Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Cheese Making and Ripening Process
2.3. Sampling Procedure
2.4. Chemical and Instrumental Analyses
2.4.1. Lipolysis and Oxidative Stability in Cheese
2.4.2. Fatty Acid Profile
2.5. Microbiological Analyses
2.6. Statistical Analyses
3. Results and Discussions
3.1. Chemical and Instrumental Analyses
3.1.1. Lipolysis and Oxidative Stability in Cheese
3.1.2. Fatty Acid Profile
3.2. Microbiological Profile
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salzano, A.; Licitra, F.; D’Onofrio, N.; Balestrieri, M.L.; Limone, A.; Campanile, G.; D’Occhio, M.J.; Neglia, G. Short Communication: Space Allocation in Intensive Mediterranean Buffalo Production Influences the Profile of Functional Biomolecules in Milk and Dairy Products. J. Dairy Sci. 2019, 102, 7717–7722. [Google Scholar] [CrossRef] [PubMed]
- OECD/FAO Chapter 7. Dairy and Dairy Products. In OECD-FAO Agricultural Outlook 2022–2031; FAO: Rome, Italy; OECD: Paris, France, 2022; pp. 212–223.
- Arora, S.; Khetra, Y. Buffalo Milk Cheese, 4th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 42, ISBN 9780122636530. [Google Scholar]
- Masucci, F.; De Rosa, G.; Barone, C.M.A.; Napolitano, F.; Grasso, F.; Uzun, P.; Di Francia, A. Effect of Group Size and Maize Silage Dietary Levels on Behaviour, Health, Carcass and Meat Quality of Mediterranean Buffaloes. Animal 2016, 10, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Nayak, C.M.; Ramachandra, C.T.; Kumar, G.M. A Comprehensive Review on Composition of Donkey Milk in Comparison to Human, Cow, Buffalo, Sheep, Goat, Camel and Horse Milk. Mysore J. Agric. Sci. 2020, 54, 42–50. [Google Scholar]
- Salzano, A.; Neglia, G.; D’Onofrio, N.; Balestrieri, M.L.; Limone, A.; Cotticelli, A.; Marrone, R.; Anastasio, A.; D’Occhio, M.J.; Campanile, G. Green Feed Increases Antioxidant and Antineoplastic Activity of Buffalo Milk: A Globally Significant Livestock. Food Chem. 2021, 344, 128669. [Google Scholar] [CrossRef]
- Fox, P.F.; Cogan, T.M.; Guinee, T.P. Factors That Affect the Quality of Cheese, 4th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 1, ISBN 9780122636530. [Google Scholar]
- Niro, S.; Fratianni, A.; Mignogna, R.; Tremonte, P.; Sorrentino, E.; Panfili, G. An Innovative Pre-Ripening Drying Method to Improve the Quality of Pasta Filata Cheeses. J. Dairy Res. 2012, 79, 397–404. [Google Scholar] [CrossRef] [PubMed]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The Eu- 546 ropean Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, 6971. [Google Scholar] [CrossRef]
- Batool, M.; Nadeem, M.; Imran, M.; Khan, I.T.; Bhatti, J.A.; Ayaz, M. Lipolysis and Antioxidant Properties of Cow and Buffalo Cheddar Cheese in Accelerated Ripening. Lipids Health Dis. 2018, 17, 228. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, P.; Coker, C.; Crawford, R.; Dodds, C.; Johnston, K.; McKenna, A.; White, N. Effect of Cheese PH and Ripening Time on Model Cheese Textural Properties and Proteolysis. Int. Dairy J. 2001, 11, 455–464. [Google Scholar] [CrossRef]
- Sözeri Atik, D.; Akın, N.; Akal, H.C.; Koçak, C. The Determination of Volatile Profile during the Ripening Period of Traditional Tulum Cheese from Turkey, Produced in Anamur in the Central Taurus Region and Ripened in Goatskin. Int. Dairy J. 2021, 117, 104991. [Google Scholar] [CrossRef]
- Sihufe, G.A.; Zorrilla, S.E.; Perotti, M.C.; Wolf, I.V.; Zalazar, C.A.; Sabbag, N.G.; Costa, S.C.; Rubiolo, A.C. Acceleration of Cheese Ripening at Elevated Temperature. An Estimation of the Optimal Ripening Time of a Traditional Argentinean Hard Cheese. Food Chem. 2010, 119, 101–107. [Google Scholar] [CrossRef]
- Arora, S.; Sindhu, J.S.; Khetra, Y. Buffalo Milk. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 5, pp. 784–796. ISBN 9780128187661. [Google Scholar]
- Mordenti, A.L.; Brogna, N.; Formigoni, A. REVIEW: The Link between Feeding Dairy Cows and Parmigiano-Reggiano Cheese Production Area. Prof. Anim. Sci. 2017, 33, 520–529. [Google Scholar] [CrossRef]
- Sacchi, R.; Marrazzo, A.; Masucci, F.; Di Francia, A.; Serrapica, F.; Genovese, A. Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese. Molecules 2020, 25, 1332. [Google Scholar] [CrossRef]
- Serrapica, F.; Uzun, P.; Masucci, F.; Napolitano, F.; Braghieri, A.; Genovese, A.; Sacchi, R.; Romano, R.; Barone, C.M.A.; Di Francia, A. Hay or Silage? How the Forage Preservation Method Changes the Volatile Compounds and Sensory Properties of Caciocavallo Cheese. J. Dairy Sci. 2020, 103, 1391–1403. [Google Scholar] [CrossRef]
- Pulinas, L.; Spanu, C.; Idda, I.; Ibba, I.; Nieddu, G.; Virdis, S.; Scarano, C.; Piras, F.; Spano, N.; Sanna, G.; et al. Production of Farmstead Lactose-Free Pecorino Di Osilo and Ricotta Cheeses from Sheep’s Milk. Ital. J. Food Saf. 2017, 6, 6353. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.T.; Guggisberg, D.; Badertscher, R.; Wechsler, D.; Wittwer, A.; Irmler, S. The Effect of Lactobacillus Buchneri and Lactobacillus Parabuchneri on the Eye Formation of Semi-Hard Cheese. Int. Dairy J. 2013, 33, 120–128. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC: Gaithersburg, MD, USA, 2005; ISBN 0935584773. [Google Scholar]
- Khan, M.A.S.; Islam, M.N.; Siddiki, M.S.R. Physical and Chemical Composition of Swamp and Water Buffalo Milk: A Comparative Study. Ital. J. Anim. Sci. 2007, 6, 1067–1070. [Google Scholar] [CrossRef]
- Romano, R.; Giordano, A.; Chianese, L.; Addeo, F.; Musso, S.S. Triacylglycerols, Fatty Acids and Conjugated Linoleic Acids in Italian Mozzarella Di Bufala Campana Cheese. J. Food Compos. Anal. 2011, 24, 244–249. [Google Scholar] [CrossRef]
- De Luca, L.; Aiello, A.; Pizzolongo, F.; Valentino, M.; Torrieri, E.; Romano, R. Quality indices of cheese oxidation during storage. Ital. J. Food Sci. 2019, 27–31. [Google Scholar]
- Ambrosio, R.L.; Smaldone, G.; Di Paolo, M.; Vollano, L.; Ceruso, M.; Anastasio, A.; Marrone, R. Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals 2021, 11, 3060. [Google Scholar] [CrossRef] [PubMed]
- Ercolini, D.; Russo, F.; Ferrocino, I.; Villani, F. Molecular Identification of Mesophilic and Psychrotrophic Bacteria from Raw Cow’s Milk. Food Microbiol. 2009, 26, 228–231. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Houf, K.; Joossens, M.; Yu, Z.; Proroga, Y.T.R.; Murru, N. Evaluation of Microbial Contamination of Different Pork Carcass Areas through Culture-Dependent and Independent Methods in Small-Scale Slaughterhouses. Int. J. Food Microbiol. 2021, 336, 108902. [Google Scholar] [CrossRef]
- Jeong, S.; Hong, J.S.; Kim, J.O.; Kim, K.H.; Lee, W.; Bae, I.K.; Lee, K.; Jeong, S.H. Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Ann. Lab. Med. 2016, 36, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, P.K. Bypass Fat in Dairy Ration—A Review. Anim. Nutr. Feed. Technol. 2013, 13, 147–163. [Google Scholar]
- Gebreyowhans, S.; Zhang, S.; Pang, X.; Yang, B.; Wang, T.; Wu, Z.; Lu, J.N. Changes in Texture, Composition and Sensory Characteristics of Camembert Cheese Made from a Mixture of Goat Milk and Cow Milk during Ripening. Int. J. Dairy Technol. 2020, 73, 604–615. [Google Scholar] [CrossRef]
- Rani, S.; Jagtap, S. Acceleration of Swiss Cheese Ripening by Microbial Lipase without Affecting Its Quality Characteristics. J. Food Sci. Technol. 2019, 56, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, N.; Silva, P.; Garcia, J.R.; Sousa, I. Estimation of Serpa Cheese Ripening Time Using Multiple Linear Regression (MLR) Considering Rheological, Physical and Chemical Data. J. Dairy Res. 2008, 75, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Picque, D.; Guillemin, H.; Mirade, P.S.; Didienne, R.; Lavigne, R.; Perret, B.; Montel, M.C.; Corrieu, G. Effect of Sequential Ventilation on Cheese Ripening and Energy Consumption in Pilot Ripening Rooms. Int. Dairy J. 2009, 19, 489–497. [Google Scholar] [CrossRef]
- Dias, J.M.; Lage, P.; Alvarenga, N.; Garcia, J.; Borrega, J.; Santos, M.T.; Lampreia, C.; Coelho, L.; Pássaro, J.; Martins, J.; et al. Impact of Environmental Conditions on the Ripening of Queijo de Évora PDO Cheese. J. food Sci. Technol. 2020, 58, 3942–3952. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, S.; Fresno, M. Effect of the Ripening Period and Intravarietal Comparison on Chemical, Textural and Sensorial Characteristics of Palmero (PDO) Goat Cheese. Animal 2021, 11, 58. [Google Scholar] [CrossRef]
- Guinee, T.P. Relationships, Protein in Cheese and Cheese Products: Structure-Function, 4th ed.; Paul, L.H., McSweeney, J., O’Mahony, A., Eds.; Springer: New York, NY, USA, 2016; Volume 1, ISBN 9781493928002. [Google Scholar]
- Wadhwani, R.; McMahon, D.J. Color of Low-Fat Cheese Influences Flavor Perception and Consumer Liking. J. Dairy Sci. 2012, 95, 2336–2346. [Google Scholar] [CrossRef]
- Fresno, M.; Álvarez, S. Chemical, Textural and Sensorial Changes during the Ripening of Majorero Goat Cheese. Int. J. Dairy Technol. 2012, 65, 393–400. [Google Scholar] [CrossRef]
- Sánchez-Macías, D.; Fresno, M.; Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Álvarez, S.; Argüello, A. Physicochemical Analysis of Full-Fat, Reduced-Fat, and Low-Fat Artisan-Style Goat Cheese. J. Dairy Sci. 2010, 93, 3950–3956. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Addis, M.; Cabiddu, A.; Pinna, G.; Decandia, M.; Piredda, G.; Pirisi, A.; Molle, G. Milk and Cheese Fatty Acid Composition in Sheep Fed Mediterranean Forages with Reference to Conjugated Linoleic Acid Cis-9,Trans-11. J. Dairy Sci. 2005, 88, 3443–3454. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, D.; Skibsted, L.H. Comparison of Three Methods Based on Electron Spin Resonance Spectrometry for Evaluation of Oxidative Stability of Processed Cheese. J. Agric. Food Chem. 1999, 47, 3099–3104. [Google Scholar] [CrossRef] [PubMed]
- Uzun, P.; Masucci, F.; Serrapica, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Esposito, G.; Di Francia, A. The Inclusion of Fresh Forage in the Lactating Buffalo Diet Affects Fatty Acid and Sensory Profile of Mozzarella Cheese. J. Dairy Sci. 2018, 101, 6752–6761. [Google Scholar] [CrossRef]
- Białek, A.; Białek, M.; Lepionka, T.; Czerwonka, M.; Czauderna, M. Chemometric Analysis of Fatty Acids Profile of Ripening Chesses. Molecules 2020, 25, 1814. [Google Scholar] [CrossRef]
- Mureşan, C.C.; Marc, R.A.; Semeniuc, C.A.; Socaci, S.A.; Fărcas, A.; Fracisc, D.; Pop, C.R.; Rotar, A.; Dodan, A.; Muresan, V.; et al. Changes in Physicochemical and Microbiological Properties, Fatty Acid and Volatile Compound Profiles of Apuseni Cheese during Ripening. Foods 2021, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Bills, D.D.; Day, E.A. Determination of the Major Free Fatty Acids of Cheddar Cheese. J. Dairy Sci. 1964, 47, 733–738. [Google Scholar] [CrossRef]
- Govari, M.; Iliadis, S.; Papageorgiou, D.; Fletouris, D. Seasonal Changes in Fatty Acid and Conjugated Linoleic Acid Contents of Ovine Milk and Kefalotyri Cheese during Ripening. Int. Dairy J. 2020, 109, 104775. [Google Scholar] [CrossRef]
- Sofi, F.; Buccioni, A.; Cesari, F.; Gori, A.M.; Minieri, S.; Mannini, L.; Casini, A.; Gensini, G.F.; Abbate, R.; Antongiovanni, M. Effects of a Dairy Product (Pecorino Cheese) Naturally Rich in Cis-9, Trans-11 Conjugated Linoleic Acid on Lipid, Inflammatory and Haemorheological Variables: A Dietary Intervention Study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Pintus, S.; Murru, E.; Carta, G.; Cordeddu, L.; Batetta, B.; Accossu, S.; Pistis, D.; Uda, S.; Ghiani, M.E.; Mele, M.; et al. Sheep Cheese Naturally Enriched in A-Linolenic, Conjugated Linoleic and Vaccenic Acids Improves the Lipid Profile and Reduces Anandamide in the Plasma of Hypercholesterolaemic Subjects. Br. J. Nutr. 2013, 109, 1453–1462. [Google Scholar] [CrossRef]
- Lin, H.; Boylston, T.D.; Luedecke, L.O.; Shultz, T.D. Conjugated Linoleic Acid Content of Cheddar-Type Cheeses as Affected by Processing. J. Food Sci. 1999, 64, 874–878. [Google Scholar] [CrossRef]
- Buccioni, A.; Minieri, S.; Conte, G.; Benvenuti, D.; Pezzati, A.; Antongiovanni, M.; Rapaccini, S.; Mele, M. Changes in Conjugated Linoleic Acid and C18:1 Isomers Profile during the Ripening of Pecorino Toscano Cheese Produced with Raw Milk. Ital. J. Anim. Sci. 2012, 11, e75. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, V.; Bector, B.S. Effect of Ripening on Total Conjugated Linoleic Acid and Its Isomers in Buffalo Cheddar Cheese. Int. J. Dairy Technol. 2006, 59, 257–260. [Google Scholar] [CrossRef]
- Nadeem, M.; Situ, C.; Abdullah, M. Effect of Olein Fractions of Milk Fat on Oxidative Stability of Ice Cream. Int. J. Food Prop. 2015, 18, 735–745. [Google Scholar] [CrossRef]
- Papaloukas, L.; Sinapis, E.; Arsenos, G.; Kyriakou, G.; Basdagianni, Z. Effect of Season on Fatty Acid and Terpene Profiles of Milk from Greek Sheep Raised under a Semi-Extensive Production System. J. Dairy Res. 2016, 83, 375–382. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Czyzak-Runowska, G.; Lipinska, P.; Wójtowski, J. Fatty Acid Profile of Milk—A Review. Bull. Vet. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef]
- Nathani, N.M.; Patel, A.K.; Mootapally, C.S.; Reddy, B.; Shah, S.V.; Lunagaria, P.M.; Kothari, R.K.; Joshi, C.G. Effect of Roughage on Rumen Microbiota Composition in the Efficient Feed Converter and Sturdy Indian Jaffrabadi Buffalo (Bubalus Bubalis). BMC Genom. 2015, 16, 1116. [Google Scholar] [CrossRef]
- Golder, H.M.; Denman, S.E.; McSweeney, C.; Wales, W.J.; Auldist, M.J.; Wright, M.M.; Marett, L.C.; Greenwood, J.S.; Hannah, M.C.; Celi, P.; et al. Effects of Partial Mixed Rations and Supplement Amounts on Milk Production and Composition, Ruminal Fermentation, Bacterial Communities, and Ruminal Acidosis. J. Dairy Sci. 2014, 97, 5763–5785. [Google Scholar] [CrossRef] [PubMed]
- Tatullo, M.; Marrelli, B.; Benincasa, C.; Aiello, E.; Amantea, M.; Gentile, S.; Leonardi, N.; Balestrieri, M.L.; Campanile, G. Potential Impact of Functional Biomolecules-Enriched Foods on Human Health: A Randomized Controlled Clinical Trial. Int. J. Med. Sci. 2022, 19, 563–571. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Otte, J.; De Gobba, C.; Osman, A.; Hamad, E. Angiotensin I-Converting Enzyme Inhibitory Activity and Antioxidant Capacity of Bioactive Peptides Derived from Enzymatic Hydrolysis of Buffalo Milk Proteins. Int. Dairy J. 2017, 66, 91–98. [Google Scholar] [CrossRef]
- Zhao, Q.; Shi, Y.; Wang, X.; Huang, A. Characterization of a Novel Antimicrobial Peptide from Buffalo Casein Hydrolysate Based on Live Bacteria Adsorption. J. Dairy Sci. 2020, 103, 11116–11128. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.; Osimani, A.; Tavoletti, S.; Moreno, I.; Clementi, F.; Trombetta, M.F. Trends in the Quality and Hygiene Parameters of Bulk Italian Mediterranean Buffalo (Bubalus Bubalis) Milk: A Three Year Study. Anim. Sci. J. 2018, 89, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Coppa, M.; Ferlay, A.; Monsallier, F.; Verdier-Metz, I.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.C.; Martin, B. Milk Fatty Acid Composition and Cheese Texture and Appearance from Cows Fed Hay or Different Grazing Systems on Upland Pastures. J. Dairy Sci. 2011, 94, 1132–1145. [Google Scholar] [CrossRef]
- Choi, K.H.; Lee, H.; Lee, S.; Kim, S.; Yoon, Y. Cheese Microbial Risk Assessments—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 307–314. [Google Scholar] [CrossRef]
- Olea-rodríguez, M.; de los, Á.; Chombo-morales, P.; Nuño, K.; Vázquez-paulino, O.; Villagrán-de la Mora, Z.; Garay-Martínez, L.E.; Castro-rosas, J.; Villarruel-lópez, A.; Torres-vitela, M.R. Microbiological Characteristics and Behavior of Staphylococcus Aureus, Salmonella Spp., Listeria Monocytogenes and Staphylococcal Toxin during Making and Maturing Cotija Cheese. Appl. Sci. 2021, 11, 8154. [Google Scholar] [CrossRef]
- García-Cano, I.; Serrano-Maldonado, C.E.; Olvera-García, M.; Delgado-Arciniega, E.; Peña-Montes, C.; Mendoza-Hernández, G.; Quirasco, M. Antibacterial Activity Produced by Enterococcus Spp. Isolated from an Artisanal Mexican Dairy Product, Cotija Cheese. LWT—Food Sci. Technol. 2014, 59, 26–34. [Google Scholar] [CrossRef]
- Escobar-Zepeda, A.; Sanchez-Flores, A.; Quirasco Baruch, M. Metagenomic Analysis of a Mexican Ripened Cheese Reveals a Unique Complex Microbiota. Food Microbiol. 2016, 57, 116–127. [Google Scholar] [CrossRef]
- Chombo-Morales, P.; Kirchmayr, M.; Gschaedler, A.; Lugo-Cervantes, E.; Villanueva-Rodríguez, S. Effects of Controlling Ripening Conditions on the Dynamics of the Native Microbial Population of Mexican Artisanal Cotija Cheese Assessed by PCR-DGGE. LWT—Food Sci. Technol. 2016, 65, 1153–1161. [Google Scholar] [CrossRef]
Samples | Ripening Time | Ripening Steps | pH | Air Temperature (°C) | RH (%) | Airflow (m/s) | References |
---|---|---|---|---|---|---|---|
Dry ricotta cheese | INNOVA—TIVE 7 days | Dripping (2 h) | 5.5 | +35 | 60 | 1 | This study |
Stewing (20 h) | 5.5 | +22 | 40 | 1 | |||
Drying 1 (24 h) | 5.0 | +20 | 45 | 1 | |||
Drying 2 (24 h) | 5.0 | +20 | 42 | 1 | |||
Drying 3 (24 h) | 5.0 | +18 | 41 | 1 | |||
Drying 4 (24 h) | 5.2 | +16 | 40 | 1 | |||
Drying 5 (24 h) | 5.3 | +14 | 38 | 1 | |||
Drying 6 (24 h) | 5.4 | +12 | 36 | 1 | |||
Ripening (24 h) | 5.5 | +8/10 | 35 | 1 | |||
TRADITIONAL 30 days | - | +4 | - | [18] | |||
Semi-hard cheese | INNOVATIVE 43 days | Drying 1 (24 h) | 4.8 | +24 | 75 | 0 | |
Drying 2 (24 h) | 5.0 | +23 | 76 | 0 | This study | ||
Drying 3 (24 h) | 5.0 | +21 | 78 | 0 | |||
Drying 4 (24 h) | 5.1 | +19 | 80 | 0 | |||
Drying 5 (24 h) | 5.2 | +17 | 82 | 0 | |||
Drying 6 (24 h) | 5.3 | +15 | 83 | 0 | |||
Drying 7 (24 h) | 5.4 | +13 | 84 | 0 | |||
Drying 8 (24 h) | 5.5 | +12 | 85 | 0 | |||
Ripening (35 days) | 5.6 | +11 | 75 | 0 | |||
TRADITIONAL 90 days | - | +14/15 | 90–96 | - | [19] |
Semi-Hard Cheese | Dry Ricotta Cheese | |||||||
---|---|---|---|---|---|---|---|---|
Semi-Finished Products | Ripened Cheeses | Semi-Finished Product | Ripened Cheeses | |||||
Item | C | T0 | MI | MT | T0 | MI | MT | |
Fat, % | CTL | 23.58 ± 0.10 X,A | 32.28 ± 0.16 X,aB | 43.73 ± 0.51 X,aC | 38.25 ± 2.26 bB | 15.14 ± 0.51 X,A | 27.92 ± 1.16 X,B | 40.04 ± 1.43 X,C |
FRS | 24.03 ± 0.04 Y,A | 35.01 ± 0.39 Y,B | 50.26 ± 0.58 Y,C | 42.81 ± 0.23 D | 12.54 ± 0.39 Y,A | 22.99 ± 0.70 Y,B | 45.03 ± 0.68 Y,C | |
Protein, % | CTL | 15.18 ± 0.59 X,A | 21.98 ± 0.26 X,B | 20.07 ± 0.10 X,C | 27.50 ± 0.27 D | 7.03 ± 0.24 X,A | 13.06 ± 0.03 X,B | 21.08 ± 0.11 X,C |
FRS | 17.89 ± 0.24 Y,A | 24.94 ± 0.16 Y,aB | 25.80 ± 0.36 Y,bB | 26.14 ± 0.63 B | 12.54 ± 0.39 Y,A | 13.89 ± 0.18 Y,B | 22.32 ± 0.17 Y,C | |
Moisture, % | CTL | 52.11 ± 0.34 A | 34.77 ± 0.31 X,B | 18.47 ± 0.47 C | 19.54 ± 0.49 C | 67.17 ± 1.70 A | 45.19 ± 0.17 X,B | 18.39 ± 0.29 C |
FRS | 52.72 ± 0.45 A | 39.29 ± 0.29 Y,B | 18.63 ± 0.14 C | 19.61 ± 0.26 D | 70.24 ± 1.19 A | 49.65 ± 0.57 Y,B | 20.03 ± 1.20 C | |
NaCl, % | CTL | 0.25 ± 0.05 A | 0.59 ± 0.02 X,B | 0.99 ± 0.10 C | 1.14 ± 0.04 C | 1.76 ± 0.05 X,A | 3.5 ± 0.16 x,aB | 3.96 ± 0.05 X,bB |
FRS | 0.20 ± 0.01 A | 0.43 ± 0.05 Y,B | 1.03 ± 0.11 C | 0.98 ± 0.14 C | 2.51 ± 0.17 Y,A | 2.88 ± 0.19 y,A | 5.58 ± 0.40 Y,B |
Semi-Hard Cheese | Dry Ricotta Cheese | |||||||
---|---|---|---|---|---|---|---|---|
Semi-Finished Products | Ripened Cheeses | Semi-Finished Product | Ripened Cheeses | |||||
Item | C | T0 | MI | MT | T0 | MI | MT | |
Hardness, Kg | CTL | 6.02 ± 0.45 X,A | 10.8 ± 0.39 X,B | 31.38 ± 1.68 X,C | 33.17 ± 0.88 X,C | 1.94 ± 0.11 X,A | 8.68 ± 0.28 X,B | 94.90 ± 1.27 X,C |
FRS | 18.75 ± 0.22 Y,A | 13.18 ± 0.28 Y,B | 45.13 ± 1.68 Y,C | 42.71 ± 3.78 Y,C | 2.58 ± 0.11 Y,A | 11.4 ± 0.27 Y,B | 77.94 ± 1.24 Y,C | |
Springiness, mm | CTL | 1.59 ± 0.02 X,A | 1.01 ± 0.03 X,C | 0.96 ± 0.00 B | 0.94 ± 0.00 C | 0.83 ± 0.05 A | 0.91 ± 0.00 A | 4.17 ± 0.85 x,B |
FRS | 1.89 ± 0.14 Y,A | 1.68 ± 0.08 Y,B | 1.08 ± 0.11 A | 1.08 ± 0.15 A | 0.90 ± 0.04 A | 0.89 ± 0.04 A | 1.65 ± 0.03 y,B | |
Chewiness, mm/kg | CTL | 5.21 ± 0.26 X,A | 6.04 ± 0.13 X,B | 13.59 ± 0.31 C | 20.08 ± 1.62 D | 0.59 ± 0.10 X,A | 2.19 ± 0.08 B | 19.16 ± 9.42 |
FRS | 7.67 ± 0.14 Y,B | 8.98 ± 0.42 Y,B | 18.34 ± 0.89 C | 20.72 ± 1.65 C | 0.90 ± 0.01 Y,A | 2.76 ± 0.14 B | 1.94 ± 0.66 | |
Gumminess, N | CTL | 3.27 ± 0.12 X,A | 4.88 ± 0.18 Y,B | 12.40 ± 0.59 C | 12.62 ± 0.42 C | 0.70 ± 0.10 A | 2.58 ± 0.19 X,B | 7.87 ± 1.66 X,C |
FRS | 7.21 ± 0.58 Y,aA | 5.68 ± 0.05 Y,bB | 12.36 ± 0.54 B | 13.76 ± 0.76 B | 0.93 ± 0.03 A | 3.57 ± 0.22 Y,B | 28.21 ± 1.75 Y,C |
Semi-Hard Cheese | Dry Ricotta Cheese | ||||||||
---|---|---|---|---|---|---|---|---|---|
Semi-Finished Products | Ripened Cheeses | Semi-Finished Product | Ripened Cheeses | ||||||
Item | C | T0 | MI | MT | T0 | MI | MT | ||
External | L* | CTL | 87.82 ± 0.24 A | 84.94 ± 0.17 B | 67.67 ± 0.27 X,C | 65.93 ± 0.38 D | 89.85 ± 0.50 A | 92.35 ± 0.51 B | 66.70 ± 2.09 C |
FRS | 85.50 ± 1.19 A | 85.24 ± 0.18 A | 65.54 ± 0.37 Y,B | 64.77 ± 0.41 B | 89.72 ± 1.14 A | 92.88 ± 0.96 A | 69.23 ± 0.51 B | ||
a* | CTR | −1.11 ± 0.10 A | −1.05 ± 0.09 X,A | −0.64 ± 0.42 | 0.31 ± 0.26 X,B | −1.51 ± 0.14 A | −0.34 ± 0.17 B | −0.60 ± 0.21 X,B | |
FRS | −0.84 ± 0.11 A | −1.74 ± 0.11 Y,B | −1.42 ± 0.29 | −1.49 ± 0.13 Y,B | −0.42 ± 0.95 | 0.16 ± 0.49 | 0.40 ± 0.21 Y | ||
b* | CTL | 10.89 ± 0.57 A | 11.24 ± 0.18 X,A | 16.38 ± 0.09 X,aB | 18.36 ± 0.72 X,bB | 8.98 ± 0.22 A | 23.20 ± 0.97 B | 23.51 ± 0.52 X,B | |
FRS | 11.54 ± 0.72 aA | 13.42 ± 0.47 Y,bA | 14.07 ± 0.50 Y,b | 15.14 ± 0.06 Y,B | 8.08 ± 0.39 A | 22.77 ± 2.97 B | 20.24 ± 0.69 Y,B | ||
Internal | L* | CTL | 90.36 ± 0.23 A | 87.61 ± 0.50 B | 83.49 ± 0.65 X,C | 83.78 ± 0.07 X,C | 91.35 ± 0.37 A | 102.20 ± 0.40 X,B | 81.05 ± 0.76 C |
FRS | 89.40 ± 0.96 aB | 86.76 ± 0.39 b | 86.25 ± 0.29 Y,B | 86.39 ± 0.32 Y,B | 91.33 ± 0.44 A | 100.18 ± 0.43 Y,B | 79.66 ± 0.46 C | ||
a* | CTL | −1.04 ± 0.04 x,A | −1.10 ± 0.08 X,A | −1.40 ± 0.24 | −1.40 ± 0.07 B | −1.39 ± 0.06 A | −1.36 ± 0.08 A | −3.28 ± 0.03 X,B | |
FRS | −1.14 ± 0.02 y,A | −1.55 ± 0.06 Y,B | −1.13 ± 0.04 aA | −1.28 ± 0.08 b | −1.44 ± 0.09 aA | −1.20 ± 0.02 bA | −2.30 ± 0.06 Y,B | ||
b* | CTL | 11.27 ± 0.54 X,aA | 13.66 ± 0.71 X,bA | 20.00 ± 0.63 x,B | 19.46 ± 0.24 X,B | 8.51 ± 0.02 X,A | 11.22 ± 0.26 X,B | 15.92 ± 0.13 X,C | |
FRS | 13.03 ± 0.27 Y,A | 16.37 ± 0.23 Y,B | 18.31 ± 0.17 y,C | 17.67 ± 0.36 Y,C | 7.82 ± 0.10 Y,A | 10.27 ± 0.12 Y,B | 12.52 ± 0.20 Y,C |
Semi-Hard Cheese | Dry Ricotta Cheese | |||||||
---|---|---|---|---|---|---|---|---|
Semi-Finished Products | Ripened Cheeses | Semi-Finished Product | Ripened Cheeses | |||||
Item | C | T0 | MI | MT | T0 | MI | MT | |
PV, meqO2/kg | CTL | 1.54 ± 0.01 X,A | 1.55 ± 0.01 X,A | 1.39 ± 0.00 X,B | 1.26 ± 0.01 X,C | 1.82 ± 0.02 X | 1.72 ± 0.05 X | 1.78 ± 0.01 X |
FRS | 1.33 ± 0.01 Y,A | 1.42 ± 0.01 Y,B | 1.74 ± 0.02 Y,C | 1.43 ± 0.01 Y,B | 1.53 ± 0.03 Y,A | 1.28 ± 0.01 Y,B | 2.58 ± 0.01 Y,C | |
FFA, % | CTL | 0.08 ± 0.00 x,aA | 0.11 ± 0.02 bA | 0.63 ± 0.01 X,B | 1.08 ± 0.01 X,C | 0.04 ± 0.00 X,A | 0.09 ± 0.01 X,B | 0.10 ± 0.00 X,C |
FRS | 0.15 ± 0.03 y,A | 0.11 ± 0.00 A | 0.69 ± 0.00 Y,B | 0.95 ± 0.01 Y,C | 0.12 ± 0.01 Y,A | 0.12 ± 0.00 Y,A | 0.16 ± 0.00 Y,B | |
TBARs, mg/kg | CTL | 0.05 ± 0.00 X,A | 0.08 ± 0.00 X,B | 0.06 ± 0.00 X,A | 0.54 ± 0.04 x,C | 0.11 ± 0.01 X | 0.05 ± 0.00 X | 0.08 ± 0.04 X |
FRS | 0.09 ± 0.00 Y,A | 0.13 ± 0.01 Y,B | 0.13 ± 0.00 Y,C | 0.43 ± 0.03 y,D | 0.07 ± 0.01 Y,A | 0.04 ± 0.00 Y,B | 0.02 ± 0.00 Y,C |
Raw Material | Semi-Finished Products | Ripened Cheeses | ||||
---|---|---|---|---|---|---|
FA, g/100 g of FA | L | C | T0 | MI | MT | |
C4:0 | CTL | 2.97 ± 0.06 X,A | 2.93 ± 0.10 x,A | 2.21 ± 0.05 X,B | 1.36 ± 0.02 X,C | 1.24 ± 0.02 X,D |
FRS | 3.79 ± 0.07 Y,A | 2.67 ± 0.06 y,B | 2.95 ± 0.06 Y,C | 1.65 ± 0.02 Y,D | 2.41 ± 0.04 Y,E | |
C6:0 | CTL | 2.01 ± 0.03 A | 1.96 ± 0.06 X,A | 1.72 ± 0.04 x,B | 1.36 ± 0.02 C | 1.24 ± 0.02 X,D |
FRS | 2.04 ± 0.05 A | 1.70 ± 0.04 Y,aD | 1.85 ± 0.04 y,bB | 1.39 ± 0.02 C | 1.65 ± 0.03 Y,D | |
C8:0 | CTL | 0.86 ± 0.02 X,A | 1.10 ± 0.04 X,B | 0.98 ± 0.02 C | 0.87 ± 0.01 X,A | 0.87 ± 0.02 X,A |
FRS | 1.06 ± 0.03 Y,aA | 0.97 ± 0.02 Y,bA | 0.99 ± 0.02 A | 0.76 ± 0.01 Y,B | 1.02 ± 0.02 Y,B | |
C10:0 | CTL | 1.88 ± 0.03 X,A | 2.20 ± 0.07 X,B | 2.08 ± 0.05 X,B | 1.86 ± 0.03 X,A | 1.73 ± 0.03 X,C |
FRS | 2.05 ± 0.05 Y,A | 1.82 ± 0.04 Y,B | 1.85 ± 0.04 Y,B | 1.14 ± 0.02 Y,C | 1.27 ± 0.02 Y,D | |
C12:0 | CTL | 2.97 ± 0.07 X,A | 2.94 ± 0.10 X,A | 2.82 ± 0.07 X,aA | 2.60 ± 0.04 X,Bb | 2.47 ± 0.05 X,Ab |
FRS | 2.60 ± 0.05 Y,aA | 2.43 ± 0.06 Y,aB | 2.46 ± 0.06 Y,A | 1.52 ± 0.03 Y,C | 1.52 ± 0.30 Y,C | |
C14:0 | CTL | 14.65 ± 0.25 X,a | 14.83 ± 0.49 X | 14.45 ± 0.33 X | 13.96 ± 0.23 X | 13.79 ± 0.26 X,b |
FRS | 13.26 ± 0.25 Y,A | 12.91 ± 0.31 Y,A | 13.09 ± 0.30 Y,A | 8.67 ± 0.14 Y,B | 8.68 ± 0.15 Y,B | |
C14:1 | CTL | 1.13 ± 0.04 X,A | 1.23 ± 0.04 X,A | 1.23 ± 0.03 X,A | 1.09 ± 0.02 X,A | 0.93 ± 0.02 X,B |
FRS | 0.97 ± 0.02 Y,aA | 0.91 ± 0.02 Y,bA | 0.92 ± 0.02 Y,A | 0.63 ± 0.01 Y,B | 0.32 ± 0.01 Y,C | |
C15:0 | CTL | 1.39 ± 0.04 X | 1.39 ± 0.05 X | 1.39 ± 0.03 X | 1.40 ± 0.02 X | 1.40 ± 0.03 X |
FRS | 1.12 ± 0.02 Y | 1.16 ± 0.03 Y,A | 1.18 ± 0.03 Y,A | 0.88 ± 0.02 Y,B | 0.88 ± 0.02 Y,B | |
C16:0 | CTL | 34.75 ± 0.72 X | 34.01 ± 1.12 | 34.03 ± 0.78 | 34.21 ± 0.57 | 34.32 ± 0.65 |
FRS | 37.59 ± 0.69 Y,aA | 36.61 ± 0.87 A | 36.24 ± 0.83 A | 33.25 ± 0.55 Ab | 35.13 ± 0.6 b | |
C16:1 | CTL | 2.68 ± 0.08 x,aA | 3.01 ± 0.10 X,b | 3.01 ± 0.07 X,b | 2.93 ± 0.05 X,B | 2.81 ± 0.05 X |
FRS | 2.44 ± 0.05 y | 2.54 ± 0.06 Y | 2.46 ± 0.06 Y | 2.19 ± 0.04 Y | 2.08 ± 0.04 Y | |
C17:0 | CTL | 0.57 ± 0.02 A | 0.57 ± 0.02 A | 0.57 ± 0.01 A | 0.67 ± 0.01 X,B | 0.57 ± 0.01 A |
FRS | 0.59 ± 0.02 | 0.56 ± 0.01 | 0.57 ± 0.01 | 0.59 ± 0.01 Y | 0.59 ± 0.01 | |
C18:0 | CTL | 10.44 ± 0.19 x,aA | 10.33 ± 0.34 ac | 10.68 ± 0.25 aC | 11.33 ± 0.19 X,bB | 11.13 ± 0.21 X,bc |
FRS | 9.82 ± 0.19 y,A | 11.01 ± 0.26 B | 10.81 ± 0.25 B | 14.76 ± 0.24 Y,C | 14.68 ± 0.26 Y,C | |
C18:1n-9 trans | CTL | 1.73 ± 0.14 A | 0.91 ± 0.03 X,aB | 0.99 ± 0.23 X,bB | 1.29 ± 0.02 X,C | 0.64 ± 0.01 X,D |
FRS | 1.62 ± 0.03 A | 1.17 ± 0.03 Y,B | 1.19 ± 0.03 Y,B | 1.60 ± 0.03 Y,A | 0.94 ± 0.02 Y,C | |
C18:1n-9 cis | CTL | 20.30 ± 0.35 A | 18.99 ± 0.62 X,aB | 19.88 ± 0.46 X,bB | 20.98 ± 0.35 X,C | 22.87 ± 0.43 X,D |
FRS | 19.53 ± 0.44 A | 20.12 ± 0.48 Y,A | 20.22 ± 0.46 Y,A | 25.80 ± 0.43 Y,B | 25.11 ± 0.44 Y,B | |
C18:2n-6 cis | CTL | 1.52 ± 0.04 X,a | 1.60 ± 0.05 X | 1.60 ± 0.04 X | 1.62 ± 0.03 b | 1.52 ± 0.03 X,ac |
FRS | 1.37 ± 0.03 Y,A | 1.31 ± 0.03 Y,A | 1.14 ± 0.03 Y,B | 1.66 ± 0.03 aC | 1.76 ± 0.03 Y,bC | |
C18:3n-3 | CTL | 0.31 ± 0.01 X | 0.31 ± 0.01 | 0.31 ± 0.01 | 0.31 ± 0.01 X | 0.31 ± 0.01 X |
FRS | 0.42 ± 0.02 Y,A | 0.30 ± 0.01 B | 0.31 ± 0.01 B | 0.42 ± 0.01 Y,A | 0.53 ± 0.01 Y,C | |
CLA cis-9, trans-11 | CTL | 0.58 ± 0.02 X | 0.58 ± 0.02 | 0.58 ± 0.01 | 0.59 ± 0.01 X | 0.58 ± 0.01 X |
FRS | 0.47 ± 0.02 Y,A | 0.57 ± 0.01 B | 0.58 ± 0.01 B | 0.72 ± 0.01 Y,C | 0.72 ± 0.01 Y,C |
Raw Material | Semi-Finished Product | Ripened Cheeses | |||
---|---|---|---|---|---|
FA, g/100 g of FA | L | T0 | MI | MT | |
C4:0 | CTL | 3.92 ± 0.07 X,A | 2.92 ± 0.50 | 2.30 ± 0.12 X,B | 3.79 ± 0.16 A |
FRS | 3.37 ± 0.03 Y,A | 2.66 ± 0.11 A | 2.00 ± 0.01 Y,B | 3.80 ± 0.01 C | |
C6:0 | CTL | 2.20 ± 0.14 | 1.95 ± 0.03 x,A | 1.95 ± 0.08 Y | 2.20 ± 0.09 B |
FRS | 2.25 ± 0.21 A | 1.77 ± 0.07 y,A | 1.50 ± 0.07 X,B | 2.21 ± 0.19 A | |
C8:0 | CTL | 1.10 ± 0.08 | 1.22 ± 0.19 | 1.10 ± 0.04 X | 1.22 ± 0.05 |
FRS | 1.25 ± 0.05 A | 0.89 ± 0.04 B | 0.88 ± 0.03 Y,B | 1.22 ± 0.18 | |
C10:0 | CTL | 2.33 ± 0.11 | 2.31 ± 0.01 X | 2.19 ± 0.09 X | 2.32 ± 0.10 |
FRS | 2.12 ± 0.05 A | 1.40 ± 0.06 Y,B | 1.63 ± 0.02 Y,A | 2.33 ± 0.25 A | |
C12:0 | CTL | 2.94 ± 0.05 X | 3.04 ± 0.04 X | 2.93 ± 0.12 X | 2.93 ± 0.12 |
FRS | 2.62 ± 0.04 Y,aA | 1.65 ± 0.07 Y,aB | 2.13 ± 0.18 Y,b | 2.82 ± 0.15 aA | |
C14:0 | CTL | 13.80 ± 0.01 X,A | 14.74 ± 0.05 X,B | 14.50 ± 0.60 X | 14.14 ± 0.58 |
FRS | 11.84 ± 0.11 Y,A | 8.82 ± 0.36 Y,B | 11.08 ± 0.07 Y,C | 13.03 ± 0.21 D | |
C14:1 | CTL | 0.92 ± 0.02 A | 1.06 ± 0.04 X,B | 1.07 ± 0.04 X,B | 1.07 ± 0.04 X,B |
FRS | 0.94 ± 0.01 X,A | 0.63 ± 0.03 Y,B | 0.78 ± 0.04 Y,C | 0.92 ± 0.02 Y,D | |
C15:0 | CTL | 1.28 ± 0.04 X | 1.27 ± 0.04 X | 1.27 ± 0.05 x | 1.17 ± 0.05 |
FRS | 0.98 ± 0.02 Y,a | 0.88 ± 0.04 Y,b | 1.09 ± 0.06 y | 1.17 ± 0.08 b | |
C16:0 | CTL | 36.16 ± 0.66 X | 35.86 ± 0.56 x | 36.96 ± 1.52 | 35.46 ± 1.46 |
FRS | 30.10 ± 0.07 Y,A | 32.70 ± 1.35 y | 34.88 ± 0.04 B | 35.10 ± 0.12 B | |
C16:1 | CTL | 2.56 ± 0.06 X | 2.66 ± 0.06 X | 2.66 ± 0.11 | 2.44 ± 0.10 |
FRS | 2.16 ± 0.01 Y,A | 2.19 ± 0.09 Y,A | 2.50 ± 0.01 B | 2.67 ± 0.12 B | |
C17:0 | CTL | 0.47 ± 0.01 X,A | 0.56 ± 0.06 | 0.56 ± 0.02 B | 0.47 ± 0.02 x,A |
FRS | 0.58 ± 0.02 Y,A | 0.59 ± 0.02 A | 0.58 ± 0.05 A | 0.57 ± 0.03 y | |
C18:0 | CTL | 10.06 ± 0.09 X,A | 10.09 ± 0.19 X,A | 10.19 ± 0.42 X,a | 8.81 ± 0.36 bB |
FRS | 11.87 ± 0.25 Y,aA | 15.05 ± 0.62 Y,B | 12.62 ± 0.14 Y,Ab | 9.02 ± 0.12 C | |
C18:1n-9 trans | CTL | 1.45 ± 0.13 X,A | 1.44 ± 0.06 X,A | 0.99 ± 0.04 B | 1.54 ± 0.06 x,A |
FRS | 2.04 ± 0.10 Y,A | 2.54 ± 0.10 Y,B | 1.11 ± 0.23 aC | 1.72 ± 0.06 y,bC | |
C18:1n-9 cis | CTL | 17.67 ± 0.30 X | 17.75 ± 0.33 X | 17.68 ± 0.73 X | 18.84 ± 0.78 |
FRS | 22.95 ± 0.22 Y,A | 23.76 ± 0.98 Y,A | 23.53 ± 0.29 Y,A | 20.13 ± 0.12 B | |
C18:2n-6 cis | CTL | 1.04 ± 0.11 X,a | 1.40 ± 0.09 x,b | 1.22 ± 0.05 x | 1.22 ± 0.05 b |
FRS | 1.83 ± 0.04 Y,A | 1.66 ± 0.07 y,A | 1.64 ± 0.15 y | 1.32 ± 0.02 B | |
C18:3n-3 | CTL | 0.31 ± 0.01 X,a | 0.30 ± 0.02 | 0.34 ± 0.01 b | 0.35 ± 0.01 x,b |
FRS | 0.42 ± 0.01 Y,A | 0.32 ± 0.01 Y,B | 0.31 ± 0.02 B | 0.31 ± 0.01 y,B | |
CLA cis-9, trans-11 | CTL | 0.46 ± 0.05 X | 0.46 ± 0.01 X,A | 0.44 ± 0.02 X,A | 0.55 ± 0.02 B |
FRS | 0.71 ± 0.02 Y,aA | 0.84 ± 0.03 Y,B | 0.59 ± 0.02 Y,C | 0.58 ± 0.06 cB |
Raw Material | Semi-Finished Products | Ripened Cheeses | ||||
---|---|---|---|---|---|---|
Item | L | C | T0 | MI | MT | |
TAB 30 °C | CTL | 10.27 ± 0.41 A | 7.26 ± 0.06 X,aB | 6.86 ± 0.17 bB | 8.29 ± 0.30 bC | 7.90 ± 0.12 C |
FRS | 10.71 ± 0.17 A | 5.30 ± 0.21 Y,B | 7.14 ± 0.17 C | 8.17 ± 0.10 D | 8.14 ± 0.17 D | |
TAB 7 °C | CTL | 9.24 ± 0.17 A | 5.54 ± 0.27 X,B | 5.24 ± 0.30 X,aB | 6.30 ± 0.40 bB | ni C |
FRS | 9.04 ± 0.48 A | 3.96 ± 0.08 Y,B | 3.96 ± 0.08 Y,B | 6.19 ± 0.20 C | ni D | |
Total Coliforms | CTL | 7.44 ± 0.31 A | 5.66 ± 0.20 X,B | 4.24 ± 0.37 C | 2.10 ± 0.07 x,D | 3.66 ± 0.26 C |
FRS | 7.80 ± 0.12 A | 3.24 ± 0.37 Y,B | 4.77 ± 0.12 C | 1.56 ± 0.25 y,D | 3.44 ± 0.32 B | |
Enterobacteriaceae | CTL | 7.96 ± 0.24 A | 5.26 ± 0.27 X,B | 4.14 ± 0.25 C | 1.86 ± 0.18 D | 2.96 ± 0.09 E |
FRS | 7.74 ± 0.16 A | 3.26 ± 0.23 Y,aB | 4.24 ± 0.38 bB | 1.44 ± 0.32 C | 2.96 ± 0.29 aB | |
E. coli glucorinidasi positive | CTL | ni A | ni A | ni A | ni X,A | 2.00 ± 0.06 X,B |
FRS | ni A | ni A | ni A | 1.44 ± 0.32 Y,B | 0.96 ± 0.09 Y,B | |
Enterococcus spp. | CTL | 9.55 ± 0.19 x,A | 5.71 ± 0.16 B | 5.60 ± 0.09 X,B | 7.28 ± 0.15 C | 7.24 ± 0.38 C |
FRS | 8.44 ± 0.40 y,aA | 5.04 ± 0.48 B | 4.26 ± 0.42 Y,B | 7.53 ± 0.04 bA | 7.46 ± 0.25 bA | |
Pseudomonas spp. | CTL | 7.78 ± 0.19 X,A | 4.91 ± 0.06 X,B | 3.74 ± 0.14 C | 1.96 ± 0.13 X,D | ni E |
FRS | 6.74 ± 0.20 Y | 1.96 ± 0.08 Y | 3.90 ± 0.05 | ni Y | ni | |
Coagulase-positive staphylococci | CTL | 7.23 ± 028 X,A | 5.78 ± 0.19 x,B | 3.34 ± 0.09 C | 3.34 ± 0.27 X,C | ni D |
FRS | 6.53 ± 0.16 Y,A | 4.99 ± 0.34 y,B | 3.45 ± 0.19 C | ni Y,D | ni D | |
Lactobacillus spp. | CTL | 9.11 ± 0.44 aA | 5.79 ± 0.11 B | 5.54 ± 0.19 X,B | 8.11 ± 0.06 bA | 7.88 ± 0.20 bA |
FRS | 9.16 ± 0.15 A | 5.24 ± 0.30 B | 4.66 ± 0.12 Y,B | 7.95 ± 0.29 C | 7.98 ± 0.37 C | |
Yeast | CTL | 2.91 ± 0.06 A | 2.80 ± 0.25 X,A | ni B | ni B | ni B |
FRS | 3.11 ± 0.39 A | ni Y,B | ni B | ni B | ni B | |
Mold | CTL | 4.30 ± 0.15 aA | 3.80 ± 0.33 X,A | 3.36 ± 0.17 X,B | 2.44 ± 0.78 X,bA | ni C |
FRS | 3.96 ± 0.16 A | 1.96 ± 0.08 Y,B | 1.96 ± 0.35 Y,B | ni Y,C | ni C | |
pH | CTL | 5.44 ± 0.10 A | 5.40 ± 0.02 x,A | 5.31 ± 0.05 B | 5.31 ± 0.02 B | |
FRS | 5.32 ± 0.02 A | 5.34 ± 0.01 y,aA | 5.23 ± 0.02 B | 5.29 ± 0.00 bA | ||
aw | CTL | 0.973 ± 0.002 A | 0.969 ± 0.002 a | 0.920 ± 0.031 | 0.898 ± 0.026 bB | |
FRS | 0.976 ± 0.002 a | 0.977 ± 0.006 a | 0.940 ± 0.018 | 0.929 ± 0.018 b |
Raw Material | Semi-Finished Product | Ripened Cheeses | |||
---|---|---|---|---|---|
Item | L | T0 | MI | MT | |
TAB 30 °C | CTL | 8.36 ± 0.16 A | 3.50 ± 0.47 B | 8.11 ± 0.25 A | 7.26 ± 0.14 X,C |
FRS | 7.68 ± 0.37 A | 4.38 ± 0.22 B | 8.01 ± 0.09 A | 6.44 ± 0.20 Y,C | |
TAB 7 °C | CTL | 8.42 ± 0.19 X,A | 3.21 ± 0.33 x,B | 7.71 ± 0.15 C | 7.46 ± 0.20 C |
FRS | 7.70 ± 0.11 Y,aA | 4.10 ± 0.08 y,B | 7.41 ± 0.18 A | 7.44 ± 0.05 Ba | |
Total Coliforms | CTL | 7.70 ± 0.08 x,A | 1.74 ± 0.15 X,B | 7.86 ± 0.08 X,A | 8.04 ± 0.37 X,A |
FRS | 7.01 ± 0.31 y,A | 4.14 ± 0.03 Y,B | 7.21 ± 0.14 Y,A | 6.69 ± 0.12 Y,A | |
Enterobacteriaceae | CTL | 6.96 ± 0.09 x,A | 1.66 ± 0.19 X,B | 6.82 ± 0.18 A | 6.41 ± 0.35 A |
FRS | 7.26 ± 0.10 y,aA | 3.26 ± 0.43 Y,B | 6.79 ± 0.17 bA | 6.04 ± 0.75 A | |
E. coli glucorinidasi positive | CTL | 4.67 ± 0.37 A | ni B | ni X,B | ni B |
FRS | 3.86 ± 0.21 A | ni B | 1.26 ± 0.14 Y,C | ni B | |
Enterococcus spp. | CTL | 8.26 ± 0.08 x,A | 2.80 ± 0.17 B | 7.53 ± 0.21 C | 6.26 ± 0.27 D |
FRS | 7.59 ± 0.23 y,A | 3.45 ± 0.31 B | 7.07 ± 0.52 aA | 5.96 ± 0.12 bC | |
Pseudomonas spp. | CTL | 7.21 ± 0.08 x,aA | ni X,B | 5.84 ± 0.50 X,bAC | 6.86 ± 0.09 C |
FRS | 6.74 ± 0.16 y,aA | 4.24 ± 0.14 Y,B | 7.53 ± 0.25 Y,bA | 6.86 ± 0.12 aA | |
Coagulase-positive staphylococci | CTL | 6.35 ± 0.14 X,A | 2.10 ± 0.27 X,B | 4.71 ± 0.03 C | 4.44 ± 0.13 C |
FRS | 5.45 ± 0.12 Y,A | 3.45 ± 0.10 Y,B | 4.99 ± 0.11 A | 4.44 ± 0.10 C | |
Lactobacillus spp. 30 | CTL | 8.52 ± 0.25 x,A | 3.00 ± 0.23 X,B | 7.70 ± 0.11 C | 7.26 ± 0.05 X,D |
FRS | 7.64 ± 0.20 y,A | 4.29 ± 0.17 Y,B | 7.46 ± 0.30 A | 6.44 ± 0.17 Y.C | |
Yeast | CTL | 3.44 ± 0.12 A | ni B | 4.74 ± 0.22 x,C | 3.64 ± 0.21 A |
FRS | 3.50 ± 0.15 A | ni B | 3.96 ± 0.28 y,A | 4.66 ± 0.65 A | |
Mold | CTL | 4.91 ± 0.09 x,A | 2.91 ± 0.11 X,B | 7.00 ± 0.07 C | 6.91 ± 0.27 C |
FRS | 4.64 ± 0.05 y,A | 3.90 ± 0.19 Y,B | 6.69 ± 0.18 aC | 7.19 ± 0.09 bC | |
pH | CTL | 6.42 ± 0.04 A | 5.82 ± 0.03 B | 6.01 ± 0.02 X,B | |
FRS | 6.43 ± 0.02 A | 5.70 ± 0.16 B | 5.63 ± 0.07 Y,B | ||
aw | CTL | 0.978 ± 0.004 A | 0.964 ± 0.009 A | 0.820 ± 0.028 B | |
FRS | 0.968 ± 0.010 A | 0.952 ± 0.012 A | 0.780 ± 0.021 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paolo, M.; Vuoso, V.; Ambrosio, R.L.; Balestrieri, A.; Bifulco, G.; Anastasio, A.; Marrone, R. Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses. Foods 2023, 12, 704. https://doi.org/10.3390/foods12040704
Di Paolo M, Vuoso V, Ambrosio RL, Balestrieri A, Bifulco G, Anastasio A, Marrone R. Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses. Foods. 2023; 12(4):704. https://doi.org/10.3390/foods12040704
Chicago/Turabian StyleDi Paolo, Marika, Valeria Vuoso, Rosa Luisa Ambrosio, Anna Balestrieri, Giovanna Bifulco, Aniello Anastasio, and Raffaele Marrone. 2023. "Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses" Foods 12, no. 4: 704. https://doi.org/10.3390/foods12040704
APA StyleDi Paolo, M., Vuoso, V., Ambrosio, R. L., Balestrieri, A., Bifulco, G., Anastasio, A., & Marrone, R. (2023). Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses. Foods, 12(4), 704. https://doi.org/10.3390/foods12040704