Application of Thermo-Malaxation Followed by Three-Phase Centrifugation to Enable the Biorefinery of Alperujo, the Main By-Product of Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods
2.1.1. Chemicals
2.1.2. Three Olive Oil Extraction System
2.1.3. Phenolic Extraction
2.1.4. Determination of Phenolic Compounds
2.1.5. Determination of Moisture Content
2.1.6. Determination of Insoluble Solids
2.1.7. Determination of Fat in the Separated Solid and Liquid
2.2. Methodology for the Aqueous Fraction Post-Treatments
2.2.1. Thermal Treatments
2.2.2. Storage of the Aqueous Fraction
2.2.3. Vertical Centrifuge
2.3. Statistical Analysis
3. Results and Discussion
3.1. Phase Separation
3.2. Quantification of Phenolics in the Aqueous Phase
3.3. Mass Balance of Thermo-Malaxation and Three-Phase Centrifugation
3.4. Aqueous Fraction Post-Treatments
3.5. Thermal and Acid Treatments
3.6. Storage Test
3.7. Centrifugation Test
3.8. Final Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Márquez, A.; Hermoso-Fernández, M.; Uceda-Ojeda, M. Extraction of virgin olive oil by two-phase continuous system. Influence of different variables of the process on certain parameters related to oil quality. Grasas Aceites 1995, 46, 299–303. [Google Scholar] [CrossRef]
- Perez, M.; Lopez-Yerena, A.; Lozano-Castellon, J.; Olmo-Cunillera, A.; Lamuela-Raventos, R.M.; Martin-Belloso, O.; Vallverdu-Queralt, A. Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants 2021, 10, 417. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.G.; López, O.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Hydroxytyrosol and derivatives: Isolation, synthesis, and biological properties. Curr. Org. Chem. 2008, 12, 442–463. [Google Scholar] [CrossRef]
- Azzam, M.O.J.; Hazaimeh, S.A. Olive mill wastewater treatment and valorization by extraction/concentration of hydroxytyrosol and other natural phenolics. Process Saf. Environ. Prot. 2021, 148, 495–523. [Google Scholar] [CrossRef]
- Rodríguez, G.; Fernández-Bolaños, J.; Rodríguez, R.; Guillén, R.; Jiménez, A.A. Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenylglycol from olive oil waste. Euro Food Res. Technol. 2007, 224, 733–741. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; Rodríguez, G.; Gómez, E.; Guillén, R.; Jiménez, A.; Heredia, A.; Rodríguez, R. Total Recovery of the Waste of Two-Phase Olive oil Processing: Insolation of Added-Value Compounds. J. Agric. Food Chem. 2004, 52, 5849–5855. [Google Scholar] [CrossRef]
- Serrano, A.; Fermoso, F.G.; Rodríguez-Gutiérrez, G.; Fernandez-Bolaños, J.; Borja, R. Biomethanization of olive mill solid waste after phenols recovery through low-temperature thermal pre-treatment. Waste Manag. 2017, 61, 229–235. [Google Scholar] [CrossRef]
- Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Lama-Muñoz, A.; García, A.; Fernández-Bolaños, J. Properties of lignin, cellulose and hemicelluloses isolated from olive cake and olive stones- binding of water, oil, bile acids and glucose. J. Agric. Food Chem. 2014, 62, 8973–8981. [Google Scholar] [CrossRef]
- Abid, K.; Jabri, J.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. Bioconversion of alperujo into an alternative feed for ruminants by pretreatment with live yeasts and/or exogenous fibrolytic enzymes. Environ. Sci. Pollut. Res. 2023, 30, 64747–64754. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rubio-Senent, F.; Bermúdez-Oria, A.; Fernández-Bolaños, J.; Fernández Prior, A.; Rodríguez-Gutiérrez, G. The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization. Innov. Food Sci. Emerg. Technol. 2019, 55, 11–17. [Google Scholar] [CrossRef]
- Fernández-Prior, M.A.; Charfi, A.; Bermúdez-Oria, A.; Rodríguez-Juan, E.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Deep eutectic solvents improve the biorefinery of alperujo by extraction of bioactive molecules in combination with industrial thermal treatments. Food Bioprod. Process. 2020, 121, 131–142. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington DC, USA, 2017. [Google Scholar]
- Barp, L.; Moret, S.; Purcaro, G. Monitoring and Occurrence of Heavy PAHs in Pomace Oil Supply Chain Using a Double-Step Solid-Phase Purification and HPLC-FLD Determination. Foods 2022, 11, 2737. [Google Scholar] [CrossRef]
- Lama, A.; Rodríguez-Gutiérrez, G.; Rubio-Senet, F.; Gómez-Carretero, A.; Fernández-Bolaños, J. A New Hydrothermal Treatment of Alperujo Enhances the Content on Bioactive Minor Components in Crude Pomace Olive Oil. J. Agric. Food Chem. 2011, 59, 1115–1123. [Google Scholar] [CrossRef]
- Ruiz-Méndez, M.V.; Dobarganes-García, M.C.; Sanchez-Moral, P. Aceite de Orujo de Oliva Comestible Concentrado en Ácidos Triterpénicos, Procedimiento de Refinación Física Utilizado para su Obtención y Recuperación de los Componentes Funcionales Presentes en el Aceite Crudo. National Patent Number ES2332977A1, 22 July 2008. [Google Scholar]
- Claro-Cala, C.M.; Quintela, J.C.; Pérez-Montero, M.; Miñano, J.; de Sotomayor, M.A.; Herrera, M.D.; Rodríguez-Rodríguez, A.R. Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice. Nutrients 2020, 12, 323. [Google Scholar] [CrossRef]
- González-Rámila, S.; Sarriá, B.; Seguido, M.Á.; García-Cordero, J.; Bravo-Clemente, L.; Mateos, R. Effect of Olive Pomace Oil on Cardiovascular Health and Associated Pathologies. Nutrients 2022, 14, 3927. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Fernández-Bolaños, J.; García, A.; Lama-Muñoz, A.; Rodríguez-Gutiérrez, G. Influence of pH on the anti-oxidant phenolics solubilised from hydrothermally treated alperujo. Food Chem. 2017, 219, 339–345. [Google Scholar] [CrossRef]
- Romero, C.; Brenes, M.; García, P.; Garrido, A. Hydroxytyrosol 4-β-d-glucoside, an important phenolic compound in olive fruits and derived products. Food Res. Int. 2002, 50, 3835–3839. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. New Phenolic Compounds Hydrothermally Extracted from the Olive Oil By-Product Alperujo and their Antioxidative Activities. J. Agric. Food Chem. 2012, 60, 1175–1186. [Google Scholar] [CrossRef]
- Rodríguez-Gutiérrez, G.; Lama, A.; Jaramillo, S.; Fuentes-Alventosa, J.M.; Guillén, R.; Jiménez, A.; Rodríguez, R.; Fernández-Bolaños, J. 3,4-Dihydroxyphenylglycol (DHPG): An important Phenolic Compound Present in natural Table Olives. J. Agric. Food Chem. 2009, 57, 6298–6304. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Palacios-Díaz, R.; Fernández-Bolaños, J. A study of the precursors of the natural antioxidant phenol 3,4-dihydroxyphenylglycol in olive oil waste. Food Chem. 2013, 140, 154–160. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; Olmo-Cunillera, A.; Jáuregui, O.; Pérez, M.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Total Analysis of the Major Secoiridoids in Extra Virgin Olive Oil: Validation of an UHPLC-ESI-MS/MS Method. Antioxidants 2021, 10, 540. [Google Scholar] [CrossRef]
- Diamantakos, P.; Giannara, T.; Skarkou, M.; Melliou, E.; Magiatis, P. Influence of Harvest Time and Malaxation Conditions on the Concentration of Individual Phenols in Extra Virgin Olive Oil Related to Its Healthy Properties. Molecules 2020, 25, 2449. [Google Scholar] [CrossRef]
- Fernández-Prior, M.Á.; Fatuarte, J.C.P.; Oria, A.B.; Viera-Alcaide, I.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. New Liquid Source of Antioxidant Phenolic Compounds in the Olive Oil Industry: Alperujo Water. Foods 2020, 9, 962. [Google Scholar] [CrossRef]
- Gómez-de la Cruz, F.J.; Casanova-Peláez, P.J.; Palomar-Carnicero, J.M.; Cruz-Peragón, F. Modeling of olive-oil mill waste rotary dryers: Green energy recovery systems. Appl. Therm. Eng. 2015, 80, 362–373. [Google Scholar] [CrossRef]
- Gómez-Coca, R.B.; Pérez-Camino, M.d.C.; Moreda, W. The Mineral Oil Hydrocarbon Paradox in Olive Pomace Oils. Foods 2023, 12, 434. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Marđokić, A.; Maldonado, A.E.; Klosz, K.; Molnár, M.A.; Vatai, G.; Bánvölgyi, S. Optimization of Conditions for Microwave-Assisted Extraction of Polyphenols from Olive Pomace of Žutica Variety: Waste Valorization Approach. Antioxidants 2023, 12, 1175. [Google Scholar] [CrossRef]
- García Martín, J.F.; Cuevas, M.; Feng, C.-H.; Álvarez Mateos, P.; Torres García, M.; Sánchez, S. Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes 2020, 8, 511. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; Cubero-Cardoso, J.; de la Lama-Calvente, D.; Fernández-Prior, A.; Rodríguez-Gutiérrez, G.; Borja, R. Performance and kinetic evaluation of the anaerobic digestion of olive pomace derived from a novel manufacturing process based on an olive cold-pressing system: Influence of the fruit ripening level. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Tamborrino, A.; Beneduce, L.; Gagliardi, A.; Giuliani, M.; Gatta, G. Composting of Olive Mill Pomace, Agro-Industrial Sewage Sludge and Other Residues: Process Monitoring and Agronomic Use of the Resulting Composts. Foods 2021, 10, 2143. [Google Scholar] [CrossRef]
- Fernández-Prior, A.; Bermúdez-Oria, A.; Millán-Linares, M.C.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; Rodríguez-Gutiérrez, G. Anti-inflammatory and antioxidant activity of hydroxytyrosol and 3,4-dihydroxyphenyglycol purified from table olive effluents. Foods 2021, 10, 227. [Google Scholar] [CrossRef]
Treatment | Solid Phase SP | Pomace Olive Oil POO | Aqueous Phase AP | ||
---|---|---|---|---|---|
Moisture | Fat | g/100 g of Alperujo | g/100 g of Alperujo | ||
% | % Δ | % | |||
65 °C, 1 h | 57.2 ± 0.4 a * | −16.0 | 3.4 ± 0.6 a | 1.8 ± 0.7 | 205.4 ± 2.8 b |
65 °C, 2 h | 55.1 ± 0.8 b | −19.1 | 3.8 ± 0.2 a | 2.4 ± 0.5 | 253.7 ± 3.3 c |
Control | 68.1 ± 4.1 b | - | 5.8 ± 1.0 b | - | - |
Treatment | Aqueous Phase (AP) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Phenolics | Individual Phenolics (mg/L) | |||||||||
mg/L | DHPG | HT | Ty | Glu-HT | ||||||
% | % Δ | mg/L | % Δ | % Δ | % Δ | % Δ | ||||
65 °C, 1 h | 3214.4 ± 24.5 b * | 63.3 | 291.7 ± 8.0 b | 49.8 | 791.5 ± 10.1 b | 92.7 | 205.4 ± 2.8 b | 45.9 | 584.0 ± 12.0 a | −3.8 |
65 °C, 2 h | 3722.1 ± 35.2 c | 92.6 | 335.8 ± 7.9 c | 72.5 | 1012.8 ± 12.2 c | 146.6 | 253.7 ± 3.3 c | 80.2 | 615.3 ± 11.4 a | 1.4 |
Control | 1932.8 ± 18.6 a | - | 194.7 ± 5.5 a | - | 410.7 ± 7.3 a | - | 140.8 ± 4.0 a | - | 607.1 ± 9.8 a | - |
Storage Conditions | Liquid Fraction (Supernatant): Main Simple Phenolics (mg/L) | |||||
---|---|---|---|---|---|---|
Temperature (°C) | Time (Month) | % Insoluble Solids | DHPG | HT | Ty | Glu-HT |
25 | 1 | 12.4 ± 1.5 cd * | 411.2 ± 12.5 c | 1102.5 ± 23.5 b | 250.4 ± 2 c | 420.1 ± 3.8 e |
2 | 8.5 ± 0.8 b | 432.9 ± 14.2 c | 1230.4 ± 30.5 c | 308.6 ± 3.2 d | 280.5 ± 2.1 c | |
3 | 7.0 ± 0.5 b | 458.1 ± 13.0 c | 1594.7 ± 18.9 d | 355.0 ± 1.9 e | 163.9 ± 1.9 b | |
4 | 4.9 ± 0.4 a | 523.0 ± 9.8 d | 1770.5 ± 20.1 e | 430.3 ± 3.5 f | 60.5 ± 0.6 a | |
6 | 1 | 14.7 ± 0.9 d | 364.4 ± 10.7 b | 978.3 ± 12.7 a | 240.2 ± 2.1 c | 352.6 ± 4.4 d |
2 | 12.6 ± 0.8 c | 372.5 ± 10.0 b | 980.5 ± 10.6 a | 232.0 ± 1.1 c | 310.4 ± 3.8 cd | |
3 | 11.2 ± 0.7 bc | 355.3 ± 8.2 ab | 986.1 ± 11.8 a | 200.7 ± 2.8 b | 296.7 ± 2.0 c | |
4 | 10.0 ± 0.3 b | 330.1 ± 7.6 a | 990.8 ± 13.4 a | 163.5 ± 1.5 a | 236.5 ± 1.8 | |
Control | - | 18.7 ± 1.2 e | 387.1 ± 9.1 b | 980.3 ± 12.5 a | 234.5 ± 2.9 c | 511.0 ± 4.5 f |
Sample Treated at 65 °C, 2 h | % Initial Insoluble Solid | Centrifuged Volume (L) | Supernatant Fraction | Precipitated Fraction | ||
---|---|---|---|---|---|---|
% Final Insoluble Solid | Volume (%) | % Insoluble Solid | Volume (%) | |||
No stored | 18.2 ± 2.0 | 5 | - | 32 ± 1 | 18.2 ± 2.0 | 100 |
Stored for 4 months at 25 °C | 4.9 ± 0.4 | 50 | 1.9 ± 0.2 | 38 ± 2 | 17.0 ± 0.8 | 62 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Prior, Á.; Bermúdez-Oria, A.; Rubio-Senent, F.; Villanueva-Lazo, Á.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Application of Thermo-Malaxation Followed by Three-Phase Centrifugation to Enable the Biorefinery of Alperujo, the Main By-Product of Olive Oil. Foods 2023, 12, 4023. https://doi.org/10.3390/foods12214023
Fernández-Prior Á, Bermúdez-Oria A, Rubio-Senent F, Villanueva-Lazo Á, Fernández-Bolaños J, Rodríguez-Gutiérrez G. Application of Thermo-Malaxation Followed by Three-Phase Centrifugation to Enable the Biorefinery of Alperujo, the Main By-Product of Olive Oil. Foods. 2023; 12(21):4023. https://doi.org/10.3390/foods12214023
Chicago/Turabian StyleFernández-Prior, África, Alejandra Bermúdez-Oria, Fátima Rubio-Senent, Álvaro Villanueva-Lazo, Juan Fernández-Bolaños, and Guillermo Rodríguez-Gutiérrez. 2023. "Application of Thermo-Malaxation Followed by Three-Phase Centrifugation to Enable the Biorefinery of Alperujo, the Main By-Product of Olive Oil" Foods 12, no. 21: 4023. https://doi.org/10.3390/foods12214023
APA StyleFernández-Prior, Á., Bermúdez-Oria, A., Rubio-Senent, F., Villanueva-Lazo, Á., Fernández-Bolaños, J., & Rodríguez-Gutiérrez, G. (2023). Application of Thermo-Malaxation Followed by Three-Phase Centrifugation to Enable the Biorefinery of Alperujo, the Main By-Product of Olive Oil. Foods, 12(21), 4023. https://doi.org/10.3390/foods12214023