In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Computational Calculations by COSMO-RS
2.3.1. Calculation of the Phase Equilibrium and Compound-Specific KD Values for HPCCC Separation B
2.3.2. Calculation of Compound-Specific Activity Coefficients for Screening of Suitable Combinations of HBAs and HBDs for Stilbenoid Extraction
2.4. HPCCC Apparatus and Separation Procedure
2.5. Analysis of HPCCC Fractions by TLC
2.6. Preparation of Natural Deep Eutectic Solvents
2.7. Ultrasonic-Assisted NADES-Extraction of Resveratrol and ε-Viniferin
2.8. Successive Ultrasonic-Assisted Extraction
2.9. UHPLC-UV Analysis
2.10. HPLC-UV-MS Analysis
2.11. Spectroscopic Measurements
2.12. Statistical Analysis
3. Results and Discussion
3.1. COSMO-RS-Supported Isolation of ε-Viniferin and Resveratrol by Two-Step HPCCC Separation
3.2. COSMO-RS-Supported Selection of HBAs and HBDs for Stilbenoid Extraction
3.3. Choosing a Promising Extraction Method
3.4. Comparison of Extraction Selectivity of NADES Extract vs. Ethanol/Water Extract by HPLC-ESI-MS/MS Measurements
3.5. Extraction of Grapevine Canes with Selected NADES Based on In Silico Calculations by COSMO-RS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rayne, S.; Karacabey, E.; Mazza, G. Grape Cane Waste as a Source of Trans-Resveratrol and Trans-Viniferin: High-Value Phytochemicals with Medicinal and Anti-Phytopathogenic Applications. Ind. Crop. Prod. 2008, 27, 335–340. [Google Scholar] [CrossRef]
- Müller, C.; Ullmann, K.; Wilkens, A.; Winterhalter, P.; Toyokuni, S.; Steinberg, P. Potent Antioxidative Activity of Vineatrol®30 Grapevine-Shoot Extract. Biosci. Biotechnol. Biochem. 2009, 73, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Macke, S.; Jerz, G.; Empl, M.T.; Steinberg, P.; Winterhalter, P. Activity-Guided Isolation of Resveratrol Oligomers from a Grapevine-Shoot Extract Using Countercurrent Chromatography. J. Agric. Food Chem. 2012, 60, 11919–11927. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The in Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Willenberg, I.; Michael, M.; Wonik, J.; Bartel, L.C.; Empl, M.T.; Schebb, N.H. Investigation of the Absorption of Resveratrol Oligomers in the Caco-2 Cellular Model of Intestinal Absorption. Food Chem. 2015, 167, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Ewald, P.; Delker, U.; Winterhalter, P. Quantification of Stilbenoids in Grapevine Canes and Grape Cluster Stems with a Focus on Long-Term Storage Effects on Stilbenoid Concentration in Grapevine Canes. Food Res. Int. 2017, 100, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, X.; Yang, G.; Bi, Y.; Liu, W. Green and Efficient Extraction of Resveratrol from Peanut Roots Using Deep Eutectic Solvents. J. Chem. 2018, 2018, 4091930. [Google Scholar] [CrossRef]
- Wang, J.-D.; Fu, L.-N.; Wang, L.-T.; Cai, Z.-H.; Wang, Y.-Q.; Yang, Q.; Fu, Y.-J. Simultaneous Transformation and Extraction of Resveratrol from Polygonum cuspidatum Using Acidic Natural Deep Eutectic Solvent. Ind. Crop. Prod. 2021, 173, 114140. [Google Scholar] [CrossRef]
- Aryati, W.D.; Azka, K.M.; Mun’im, A. Ultrasonic-Assisted Extraction using a Betaine-based Natural Deep Eutectic Solvent for Resveratrol Extraction from Melinjo (Gnetum gnemon) Seeds. Int. J. Appl. Pharm. 2020, 12, 26–31. [Google Scholar] [CrossRef]
- Petit, E.; Rouger, C.; Griffault, E.; Ferrer, A.; Renouf, E.; Cluzet, S. Optimization of Polyphenols Extraction from Grapevine Canes Using Natural Deep Eutectic Solvents. Biomass Convers. Biorefin. 2023, 1–13. [Google Scholar] [CrossRef]
- Duarte, H.; Aliaño-González, M.J.; Cantos-Villar, E.; Faleiro, L.; Romano, A.; Medronho, B. Sustainable Extraction of Polyphenols from Vine Shoots Using Deep Eutectic Solvents: Influence of the Solvent, Vitis sp., and Extraction Technique. Talanta 2024, 267, 125135. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Kollau, L.J.B.M.; Vis, M.; Van Den Bruinhorst, A.; Esteves, A.C.C.; Tuinier, R. Quantification of the Liquid Window of Deep Eutectic Solvents. Chem. Commun. 2018, 54, 13351–13354. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H.; Mi, A.; Nad-Pal, J.; Poji, M.; et al. The Perspectives of Natural Deep Eutectic Solvents in Agri-Food Sector. Crit. Rev. Food Sci. Nutr. 2019, 60, 2564–2592. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Espino, M.; Fernández, M.A.; Silva, M.F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect 2018, 3, 6122–6125. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2023, 12, 56. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zheng, G.-W.; Zong, M.-H.; Li, N.; Lou, W.-Y. Recent Progress on Deep Eutectic Solvents in Biocatalysis. Bioresour. Bioprocess. 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.; Neyts, E.C.; Cornet, I.; Wijnants, M.; Billen, P. Modeling the Physicochemical Properties of Natural Deep Eutectic Solvents. ChemSusChem 2020, 13, 3789–3804. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. [Google Scholar] [CrossRef]
- Eckert, F.; Klamt, A. Fast Solvent Screening via Quantum Chemistry: COSMO-RS Approach. AIChE J. 2002, 48, 369–385. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Radošević, K.; Bubalo, M.C.; Ganić, K.K.; Redovniković, I.R. COSMOtherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-to-use Extracts from Graševina Grape Pomace. Molecules 2021, 26, 4722. [Google Scholar] [CrossRef] [PubMed]
- Wojeicchowski, J.P.; Ferreira, A.M.; Abranches, D.O.; Mafra, M.R.; Coutinho, J.A.P. Using COSMO-RS in the Design of Deep Eutectic Solvents for the Extraction of Antioxidants from Rosemary. ACS Sustain. Chem. Eng. 2020, 8, 12132–12141. [Google Scholar] [CrossRef]
- Zurob, E.; Cabezas, R.; Villarroel, E.; Rosas, N.; Merlet, G.; Quijada-Maldonado, E.; Romero, J.; Plaza, A. Design of Natural Deep Eutectic Solvents for the Ultrasound-Assisted Extraction of Hydroxytyrosol from Olive Leaves Supported by COSMO-RS. Sep. Purif. Technol. 2020, 248, 117054. [Google Scholar] [CrossRef]
- Zga, N.; Papastamoulis, Y.; Toribio, A.; Richard, T.; Delaunay, J.C.; Jeandet, P.; Renault, J.H.; Monti, J.P.; Mérillon, J.M.; Waffo-Téguo, P. Preparative Purification of Antiamyloidogenic Stilbenoids from Vitis vinifera (Chardonnay) Stems by Centrifugal Partition Chromatography. J. Chromatogr. B 2009, 877, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, J.-C.; Castagnino, C.; Chèze, C.; Vercauteren, J. Preparative Isolation of Polyphenolic Compounds from Vitis vinifera by Centrifugal Partition Chromatography. J. Chromatogr. A 2002, 964, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, I.A. Recent Progress on the Industrial Scale-up of Counter-Current Chromatography. J. Chromatogr. A 2007, 1151, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y. Golden Rules and Pitfalls in Selecting Optimum Conditions for High-Speed Counter-Current Chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.d.N.; Vieira, M.N.; Garrard, I.; Hewitson, P.; Jerz, G.; Leitão, G.G.; Ignatova, S. Schinus terebinthifolius Countercurrent Chromatography (Part II): Intra-Apparatus Scale-up and Inter-Apparatus Method Transfer. J. Chromatogr. A 2016, 1466, 76–83. [Google Scholar] [CrossRef]
- Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the Flowers of Impatiens glandulifera Royle Isolated by High Performance Countercurrent Chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef] [PubMed]
- DeAmicis, C.; Edwards, N.A.; Giles, M.B.; Harris, G.H.; Hewitson, P.; Janaway, L.; Ignatova, S. Comparison of Preparative Reversed Phase Liquid Chromatography and Countercurrent Chromatography for the Kilogram Scale Purification of Crude Spinetoram Insecticide. J. Chromatogr. A 2011, 1218, 6122–6127. [Google Scholar] [CrossRef]
- Hopmann, E.; Arlt, W.; Minceva, M. Solvent System Selection in Counter-Current Chromatography Using Conductor-like Screening Model for Real Solvents. J. Chromatogr. A 2011, 1218, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Hopmann, E.; Frey, A.; Minceva, M. A Priori Selection of the Mobile and Stationary Phase in Centrifugal Partition Chromatography and Counter-Current Chromatography. J. Chromatogr. A 2012, 1238, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Frey, A.; Hopmann, E.; Minceva, M. Selection of Biphasic Liquid Systems in Liquid-Liquid Chromatography Using Predictive Thermodynamic Models. Chem. Eng. Technol. 2014, 37, 1663–1674. [Google Scholar] [CrossRef]
- Bezold, F.; Weinberger, M.E.; Minceva, M. Computational Solvent System Screening for the Separation of Tocopherols with Centrifugal Partition Chromatography Using Deep Eutectic Solvent-Based Biphasic Systems. J. Chromatogr. A 2017, 1491, 153–158. [Google Scholar] [CrossRef]
- Kiene, M.; Blum, S.; Jerz, G.; Winterhalter, P. A Comparison between High-Performance Countercurrent Chromatography and Fast-Centrifugal Partition Chromatography for a One-Step Isolation of Flavonoids from Peanut Hulls Supported by a Conductor like Screening Model for Real Solvents. Molecules 2023, 28, 5111. [Google Scholar] [CrossRef] [PubMed]
- ChemSpider. Royal Society of Chemistry. Available online: http://www.chemspider.com (accessed on 2 August 2022).
- BIOVIA COSMOtherm, Release 2022; Dassault Systèmes. Available online: http://www.3ds.com (accessed on 16 September 2023).
- Shen, Z.; Van Lehn, R.C. Solvent Selection for the Separation of Lignin-Derived Monomers Using the Conductor-like Screening Model for Real Solvents. Ind. Eng. Chem. Res. 2020, 59, 7755–7764. [Google Scholar] [CrossRef]
- Brace, E.C.; Engelberth, A.S. Enhancing Silymarin Fractionation Using the Conductor-like Screening Model for Real Solvents. J. Chromatogr. A 2017, 1487, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Roehrer, S.; Kleigrewe, K.; Minceva, M. Approach for Simultaneous Cannabidiol Isolation and Pesticide Removal from Hemp Extracts with Liquid-Liquid Chromatography. Ind. Crop. Prod. 2020, 155, 112726. [Google Scholar] [CrossRef]
- Diedenhofen, M.; Klamt, A. COSMO-RS as a Tool for Property Prediction of IL Mixtures—A Review. Fluid Phase Equilib. 2010, 294, 31–38. [Google Scholar] [CrossRef]
- Wilkens, A. Isolierung und Strukturaufklärung von Oligomeren Stilbenen aus Weinrebenextrakten; TU Braunschweig: Göttingen, Germany, 2011. [Google Scholar]
- Stahl, E.; Kaltenbach, U. Dünnschicht-Chromatographie: VI. Mitteilung. Spurenanalyse von Zuckergemischen Auf Kieselgur G-Schichten. J. Chromatogr. A 1961, 5, 351–355. [Google Scholar] [CrossRef]
- Brent Friesen, J.; Pauli, G.F. G.U.E.S.S.—A Generally Useful Estimate of Solvent Systems for CCC. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2777–2806. [Google Scholar] [CrossRef]
- Berthod, A.; Friesen, J.B.; Inui, T.; Pauli, G.F. Elution–Extrusion Countercurrent Chromatography: Theory and Concepts in Metabolic Analysis. Anal. Chem. 2007, 79, 3371–3382. [Google Scholar] [CrossRef]
- Abranches, D.O.; Silva, L.P.; Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Understanding the Formation of Deep Eutectic Solvents: Betaine as a Universal Hydrogen Bond Acceptor. ChemSusChem 2020, 13, 4916–4921. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.P.; Fernandez, L.; Conceiçao, J.H.F.; Martins, M.A.R.; Sosa, A.; Ortega, J.; Pinho, S.P.; Coutinho, J.A.P. Design and Characterization of Sugar-Based Deep Eutectic Solvents Using Conductor-like Screening Model for Real Solvents. ACS Sustain. Chem. Eng. 2018, 6, 10724–10734. [Google Scholar] [CrossRef]
- Romero-Pérez, A.I.; Lamuela-Raventós, R.M.; Andrés-Lacueva, C.; de la Torre-Boronat, M.C. Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content. J. Agric. Food Chem. 2001, 49, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Rusjan, D.; Mikulic-Petkovsek, M. Phenolic Responses in 1-Year-Old Canes of Vitis vinifera cv. Chardonnay Induced by Grapevine Yellows (Bois Noir). Aust. J. Grape Wine Res. 2015, 21, 123–134. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of Natural Deep Eutectic Solvents to the Extraction of Anthocyanins from Catharanthus roseus with High Extractability and Stability Replacing Conventional Organic Solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Vinatoru, M. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Wojeicchowski, J.P.; Marques, C.; Igarashi-Mafra, L.; Coutinho, J.A.P.; Mafra, M.R. Extraction of Phenolic Compounds from Rosemary Using Choline Chloride–Based Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 258, 117975. [Google Scholar] [CrossRef]
Solvent Systems | n-Hexane | Ethyl Acetate | Methanol | Water |
---|---|---|---|---|
1 | 1.00 | 1.50 | 1.25 | 1.25 |
2 | 1.00 | 2.33 | 1.67 | 1.67 |
3 | 1.00 | 1.50 | 1.00 | 1.50 |
4 | 1.00 | 2.33 | 1.33 | 2.00 |
Abbreviation | Component 1 (HBA) | Component 2 (HBD) | Molar Ratio | Water Content (wt%) |
---|---|---|---|---|
Ch/Pdiol | Choline chloride | 1,2-Propanediol | 1/5 | 0 |
B/Bdiol | Betaine | 1,4-Butanediol | 1/1 | 30 |
B/Sor | Betaine | Sorbitol | 1/1 | 30 |
Glu/U | Glucose | Urea | 1/3 | 30 |
Glu/U | Glucose | Urea | 1/1 | 60 |
trans-Resveratrol | trans-ε-Viniferin | |
---|---|---|
Working range (mg/L) | 2.5–20 | 2.5–20 |
R2 | 0.9996 | 0.9993 |
Rt (min) | 3.88 | 4.68 |
Limit of detection (mg/L) | 0.43 | 0.61 |
Limit of quantification (mg/L) | 1.50 | 2.10 |
Solvent Systems Calculated by COSMO-RS | Kvin | Kres | αvin/res | Rvin/res |
---|---|---|---|---|
1 | 0.06 | 0.21 | 3.50 | - |
2 | 0.41 | 0.65 | 1.59 | - |
3 | 0.57 | 0.85 | 1.49 | - |
4 | 1.78 | 1.66 | 1.07 | - |
experimental values | 0.44 | 0.85 | 1.94 | 1.75 |
Nr. | Compound | tR [min] | Pseudo-Molecular Ion [M-H]− m/z | Fragment Ions m/z |
---|---|---|---|---|
1 | Restrytisol | 6.2 | 471 | 349, 255 |
2 | Ampelopsin A | 10.1 | 469 | 451, 363 |
3 | trans-Resveratrol | 18.1 | 227 | 185, 175, 159 |
4 | Resveratrol-Dimer | 28.3 | 453 | 435, 411, 359, 347, 289, 253, 225 |
5 | ε-Viniferin | 30.5 | 453 | 435, 411, 359, 347, 289, 253, 225 |
6 | Resveratrol-Dimer | 34.1 | 453 | 439, 383, 269 |
7 | unknown | 34.7 | 329 | 311, 293, 229, 211, 183, 171 |
8 | unknown | 40.2 | 565 | 387, 372, 357, 289,177 |
9 | unknown | 42.4 | 431 | 411, 365, 309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiene, M.; Zaremba, M.; Fellensiek, H.; Januschewski, E.; Juadjur, A.; Jerz, G.; Winterhalter, P. In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES). Foods 2023, 12, 4184. https://doi.org/10.3390/foods12224184
Kiene M, Zaremba M, Fellensiek H, Januschewski E, Juadjur A, Jerz G, Winterhalter P. In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES). Foods. 2023; 12(22):4184. https://doi.org/10.3390/foods12224184
Chicago/Turabian StyleKiene, Mats, Malte Zaremba, Hendrik Fellensiek, Edwin Januschewski, Andreas Juadjur, Gerold Jerz, and Peter Winterhalter. 2023. "In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES)" Foods 12, no. 22: 4184. https://doi.org/10.3390/foods12224184
APA StyleKiene, M., Zaremba, M., Fellensiek, H., Januschewski, E., Juadjur, A., Jerz, G., & Winterhalter, P. (2023). In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES). Foods, 12(22), 4184. https://doi.org/10.3390/foods12224184