Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design and Preparation of Ginger Oil Nanoemulsion Using 3^2 Full Factorial Design
2.3. Determination of the Droplet Size of Ginger Oil in O/W Nanoemulsion, Polydispersity Index, and Zeta Potential
2.4. pH Evaluation of the Ginger Oil Nanoemulsion
2.5. Viscosity Evaluation
2.6. Stability Test of Nanoemulsions
2.6.1. Heating Cooling Cycle (Accelerated Stability Study)
2.6.2. Centrifugation Test
2.7. The Selection of the Best Nanoemulsion Formulation
2.8. Transmission Electron Microscopy Image of Best Ginger Oil Nanoemulsion
2.9. Experimental Protocol
2.9.1. Induction of Ehrlich Solid Tumor (EST)
2.9.2. Sample Collection
2.9.3. Mean Survival Time and Percentage Increase in Life Span
2.9.4. Biochemical Assessment of Kidney and Liver Function
2.9.5. Histopathology
2.9.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Formulation Factors on the Droplet Size of Ginger Oil Nanoemulsion
3.2. pH Measurement of Ginger Oil Nanoemulsion
3.3. Viscosity of Ginger Oil Nanoemulsion
3.4. Stability Study of Ginger Oil Nanoemulsion
3.5. Selection of the Optimized Formulation
3.6. Transmission Electron Microscopy (TEM) of Ginger Oil Nanoemulsion
3.7. Experimental Study of Ginger Oil and Ginger Oil Nanoemulsion on EST
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evan, G.I.; Vousden, K.H. Proliferation, Cell Cycle and Apoptosis in Cancer. Nature 2001, 411, 342–348. [Google Scholar] [CrossRef]
- Tam, A. Cancer Remains the Second Most Common Cause of Death in the United States, Accounting for Nearly 1 of Every 4 Deaths, Introduction. Tech. Vasc. Interv. Radiol. 2011, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Nordling, C. A New Theory on the Cancer-Inducing Mechanism. Br. J. Cancer 1953, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Kussaibi, H.A. Correlation of Prognostic and Predictive Indicators in Breast Cancer Patients from the Eastern Province of Saudi Arabia. Saudi Med. J. 2021, 42, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Gardouh, A.R.; Attia, M.A.; Enan, E.T.; Elbahaie, A.M.; Fouad, R.A.; El-Shafey, M.; Youssef, A.M.; Alomar, S.Y.; Ali, Z.A.-E.; Zaitone, S.A. Synthesis and Antitumor Activity of Doxycycline Polymeric Nanoparticles: Effect on Tumor Apoptosis in Solid Ehrlich Carcinoma. Molecules 2020, 25, 3230. [Google Scholar] [CrossRef]
- El Gendy, M.A.; Hassanein, H.; Saleh, F.M.; Karimi-Busheri, F.; Fanta, M.; Yang, X.; Tawfik, D.; Morsy, S.; Fahmy, M.; Hemid, M. Hydrazonoyl Chlorides Possess Promising Antitumor Properties. Life Sci. 2022, 295, 120380. [Google Scholar] [CrossRef] [PubMed]
- Tayel, F.; Mahfouz, M.E.; Salama, A.F.; Mansour, M.A. Ethoxyquin Inhibits the Progression of Murine Ehrlich Ascites Carcinoma through the Inhibition of Autophagy and LDH. Biomedicines 2021, 9, 1526. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Salam, M.; Samy, G.; Bastos, J.; Metwaly, H. Novel Antitumor Activity of the Combined Treatment of Galloylquinic Acids from Copaifera Lucens and Doxorubicin in Solid Ehrlich Carcinoma-Bearing Mice via the Modulation of the Notch Signaling Pathway. Life Sci. 2022, 299, 120497. [Google Scholar] [CrossRef]
- Abdeljalil, S.M.; Wahdan, S.A.; Elghazaly, H.; Tolba, M.F. Insights into the Therapeutic Outcomes of Trimetazidine/Doxorubicin Combination in Ehrlich Solid-Phase Carcinoma Mouse Tumor Model. Life Sci. 2023, 328, 121874. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.; Tousson, E.; El-Masry, T.A.; Altwaijry, N.; Saleh, A. Ehrlich Ascites Carcinoma as Model for Studying the Cardiac Protective Effects of Curcumin Nanoparticles against Cardiac Damage in Female Mice. Environ. Toxicol. 2021, 36, 105–113. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical Aspects and Health Benefits of Ginger (Zingiber officinale) in Both Traditional Chinese Medicine and Modern Industry. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Munda, S.; Dutta, S.; Haldar, S.; Lal, M. Chemical Analysis and Therapeutic Uses of Ginger (Zingiber officinale Rosc.) Essential Oil: A Review. J. Essent. Oil Bear. Plants 2018, 21, 994–1002. [Google Scholar] [CrossRef]
- Farouk, A.; Abdel-Razek, A.G.; Gromadzka, K.; Badr, A.N. Prevention of Aflatoxin Occurrence Using Nuts-Edible Coating of Ginger Oil Nanoemulsions and Investigate the Molecular Docking Strategy. Plants 2022, 11, 2228. [Google Scholar] [CrossRef] [PubMed]
- Bag, B.B. Ginger Processing in India (Zingiber officinale): A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1639–1651. [Google Scholar] [CrossRef]
- Camero, M.; Lanave, G.; Catella, C.; Capozza, P.; Gentile, A.; Fracchiolla, G.; Britti, D.; Martella, V.; Buonavoglia, C.; Tempesta, M. Virucidal Activity of Ginger Essential Oil against Caprine Alphaherpesvirus-1. Vet. Microbiol. 2019, 230, 150–155. [Google Scholar] [CrossRef] [PubMed]
- José-Rita, B.J.; Bertin, G.K.; Ibrahime, S.K.; Yannick, K.; Erick-Kévin, B.G.; Riphin, K.L.; Ceylan, R.; Zengin, G.; Mireille, D. Study of the Chemical and in Vitro Cytotoxic Activities of Essential Oils (EOs) of Two Plants from the Ivorian Flora (Lippia multiflora, Zingiber officinale) and Their Antiviral Activities against Non-Enveloped Viruses. S. Afr. J. Bot. 2022, 151, 387–393. [Google Scholar] [CrossRef]
- Mans, D.R.; Djotaroeno, M.; Friperson, P.; Pawirodihardjo, J. Phytochemical and Pharmacological Support for the Traditional Uses of Zingiberacea Species in Suriname-a Review of the Literature. Pharmacogn. J. 2019, 11, 1511–1525. [Google Scholar] [CrossRef]
- Dissanayake, K.G.C.; Waliwita, W.; Liyanage, R.P. A Review on Medicinal Uses of Zingiber officinale (Ginger). Int. J. Health Sci. Res. 2020, 10, 142–148. [Google Scholar]
- Al-Harrasi, A.; Bhatia, S.; Al-Azri, M.S.; Ullah, S.; Najmi, A.; Albratty, M.; Meraya, A.M.; Mohan, S.; Aldawsari, M.F. Effect of Drying Temperature on Physical, Chemical, and Antioxidant Properties of Ginger Oil Loaded Gelatin-Sodium Alginate Edible Films. Membranes 2022, 12, 862. [Google Scholar] [CrossRef]
- Jeena, K.; Liju, V.B.; Kuttan, R. A Preliminary 13-Week Oral Toxicity Study of Ginger Oil in Male and Female Wistar Rats. Int. J. Toxicol. 2011, 30, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.; Haw, X.R.; Alkatib, H.H.; Sasidharan, S.; Marriott, P.J.; Wong, Y.F. Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber Officinale Roscoe against Human Cervical Cancer Cell Line. Plants 2022, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.-J. Identification of the Active Substances and Mechanisms of Ginger for the Treatment of Colon Cancer Based on Network Pharmacology and Molecular Docking. BioData Min. 2021, 14, 1. [Google Scholar] [CrossRef]
- Ahmad, N.; Sulaiman, S.; Mukti, N.A.; Murad, N.A.; Hamid, N.A.A.; Yusof, Y.A.M. Effects of Ginger Extract (Zingiber Officinale Roscoe) on Antioxidant Status of Hepatocarcinoma Induced Rats. Malays. J. Biochem. Mol. Biol. 2006, 14, 7–12. [Google Scholar]
- Seshadri, V.D.; Oyouni, A.A.A.; Bawazir, W.M.; Alsagaby, S.A.; Alsharif, K.F.; Albrakati, A.; Al-Amer, O.M. Zingiberene Exerts Chemopreventive Activity against 7,12-Dimethylbenz(a)Anthracene-Induced Breast Cancer in Sprague-Dawley Rats. J. Biochem. Mol. Toxicol. 2022, 36, e23146. [Google Scholar] [CrossRef]
- Gan, H.; Zhang, Y.; Zhou, Q.; Zheng, L.; Xie, X.; Veeraraghavan, V.P.; Mohan, S.K. Zingerone Induced Caspase-Dependent Apoptosis in MCF-7 Cells and Prevents 7,12-Dimethylbenz(a)Anthracene-Induced Mammary Carcinogenesis in Experimental Rats. J. Biochem. Mol. Toxicol. 2019, 33, e22387. [Google Scholar] [CrossRef]
- Tayeb, H.H.; Sainsbury, F. Nanoemulsions in Drug Delivery: Formulation to Medical Application. Nanomedicine 2018, 13, 2507–2525. [Google Scholar] [CrossRef]
- Kader, N.; Ansari, N.; Bharti, R.; Mandavi, N.; Sahu, G.K.; Jha, A.K.; Sharma, H. Novel Approaches for Colloidal Drug Delivery System: Nanoemulsion. Res. J. Pharm. Dos. Forms Technol. 2018, 10, 253–258. [Google Scholar] [CrossRef]
- Pagar, K.R.; Darekar, A.B. Nanoemulsion: A New Concept of Delivery System. Asian J. Res. Pharm. Sci. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Gupta, A. Nanoemulsions. In Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 371–384. [Google Scholar]
- Gorjian, H.; Mihankhah, P.; Khaligh, N.G. Influence of Tween Nature and Type on Physicochemical Properties and Stability of Spearmint Essential Oil (Mentha spicata L.) Stabilized with Basil Seed Mucilage Nanoemulsion. J. Mol. Liq. 2022, 359, 119379. [Google Scholar] [CrossRef]
- Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for Better Tomorrow: Applied Aspect of Surfactant Aggregates from Laboratory to Industry. Res. Chem. Intermed. 2019, 45, 6021–6041. [Google Scholar] [CrossRef]
- Kothekar, S.C.; Ware, A.M.; Waghmare, J.T.; Momin, S.A. Comparative Analysis of the Properties of Tween-20, Tween-60, Tween-80, Arlacel-60, and Arlacel-80. J. Dispers. Sci. Technol. 2007, 28, 477–484. [Google Scholar] [CrossRef]
- Brandner, J.D. The Composition of NF-Defined Emulsifiers: Sorbitan Monolaurate, Monopalmitate, Monostearate, Monooleate, Polysorbate 20, Polysorbate 40, Polysorbate 60, and Polysorbate 80. Drug Dev. Ind. Pharm. 1998, 24, 1049–1054. [Google Scholar] [CrossRef]
- Zhou, H.; Qin, D.; Vu, G.; McClements, D.J. Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control. Colloids Interfaces 2023, 7, 21. [Google Scholar] [CrossRef]
- Senapati, S.; Youssef, A.A.A.; Sweeney, C.; Cai, C.; Dudhipala, N.; Majumdar, S. Cannabidiol Loaded Topical Ophthalmic Nanoemulsion Lowers Intraocular Pressure in Normotensive Dutch-Belted Rabbits. Pharmaceutics 2022, 14, 2585. [Google Scholar] [CrossRef]
- Qushawy, M.; Mortagi, Y.; Alshaman, R.; Mokhtar, H.I.; Hisham, F.A.; Alattar, A.; Liang, D.; Enan, E.T.; Eltrawy, A.H.; Alamrani, Z.H. Formulation and Characterization of O/W Nanoemulsions of Hemp Seed Oil for Protection from Steatohepatitis: Analysis of Hepatic Free Fatty Acids and Oxidation Markers. Pharmaceuticals 2022, 15, 864. [Google Scholar] [CrossRef]
- Balestrin, L.A.; Kreutz, T.; Fachel, F.N.S.; Bidone, J.; Gelsleichter, N.E.; Koester, L.S.; Bassani, V.L.; Braganhol, E.; Dora, C.L.; Teixeira, H.F. Achyrocline Satureioides (Lam.) DC (Asteraceae) Extract-Loaded Nanoemulsions as a Promising Topical Wound Healing Delivery System: In Vitro Assessments in Human Keratinocytes (HaCaT) and HET-CAM Irritant Potential. Pharmaceutics 2021, 13, 1241. [Google Scholar] [CrossRef]
- M Azmy, R.; E El Gohary, E.G.; M Mahmoud, D.; AM Salem, D.; A Abdou, M.; S Salama, M. Assessment of Larvicidal Activity of Nanoemulsion from Citrus Sinensis Essential Oil on Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 2019, 23, 61–67. [Google Scholar] [CrossRef]
- Ozkan, B.; Altuntas, E.; Cakir Koc, R.; Budama-Kilinc, Y. Development of Piperine Nanoemulsions: An Alternative Topical Application for Hypopigmentation. Drug Dev. Ind. Pharm. 2022, 48, 117–127. [Google Scholar] [CrossRef]
- Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of Surfactant and Processing Conditions in the Stability of Oil-in-Water Nanoemulsions. J. Food Eng. 2015, 167, 89–98. [Google Scholar] [CrossRef]
- Martínez-Razo, G.; Pires, P.C.; Domínguez-López, M.L.; Veiga, F.; Vega-López, A.; Paiva-Santos, A.C. Norcantharidin Nanoemulsion Development, Characterization, and In Vitro Antiproliferation Effect on B16F1 Melanoma Cells. Pharmaceuticals 2023, 16, 501. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.M.; You, L.; Ghaleb, A.D.; Du, Y. Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves. Foods 2022, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, N.G.; Miastkowska, M.A.; Pulit-Prociak, J.; Dey, P.; Rangarajan, V. Formulation of a Stable Biocosmetic Nanoemulsion Using a Bacillus Lipopeptide as the Green-Emulsifier for Skin-Care Applications. J. Dispers. Sci. Technol. 2023, 44, 2045–2057. [Google Scholar] [CrossRef]
- Patra, C.N.; Mishra, A.; Jena, G.K.; Panigrahi, K.C.; Sruti, J.; Ghose, D.; Sahoo, L. QbD Enabled Formulation Development of Nanoemulsion of Nimodipine for Improved Biopharmaceutical Performance. J. Pharm. Innov. 2023, 1–19. [Google Scholar] [CrossRef]
- Liang, D.; Feng, B.; Li, N.; Su, L.; Wang, Z.; Kong, F.; Bi, Y. Preparation, Characterization, and Biological Activity of Cinnamomum Cassia Essential Oil Nano-Emulsion. Ultrason. Sonochem. 2022, 86, 106009. [Google Scholar] [CrossRef]
- Elsherbiny, N.M.; Younis, N.N.; Shaheen, M.A.; Elseweidy, M.M. The Synergistic Effect between Vanillin and Doxorubicin in Ehrlich Ascites Carcinoma Solid Tumor and MCF-7 Human Breast Cancer Cell Line. Pathol. Res. Pract. 2016, 212, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Komaiko, J.S.; McClements, D.J. Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef]
- Nagy, M.I.; Darwish, K.M.; Kishk, S.M.; Tantawy, M.A.; Nasr, A.M.; Qushawy, M.; Swidan, S.A.; Mostafa, S.M.; Salama, I. Design, Synthesis, Anticancer Activity, and Solid Lipid Nanoparticle Formulation of Indole-and Benzimidazole-Based Compounds as pro-Apoptotic Agents Targeting Bcl-2 Protein. Pharmaceuticals 2021, 14, 113. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and Antioxidant Efficiency of Nanoemulsion-Based Edible Coating Containing Ginger (Zingiber officinale) Essential Oil and Its Effect on Safety and Quality Attributes of Chicken Breast Fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible Films from Essential-Oil-Loaded Nanoemulsions: Physicochemical Characterization and Antimicrobial Properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef]
- Ningsih, I.Y.; Faradisa, H.; Cahyani, M.D.; Rosyidi, V.A.; Hidayat, M.A. The Formulation of Ginger Oil Nanoemulsions of Three Varieties of Ginger (Zingiber officinale Rosc.) as Natural Antioxidant. J. Res. Pharm. (Online) 2020, 24, 914–924. [Google Scholar] [CrossRef]
- Sondari, D.; Tursiloadi, S. The Effect of Surfactan on Formulation and Stability of Nanoemulsion Using Extract of Centella Asiatica and Zingiber Officinale. AIP Conf. Proc. 2018, 2049, 030014. [Google Scholar]
- Aziz, Z.A.A.; Nasir, H.M.; Ahmad, A.; Setapar, S.H.M.; Ahmad, H.; Noor, M.H.M.; Rafatullah, M.; Khatoon, A.; Kausar, M.A.; Ahmad, I. Enrichment of Eucalyptus Oil Nanoemulsion by Micellar Nanotechnology: Transdermal Analgesic Activity Using Hot Plate Test in Rats’ Assay. Sci. Rep. 2019, 9, 13678. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chang, J.W.; Saenger, M.; Deering, A. Thymol Nanoemulsions Formed via Spontaneous Emulsification: Physical and Antimicrobial Properties. Food Chem. 2017, 232, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Cinnamon Oil Nanoemulsion Formulation by Ultrasonic Emulsification: Investigation of Its Bactericidal Activity. J. Nanosci. Nanotechnol. 2013, 13, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Pengon, S.; Chinatangkul, N.; Limmatvapirat, C.; Limmatvapirat, S. The Effect of Surfactant on the Physical Properties of Coconut Oil Nanoemulsions. Asian J. Pharm. Sci. 2018, 13, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Arianto, A.; Cindy, C. Preparation and Evaluation of Sunflower Oil Nanoemulsion as a Sunscreen. Open Access Maced. J. Med. Sci. 2019, 7, 3757. [Google Scholar] [CrossRef] [PubMed]
- Shehabeldine, A.M.; Doghish, A.S.; El-Dakroury, W.A.; Hassanin, M.M.H.; Al-Askar, A.A.; AbdElgawad, H.; Hashem, A.H. Antimicrobial, Antibiofilm, and Anticancer Activities of Syzygium Aromaticum Essential Oil Nanoemulsion. Molecules 2023, 28, 5812. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-X.; Qian, J.; Zhao, L.-N.; Zhao, S.-H. Effects of Volatile Oil from Ginger on the Murine B16 Melanoma Cells and Its Mechanism. Food Funct. 2018, 9, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.H.M.; Makpol, S.; Abdul Hamid, N.A.; Das, S.; Ngah, W.Z.W.; Yusof, Y.A.M. Ginger Extract (Zingiber officinale) Has Anti-Cancer and Anti-Inflammatory Effects on Ethionine-Induced Hepatoma Rats. Clinics 2008, 63, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Alsherbiny, M.A.; Abd-Elsalam, W.H.; El Badawy, S.A.; Taher, E.; Fares, M.; Torres, A.; Chang, D.; Li, C.G. Ameliorative and Protective Effects of Ginger and Its Main Constituents against Natural, Chemical and Radiation-Induced Toxicities: A Comprehensive Review. Food Chem. Toxicol. 2019, 123, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Salihu, M.; Ajayi, B.O.; Adedara, I.A.; Farombi, E.O. 6-Gingerol-Rich Fraction from Zingiber Officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim. J. Diet. Suppl. 2016, 13, 433–448. [Google Scholar] [CrossRef] [PubMed]
Independent Factors | Low (−1) | Medium (0) | High (1) |
---|---|---|---|
X1 = Type of surfactant | Tween 20 | Tween 40 | Tween 80 |
X2 = Concentration of surfactant and cosurfactant (%) | 10 | 20 | 30 |
Dependent variables | Goal | ||
Y1 = Droplet size (nm) | Minimize | ||
Y2 = PDI | Minimize | ||
Y3 = ZP (mV) | Maximize |
F No. | Ginger Oil % (v/v) | Type of Surfactant | Surfactant % (v/v) | Cosurfactant % (v/v) | Water % (v/v) |
---|---|---|---|---|---|
F1 | 20 | Tween 20 | 5 | 5 | 70 |
F2 | 20 | Tween 20 | 10 | 10 | 60 |
F3 | 20 | Tween 20 | 15 | 15 | 50 |
F4 | 20 | Tween 40 | 5 | 5 | 70 |
F5 | 20 | Tween 40 | 10 | 10 | 60 |
F6 | 20 | Tween 40 | 15 | 15 | 50 |
F7 | 20 | Tween 80 | 5 | 5 | 70 |
F8 | 20 | Tween 80 | 10 | 10 | 60 |
F9 | 20 | Tween 80 | 15 | 15 | 50 |
F No. | Droplet Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
F1 | 357.17 ± 3.62 | 0.483 ± 0.10 | −34.60 ± 0.95 |
F2 | 259.83 ± 1.13 | 0.375 ± 0.04 | −27.90 ± 0.20 |
F3 | 162.47 ± 0.85 | 0.297 ± 0.01 | −12.33 ± 1.01 |
F4 | 298.51 ± 1.62 | 0.433 ± 0.02 | −35.17 ± 0.59 |
F5 | 215.43 ± 2.71 | 0.404 ± 0.02 | −28.33 ± 0.46 |
F6 | 109.40 ± 3.08 | 0.353 ± 0.06 | −22.13 ± 0.35 |
F7 | 223.37 ± 2.96 | 0.481 ± 0.04 | −39.33 ± 0.96 |
F8 | 132.75 ± 2.65 | 0.407 ± 0.05 | −31.90 ± 0.61 |
F9 | 56.67 ± 3.10 | 0.340 ± 0.03 | −29.20 ± 0.53 |
Droplet Size (Y1) | ||||||
---|---|---|---|---|---|---|
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
Model | 73,087.72 | 4 | 18,271.93 | 215.82 | <0.0001 | Significant |
A-Type of surfactant | 22,573.57 | 2 | 11,286.78 | 133.32 | 0.0002 | Significant |
B-Amount of Surfactant and cosurfactant | 50,514.16 | 2 | 25,257.08 | 298.33 | <0.0001 | Significant |
Residual | 338.65 | 4 | 84.66 | |||
Cor Total | 73,426.37 | 8 | ||||
PDI (Y2) | ||||||
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
Model | 0.0285 | 4 | 0.0071 | 9.33 | 0.0263 | Significant |
A-Type of surfactant | 0.0009 | 2 | 0.0004 | 0.5815 | 0.6002 | Non-Significant |
B-Amount of Surfactant and cosurfactant | 0.0276 | 2 | 0.0138 | 18.07 | 0.0099 | Significant |
Residual | 0.0031 | 4 | 0.0008 | |||
Cor Total | 0.0316 | 8 | ||||
ZP (Y3) | ||||||
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
Model | 454.93 | 4 | 113.73 | 8.07 | 0.0338 | Significant |
A-Type of surfactant | 110.12 | 2 | 55.06 | 3.90 | 0.1147 | Non-Significant |
B-Amount of Surfactant and cosurfactant | 344.81 | 2 | 172.41 | 12.23 | 0.0198 | Significant |
Residual | 56.40 | 4 | 14.10 | |||
Cor Total | 511.33 | 8 |
F No. | pH | Viscosity (cP) | CI% |
---|---|---|---|
F1 | 6.71 ± 0.02 | 2.68 ± 0.05 | 21.24 ± 0.60 |
F2 | 6.24 ± 0.04 | 7.30 ± 0.32 | 20.56 ± 0.87 |
F3 | 6.18 ± 0.03 | 20.25 ± 0.08 | 18.01 ± 0.26 |
F4 | 6.24 ± 0.04 | 2.61 ± 0.10 | 17.89 ± 0.42 |
F5 | 5.95 ± 0.02 | 6.37 ± 0.16 | 12.50 ± 0.33 |
F6 | 5.87 ± 0.03 | 19.82 ± 0.46 | 11.64 ± 0.49 |
F7 | 6.82 ± 0.02 | 2.31 ± 0.03 | 10.72 ± 0.35 |
F8 | 6.84 ± 0.02 | 6.04 ± 0.19 | 5.59 ± 0.57 |
F9 | 6.87 ± 0.02 | 14.85 ± 0.26 | 1.61 ± 0.25 |
Treatments | Mean Survival Time (Days) | % Increase in Life Span |
---|---|---|
EST | 24 ± 1.528 | - |
EST + Ginger oil | 32 ± 2.08 | 133% |
EST + Ginger oil nano | 47.33 ± 3.52 | 147.9% |
Treatments | ALT (U/L) | AST (U/L) | Creatinine (mg/dL) | BUN (mg/dL) |
---|---|---|---|---|
Normal | 91 ± 8.14 | 219 ± 19.09 | 0.44 ± 0.03 | 36 ± 2.83 |
EST | 334.0 ± 12.1 | 472.3 ± 20.1 | 1.31 ± 0.08 | 76.67 ± 3.587 |
EST + Ginger oil | 294 ± 18.25 | 426.3 ± 14.08 | 1.09 ± 0.07 | 68.27 ± 1.8 |
EST + Ginger oil nano | 211.7 ± 31.95 | 328.0 ± 25.38 | 0.73 ± 0.057 | 57.37 ± 4.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, D.S.; Albalawi, S.F.; Alghrid, S.T.; Alhwity, B.S.; Qushawy, M.; Mortagi, Y.; El-Sherbiny, M.; Prabahar, K.; Elsherbiny, N. Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model. Foods 2023, 12, 4139. https://doi.org/10.3390/foods12224139
Alharbi DS, Albalawi SF, Alghrid ST, Alhwity BS, Qushawy M, Mortagi Y, El-Sherbiny M, Prabahar K, Elsherbiny N. Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model. Foods. 2023; 12(22):4139. https://doi.org/10.3390/foods12224139
Chicago/Turabian StyleAlharbi, Danah S., Shouq F. Albalawi, Sarah T. Alghrid, Basma S. Alhwity, Mona Qushawy, Yasmin Mortagi, Mohamed El-Sherbiny, Kousalya Prabahar, and Nehal Elsherbiny. 2023. "Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model" Foods 12, no. 22: 4139. https://doi.org/10.3390/foods12224139
APA StyleAlharbi, D. S., Albalawi, S. F., Alghrid, S. T., Alhwity, B. S., Qushawy, M., Mortagi, Y., El-Sherbiny, M., Prabahar, K., & Elsherbiny, N. (2023). Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model. Foods, 12(22), 4139. https://doi.org/10.3390/foods12224139