C18:3n-3 | 0.66 aA ± 0.14 | 0.46 cA ± 0.18 | 0.58 abA ± 0.10 | 0.54 bcA ± 0.10 | |
C22:5n-3 | 0.36 aB ± 0.12 | 0.28 aB ± 0.15 | 0.31 aB ± 0.22 | 0.29 aB ± 0.11 | |
C22:6n-3 | 0.36 aB ± 0.10 | 0.26 bB ± 0.07 | 0.27 bB ± 0.15 | 0.32 abB ± 0.08 | |
⅀n-3-PUFA | 1.35 aB ± 0.24 | 0.98 bB ± 0.32 | 1.13 abB ± 0.31 | 1.13 abB ± 0.19 | |
⅀LC-PUFAS | 5.05 aB ± 0.81 | 4.51 aB ± 1.59 | 4.44 aB ± 2.06 | 4.31 aB ± 1.29 | |
⅀PUFA | 26.7 aA ± 2.4 | 23.7 bB ± 3.4 | 23.9 abB ± 2.9 | 24.4 abB ± 2.5 | |
⅀Trans | 0.28 aA ± 0.06 | 0.30 aB ± 0.13 | 0.30 aB ± 0.08 | 0.31 aB ± 0.07 | |
EFA | 25.26 aA ± 2.27 | 22.55 bA ± 3.30 | 22.66 bB ± 2.72 | 23.08 abA ± 2.48 |
Breeds | |||||
---|---|---|---|---|---|
Nutritional Indices (%) | BR | AM | PP | PL | |
Breast (n = 20) | PUFA/SFA | 0.85 aA ± 0.11 | 0.86 aA ± 0.13 | 0.84 aA ± 0.08 | 0.84 aA ± 0.07 |
n-6/n-3 | 12.4 aB ± 3.4 | 12.5 aB ± 2.4 | 11.7 aB ± 3.3 | 12.3 aB ± 3.9 | |
H/H | 3.01 abA ± 0.46 | 3.02 aA ± 0.08 | 2.76 bA ± 0.17 | 2.85 abA ± 0.10 | |
AI | 0.34 abA ± 0.05 | 0.33 bA ± 0.04 | 0.36 aA ± 0.02 | 0.35 abA ± 0.01 | |
TI | 0.79 aA ± 0.07 | 0.80 aB ± 0.08 | 0.81 aB ± 0.05 | 0.81 aB ± 0.02 | |
Drumstick (n = 20) | PUFA/SFA | 0.85 aA ± 0.11 | 0.76 bB ± 0.13 | 0.74 bB ± 0.08 | 0.77 abB ± 0.11 |
n-6/n-3 | 19.2 bA ± 4.0 | 23.0 aA ± 4.8 | 20.8 abA ± 4.1 | 20.5 abA ± 2.2 | |
H/H | 3.04 aA ± 0.42 | 3.09 aA ± 0.37 | 2.74 bA ± 0.24 | 2.90 abA ± 0.25 | |
AI | 0.34 bA ± 0.04 | 0.33 bA ± 0.04 | 0.37 aA ± 0.04 | 0.35 abA ± 0.03 | |
TI | 0.83 aA ± 0.07 | 0.86 aA ± 0.08 | 0.89 aA ± 0.07 | 0.86 aA ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meira, M.; Afonso, I.M.; Cruz, R.; Lopes, J.C.; Martins, R.S.; Domingues, J.; Ribeiro, V.; Dantas, R.; Casal, S.; Brito, N.V. Carcass Yields and Meat Composition of Roosters of the Portuguese Autochthonous Poultry Breeds: “Branca”, “Amarela”, “Pedrês Portuguesa”, and “Preta Lusitânica”. Foods 2023, 12, 4020. https://doi.org/10.3390/foods12214020
Meira M, Afonso IM, Cruz R, Lopes JC, Martins RS, Domingues J, Ribeiro V, Dantas R, Casal S, Brito NV. Carcass Yields and Meat Composition of Roosters of the Portuguese Autochthonous Poultry Breeds: “Branca”, “Amarela”, “Pedrês Portuguesa”, and “Preta Lusitânica”. Foods. 2023; 12(21):4020. https://doi.org/10.3390/foods12214020
Chicago/Turabian StyleMeira, Márcio, Isabel M. Afonso, Rebeca Cruz, Júlio Cesar Lopes, Raquel S. Martins, Jéssica Domingues, Virgínia Ribeiro, Rui Dantas, Susana Casal, and Nuno V. Brito. 2023. "Carcass Yields and Meat Composition of Roosters of the Portuguese Autochthonous Poultry Breeds: “Branca”, “Amarela”, “Pedrês Portuguesa”, and “Preta Lusitânica”" Foods 12, no. 21: 4020. https://doi.org/10.3390/foods12214020
APA StyleMeira, M., Afonso, I. M., Cruz, R., Lopes, J. C., Martins, R. S., Domingues, J., Ribeiro, V., Dantas, R., Casal, S., & Brito, N. V. (2023). Carcass Yields and Meat Composition of Roosters of the Portuguese Autochthonous Poultry Breeds: “Branca”, “Amarela”, “Pedrês Portuguesa”, and “Preta Lusitânica”. Foods, 12(21), 4020. https://doi.org/10.3390/foods12214020