The Effect of Plasma-Activated Water Combined with Rosemary Extract (Rosmarinus officinalis L.) on the Physicochemical Properties of Frankfurter Sausage during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Rosemary Extraction
- w1 = the weight of plant powder that was macerated and treated with ultrasound (g)
- w2 = the weight of the extract obtained (g)
2.2. The Total Amount of Phenolic (TPC)
2.3. Total Flavonoid Content (TFC)
2.4. Evaluation of Microbiological Properties
2.4.1. Pathogens and Culture Conditions
2.4.2. Minimum Inhibitory Concentration (MIC)
2.4.3. WDA Method
2.5. Preparation of Sausages for Plasma Treatment
2.6. Cold Plasma Treatment
- N: the number of colonies in the treatment sample
- N0: the number of colonies in the control sample
2.7. Microbial Analysis
2.8. pH Value
2.9. Moisture Content
2.10. TBARS Value
2.11. Color
2.12. Texture Profile Analysis
2.13. Sensory Evaluation
2.14. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Properties of Rosemary Extract
3.2. The Evaluation of Rosemary Extract’s Antibacterial Activity
3.3. Microbial Analysis
3.4. pH Value and Moisture Content
3.5. Color
3.6. TBARS Value
3.7. Texture Parameter of Sausages
3.8. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadeh Behbahani, B.; Falah, F.; Vasiee, A.; Tabatabaee Yazdi, F. Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food Sci. Nutr. 2021, 9, 2458–2467. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Hesari, J.; Eskandari, M.H.; Valizadeh, H.; Sirousazar, M. Effect of green tea, stinging nettle and olive leaves extracts on the quality and shelf life stability of frankfurter type sausage. J. Food Process. Preserv. 2017, 41, e13100. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Li, J.; Ding, T.; Zhang, H.; Zhang, X.; Bai, Y. Influences of cold atmospheric plasma on microbial safety, physicochemical and sensorial qualities of meat products. J. Food Sci. Technol. 2018, 55, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Wojeicchowski, J.P.; Marques, C.; Igarashi-Mafra, L.; Coutinho, J.A.; Mafra, M.R. Extraction of phenolic compounds from rosemary using choline chloride–based deep eutectic solvents. Sep. Purif. Technol. 2021, 258, 117975. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Rahman, M.; Hasan, M.S.; Islam, R.; Rana, R.; Sayem, A.; Sad, M.A.A.; Matin, A.; Raposo, A.; Zandonadi, R.P.; Han, H. Plasma-activated water for food safety and quality: A review of recent developments. Int. J. Environ. Res. Public Health 2022, 19, 6630. [Google Scholar] [CrossRef]
- Faria, G.; Souza, M.; Oliveira, J.; Costa, C.; Collares, M.; Prentice, C. Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Res. Int. 2020, 137, 109435. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evid. Based Complement. Altern. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef]
- Yazdi, F.T.; Tanhaeian, A.; Azghandi, M.; Vasiee, A.; Behbahani, B.A.; Mortazavi, S.A.; Roshanak, S. Heterologous expression of thrombocidin-1 in Pichia pastoris: Evaluation of its antibacterial and antioxidant activity. Microb. Pathog. 2019, 127, 91–96. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Noshad, M.; Falah, F. Study of chemical structure, antimicrobial, cytotoxic and mechanism of action of Syzygium aromaticum essential oil on foodborne pathogens. Potravinarstvo 2019, 13, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Falah, F.; Vasiee, A.; Tabatabaei-Yazdi, F.; Moradi, S.; Sabahi, S. Optimization of γ-aminobutyric acid (GABA) production by Lactobacillus spp. from agro-food waste. Biomass Convers. Biorefinery 2022, 1–13. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Yazdi, F.T.; Shahidi, F.; Noorbakhsh, H.; Vasiee, A.; Alghooneh, A. Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria. Microb. Pathog. 2018, 114, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, B.A.; Yazdi, F.T.; Mortazavi, A.; Gholian, M.M.; Zendeboodi, F.; Vasiee, A. Antimicrobial effect of Carboxy Methyl Cellulose (CMC) containing aqueous and ethanolic Eucalyptus camaldulensis L. leaves extract against Streptococcus pyogenes, Pseudomonas aeruginosa and Staphylococcus epidermidis. Arch. Adv. Biosci. 2014, 5, 5919. [Google Scholar] [CrossRef]
- Deng, S.; Ruan, R.; Mok, C.K.; Huang, G.; Lin, X.; Chen, P. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 2007, 72, M62–M66. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, Y.; Wen, R.; Liu, Q.; Chen, Q.; Kong, B. Effect of NaCl substitutes on the physical, microbial and sensory characteristics of Harbin dry sausage. Meat Sci. 2019, 156, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ji, H.; Wang, Q.; Li, B.; Li, K.; Xu, C.; Jiang, C. The effects of starter cultures and plant extracts on the biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. Food Control 2015, 50, 869–875. [Google Scholar] [CrossRef]
- Kargozari, M.; Moini, S.; Basti, A.A.; Emam-Djomeh, Z.; Ghasemlou, M.; Martin, I.R.; Gandomi, H.; Carbonell-Barrachina, Á.A.; Szumny, A. Development of Turkish dry-fermented sausage (sucuk) reformulated with camel meat and hump fat and evaluation of physicochemical, textural, fatty acid and volatile compound profiles during ripening. LWT-Food Sci. Technol. 2014, 59, 849–858. [Google Scholar] [CrossRef]
- Kargozari, M.; Moini, S.; Basti, A.A.; Emam-Djomeh, Z.; Gandomi, H.; Martin, I.R.; Ghasemlou, M.; Carbonell-Barrachina, Á.A. Effect of autochthonous starter cultures isolated from Siahmazgi cheese on physicochemical, microbiological and volatile compound profiles and sensorial attributes of sucuk, a Turkish dry-fermented sausage. Meat Sci. 2014, 97, 104–114. [Google Scholar] [CrossRef]
- Vasiee, A.; Falah, F.; Mortazavi, S.A. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J. Appl. Microbiol. 2022, 133, 3201–3214. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, J.A.B.; Álvarez-Rivera, G.; Alves, R.C.; Costa, A.S.; Machado, S.; Cifuentes, A.; Ibáñez, E.; Oliveira, M.B.P. Comprehensive phenolic and free amino acid analysis of rosemary infusions: Influence on the antioxidant potential. Antioxidants 2021, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.; Pinheiro, R.S.; HELDT, L.F.S.; MOURA, C.d.; Bianchin, M.; Almeida, J.d.F.; REIS, A.S.d.; Ribeiro, I.S.; HAMINIUK, C.W.I.; Carpes, S.T. Rosemary as natural antioxidant to prevent oxidation in chicken burgers. Food Sci. Technol. 2017, 37, 17–23. [Google Scholar] [CrossRef]
- Rashidaie Abandansarie, S.S.; Ariaii, P.; Charmchian Langerodi, M. Effects of encapsulated rosemary extract on oxidative and microbiological stability of beef meat during refrigerated storage. Food Sci. Nutr. 2019, 7, 3969–3978. [Google Scholar] [CrossRef] [PubMed]
- Shirani, K.; Falah, F.; Vasiee, A.; Yazdi, F.T.; Behbahani, B.A.; Zanganeh, H. Effects of incorporation of Echinops setifer extract on quality, functionality, and viability of strains in probiotic yogurt. J. Food Meas. Charact. 2022, 16, 2899–2907. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A.; Marappan, N.; Gajendran, S.S.; Viswanathan, V. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus. J. Intercult. Ethnopharmacol. 2016, 5, 358. [Google Scholar] [CrossRef] [PubMed]
- Perez, S.M.; Biondi, E.; Laurita, R.; Proto, M.; Sarti, F.; Gherardi, M.; Bertaccini, A.; Colombo, V. Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PLoS ONE 2019, 14, e0217788. [Google Scholar] [CrossRef]
- Kamgang-Youbi, G.; Herry, J.M.; Meylheuc, T.; Brisset, J.L.; Bellon-Fontaine, M.N.; Doubla, A.; Naïtali, M. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett. Appl. Microbiol. 2009, 48, 13–18. [Google Scholar] [CrossRef]
- Gao, Y.; Zhuang, H.; Yeh, H.-Y.; Bowker, B.; Zhang, J. Effect of rosemary extract on microbial growth, pH, color, and lipid oxidation in cold plasma-processed ground chicken patties. Innov. Food Sci. Emerg. Technol. 2019, 57, 102168. [Google Scholar] [CrossRef]
- Liu, D.-C.; Tsau, R.-T.; Lin, Y.-C.; Jan, S.-S.; Tan, F.-J. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chem. 2009, 117, 106–113. [Google Scholar] [CrossRef]
- Bae, S.-C.; Park, S.Y.; Choe, W.; Ha, S.-D. Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets. Food Res. Int. 2015, 76, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Rød, S.K.; Hansen, F.; Leipold, F.; Knøchel, S. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiol. 2012, 30, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Fröhling, A.; Durek, J.; Schnabel, U.; Ehlbeck, J.; Bolling, J.; Schlüter, O. Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innov. Food Sci. Emerg. Technol. 2012, 16, 381–390. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yong, H.I.; Park, S.; Choe, W.; Jo, C. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 2013, 13, 1420–1425. [Google Scholar] [CrossRef]
- Choi, S.; Puligundla, P.; Mok, C. Corona discharge plasma jet for inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Ann. Microbiol. 2016, 66, 685–694. [Google Scholar] [CrossRef]
- Lee, H.; Yong, H.I.; Kim, H.-J.; Choe, W.; Yoo, S.J.; Jang, E.J.; Jo, C. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 2016, 25, 1189–1195. [Google Scholar] [CrossRef]
- Yong, H.I.; Park, J.; Kim, H.J.; Jung, S.; Park, S.; Lee, H.J.; Choe, W.; Jo, C. An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Process. Polym. 2018, 15, 1700050. [Google Scholar] [CrossRef]
- Schilling, M.; Pham, A.; Williams, J.; Xiong, Y.; Dhowlaghar, N.; Tolentino, A.; Kin, S. Changes in the physiochemical, microbial, and sensory characteristics of fresh pork sausage containing rosemary and green tea extracts during retail display. Meat Sci. 2018, 143, 199–209. [Google Scholar] [CrossRef]
- Qian, J.; Yan, L.; Ying, K.; Luo, J.; Zhuang, H.; Yan, W.; Zhang, J.; Zhao, Y. Plasma-activated water: A novel frozen meat thawing media for reducing microbial contamination on chicken and improving the characteristics of protein. Food Chem. 2022, 375, 131661. [Google Scholar] [CrossRef]
- Luo, J.; Yan, W.; Nasiru, M.M.; Zhuang, H.; Zhou, G.; Zhang, J. Evaluation of physicochemical properties and volatile compounds of Chinese dried pork loin curing with plasma-treated water brine. Sci. Rep. 2019, 9, 13793. [Google Scholar] [CrossRef]
- Hadinoto, K.; Yang, H.; Zhang, T.; Cullen, P.J.; Prescott, S.; Trujillo, F.J. The antimicrobial effects of mist spraying and immersion on beef samples with plasma-activated water. Meat Sci. 2023, 200, 109165. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, R.; Tian, E.; Liu, D.; Niu, J.; Wang, W.; Qi, Z.; Xia, Y.; Song, Y.; Zhao, Z. Plasma-activated water treatment of fresh beef: Bacterial inactivation and effects on quality attributes. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 4, 113–120. [Google Scholar] [CrossRef]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.-J.; Choe, W.; Jo, C. Color developing capacity of plasma-treated water as a source of nitrite for meat curing. Korean J. Food Sci. Anim. Resour. 2015, 35, 703. [Google Scholar] [CrossRef] [PubMed]
- Herianto, S.; Hou, C.Y.; Lin, C.M.; Chen, H.L. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 583–626. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Tørngren, M.A.; Gunvig, A.; Skibsted, L.H.; Lund, M.N. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Sci. 2013, 93, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Inguglia, E.S.; Oliveira, M.; Burgess, C.M.; Kerry, J.P.; Tiwari, B.K. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: Influence on quality and inactivation of Listeria innocua. Innov. Food Sci. Emerg. Technol. 2020, 59, 102276. [Google Scholar] [CrossRef]
- Liao, X.; Xiang, Q.; Cullen, P.J.; Su, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT 2020, 117, 108649. [Google Scholar] [CrossRef]
- Arjunan, K.P.; Sharma, V.K.; Ptasinska, S. Effects of atmospheric pressure plasmas on isolated and cellular DNA—A review. Int. J. Mol. Sci. 2015, 16, 2971–3016. [Google Scholar] [CrossRef] [PubMed]
Treatment | Nitrate (%) | Rosemary Extract (%) |
---|---|---|
A * | 0 | 100 |
B | 0 | 100 |
C * | 50 | 50 |
D | 50 | 50 |
E * | 75 | 25 |
F | 75 | 25 |
G * | 100 | 0 |
H | 100 | 0 |
Microorganisms | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|
Staphylococcus aureus | 43.7 | 87.5 |
Listeria innocua | 87.5 | 175 |
Pseudomonas aeruginosa | 43.7 | 87.5 |
Escherichia coli | 43.7 | 87.5 |
Zone of Inhibition (mm) | ||||
---|---|---|---|---|
Microorganisms | Well Diffusion Agar | |||
Concentrations (mg/mL) | ||||
50 | 100 | 200 | 400 | |
Pseudomonas aeruginosa | 12.15 ± 0.52 a | 15.24 ± 0.12 b | 18.45 ± 0.42 a | 20.25 ± 0.31 b |
Escherichia coli | 14.31 ± 0.30 c | 17.10 ± 0.13 d | 20.10 ± 0.19 b | 22.08 ± 0.08 c |
Staphylococcus aureus | 12.31 ± 0.31 a | 16.10 ± 0.15 c | 19.10 ± 0.11 c | 19.10 ± 0.12 a |
Listeria innocua | 13.31 ± 0.20 b | 14.10 ± 0.03 a | 20.10 ± 0.12 b | 20.12 ± 0.02 b |
Analysis | Treatment | 1st Day | 6th Day |
---|---|---|---|
pH | Control | 6.59 ± 0.03 a | 6.09 ± 0.02 a |
Optimized sample | 6.32 ± 0.05 b | 6.12 ± 0.04 a | |
Moisture content (%) | Control | 62.14 ± 0.4 a | 58.21 ± 0.22 a |
Optimized sample | 59.14 ± 0.42 b | 58.12 ± 0.12 a | |
L* | Control | 51.94 ± 0.2 a | 49.34 ± 0.12 a |
Optimized sample | 47.04 ± 0.25 b | 47.44 ± 0.11 b | |
a* | Control | 14.91 ± 0.19 a | 12.91 ± 0.01 a |
Optimized sample | 4.21 ± 0.11 b | 0.01 ± 0.01 b | |
b* | Control | 16.91 ± 0.21 a | 15.01 ± 0.29 a |
Optimized sample | 17.29 ± 0.14 b | 16.12 ± 0.01 b |
Analysis | Hardness (g) | Springiness | Cohesiveness (%) |
---|---|---|---|
Control (sample G) | 2995.33 ± 48.65 a | 0.89 ± 0.02 a | 0.50 ± 0.04 a |
Optimized sample (sample B) | 2014.23 ± 52.15 b | 0.91 ± 0.01 a | 0.49 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeraat Pisheh, F.; Falah, F.; Sanaei, F.; Vasiee, A.; Zanganeh, H.; Tabatabaee Yazdi, F.; Ibrahim, S.A. The Effect of Plasma-Activated Water Combined with Rosemary Extract (Rosmarinus officinalis L.) on the Physicochemical Properties of Frankfurter Sausage during Storage. Foods 2023, 12, 4022. https://doi.org/10.3390/foods12214022
Zeraat Pisheh F, Falah F, Sanaei F, Vasiee A, Zanganeh H, Tabatabaee Yazdi F, Ibrahim SA. The Effect of Plasma-Activated Water Combined with Rosemary Extract (Rosmarinus officinalis L.) on the Physicochemical Properties of Frankfurter Sausage during Storage. Foods. 2023; 12(21):4022. https://doi.org/10.3390/foods12214022
Chicago/Turabian StyleZeraat Pisheh, Fatemeh, Fereshteh Falah, Farideh Sanaei, Alireza Vasiee, Hossein Zanganeh, Farideh Tabatabaee Yazdi, and Salam A. Ibrahim. 2023. "The Effect of Plasma-Activated Water Combined with Rosemary Extract (Rosmarinus officinalis L.) on the Physicochemical Properties of Frankfurter Sausage during Storage" Foods 12, no. 21: 4022. https://doi.org/10.3390/foods12214022
APA StyleZeraat Pisheh, F., Falah, F., Sanaei, F., Vasiee, A., Zanganeh, H., Tabatabaee Yazdi, F., & Ibrahim, S. A. (2023). The Effect of Plasma-Activated Water Combined with Rosemary Extract (Rosmarinus officinalis L.) on the Physicochemical Properties of Frankfurter Sausage during Storage. Foods, 12(21), 4022. https://doi.org/10.3390/foods12214022