Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives
Abstract
:1. Introduction
2. FODMAP Classifications
3. FODMAPs Content in Foods
4. Cereal Product Formulations with Low FODMAPs Content for Consumers with IBS
4.1. Approaches to Produce Low FODMAPs Cereal-Based Products
4.2. Ingredients Selection
4.3. Enzymatic FODMAPs Reduction
4.4. Reduction Mediated by Yeast and LAB Fermentation
5. New Approaches in Formulating Cereal-Based Products for IBS Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 50, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Lovell, R.M.; Ford, A.C. Global Prevalence of and Risk Factors for Irritable Bowel Syndrome: A Meta-analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 712–721.e4. [Google Scholar] [CrossRef] [PubMed]
- Engsbro, A.L.; Simren, M.; Bytzer, P. Short-term stability of subtypes in the irritable bowel syndrome: Prospective evalua-tion using the Rome III classification. Aliment. Pharmacol. Ther. 2012, 35, 350–359. [Google Scholar] [CrossRef]
- Yao, X.; Yang, Y.S.; Cui, L.H.; Zhao, K.B.; Zhang, Z.H.; Peng, L.H.; Guo, X.; Sun, G.; Shang, J.; Wang, W.F.; et al. Subtypes of irritable bowel syndrome on Rome III criteria: Amulticenter study. J. Gastroenterol. Hepatol. 2012, 27, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Sanchez, M.I.; Ford, A.; Avila, C.A.; Verdu, E.F.; Collins, S.M.; Morgan, D.; Moayyedi, P.; Bercik, P. Anxiety and Depression Increase in a Stepwise Manner in Parallel With Multiple FGIDs and Symptom Severity and Frequency. Am. J. Gastroenterol. 2015, 110, 1038–1048. [Google Scholar] [CrossRef]
- Gralnek, I.M.; Hays, R.D.; Kilbourne, A.; Naliboff, B.; Mayer, E.A. The impact of irritable bowel syndrome on health-related quality of life. Gastroenterology 2000, 119, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Monnikes, H. Quality of life in patients with irritable bowel syndrome. J. Clin. Gastroenterol. 2011, 45, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.G.; Heaton, K.W.; Smyth, G.T.; Smyth, C. Irritable bowel syndrome in general practice: Prevalence, characteristics, and referral. Gut 2000, 46, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.; Boorman, J.; Cann, P.; Forbes, A.; Gomborone, J.; Heaton, K.; Hungin, P.; Kumar, D.; Libby, G.; Spiller, R.; et al. British Society of Gastroenterology guidelines for the management of the irritable bowel syndrome. Gut 2000, 47, ii1–ii19. [Google Scholar] [CrossRef] [Green Version]
- Canavan, C.; West, J.; Card, T. Review article: The economic impact of the irritable bowel syndrome. Aliment. Pharmacol. Ther. 2014, 40, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Maxion-Bergemann, S.; Thielecke, F.; Abel, F.; Bergemann, R. Costs of Irritable Bowel Syndrome in the UK and US. Pharmacoeconomics 2006, 24, 21–37. [Google Scholar] [CrossRef]
- Chang, L.; Lembo, A.; Sultan, S. American Gastroenterological Association Institute Technical Review on the pharmacolog-ical management of irritable bowel syndrome. Gastroenterology 2014, 147, 1149–1172.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monsbakken, K.W.; Vandvik, P.O.; Farup, P.G. Perceived food intolerance in subjects with irritable bowel syndrome: Etiol-ogy, prevalence and consequences. Eur. J. Clin. Nutr. 2006, 60, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhn, L.; Störsrud, S.; Simrén, M. Nutrient intake in patients with irritable bowel syndrome compared with the general population. Neurogastroenterol. Motil. 2013, 25, 23-e1. [Google Scholar] [CrossRef]
- McKenzie, Y.A.; Bowyer, R.K.; Leach, H.; Gulia, P.; Horobin, J.; O’Sullivan, N.A.; Pettitt, C.; Reeves, L.B.; Seamark, L.; Williams, M.; et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29, 549–575. [Google Scholar] [CrossRef] [Green Version]
- Moayyedi, P.; Quigley, E.M.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.; Ford, A.C. The effect of fiber supplementation on irritable bowel syndrome: Asystematic review and meta-analysis. Am. J. Gastroenterol. 2014, 109, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, N.; Morden, A.; Bischof, D.; King, E.A.; Kosztowski, M.; Wick, E.C.; Stein, E.M. The role of fiber supplementation in the treatment of irritable bowel syndrome: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1002–1010. [Google Scholar] [CrossRef]
- Hayes, P.; Corish, C.; O’Mahony, E.; Quigley, E.M.M. A dietary survey of patients with irritable bowel syndrome. J. Hum. Nutr. Diet. 2014, 27, 36–47. [Google Scholar] [CrossRef]
- Reding, K.W.; Cain, K.C.; Jarrett, M.E.; Eugenio, M.D.; Heitkemper, M.M. Relationship Between Patterns of Alcohol Consumption and Gastrointestinal Symptoms Among Patients With Irritable Bowel Syndrome. Am. J. Gastroenterol. 2013, 108, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Aziz, I.; Trott, N.; Briggs, R.; North, J.R.; Hadjivassiliou, M.; Sanders, D.S. Efficacy of a gluten-free diet in subjects with irri-table bowel syndrome-diarrhea unaware of their HLA-DQ2/8 genotype. Clin. Gastroenterol. Hepatol. 2016, 14, 696–703.e1. [Google Scholar] [CrossRef] [Green Version]
- Wahnschaffe, U.; Schulzke, J.; Zeitz, M.; Ullrich, R. Predictors of Clinical Response to Gluten-Free Diet in Patients Diagnosed With Diarrhea-Predominant Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2007, 5, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Roque, M.I.; Camilleri, M.; Smyrk, T.; Murray, J.A.; Marietta, E.; O’Neill, J.; Carlson, P.; Lamsam, J.; Janzow, D.; Eckert, D.; et al. A controlled trial of gluten-free diet in patients with irritable bowel syn-drome-diarrhea: Effects on bowel frequency and intestinal function. Gastroenterology 2013, 144, 903–911.e3. [Google Scholar] [CrossRef] [Green Version]
- Biesiekierski, J.; Peters, S.L.; Newnham, E.D.; Rosella, O.; Muir, J.G.; Gibson, P.R. No Effects of Gluten in Patients With Self-Reported Non-Celiac Gluten Sensitivity After Dietary Reduction of Fermentable, Poorly Absorbed, Short-Chain Carbohydrates. Na.t Rev. Gastroenterol. Hepatol. 2013, 145, 320–328.e3. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.; Irving, P.; Lomer, M.; Whelan, K. Mechanisms and efficacy of dietary FODMAP restriction in IBS. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 256–266. [Google Scholar] [CrossRef]
- Ispiryan, L.; Zannini, E.; Arendt, E.K. Characterization of the FODMAP-profile in cereal-product ingredients. J. Cereal Sci. 2020, 92, 102916. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Personal view: Food for thought-western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment. Pharmacol. Ther. 2005, 21, 1399–1409. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol. 2010, 25, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Muir, J.G.; Shepherd, S.J.; Rosella, O.; Rose, R.; Barrett, J.S.; Gibson, P.R. Fructan and free fructose content of common Australian vegetables and fruit. J. Agric. Food Chem. 2007, 55, 6619–6627. [Google Scholar] [CrossRef]
- Martins, G.; Ureta, M.M.; Tymczyszyn, E.; Castilho, P.; Gomez-Zavaglia, A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front. Nutr. 2019, 6, 78. [Google Scholar] [CrossRef]
- Krieger-Grübel, C.; Hutter, S.; Hiestand, M.; Brenner, I.; Güsewell, S.; Borovicka, J. Treatment efficacy of a low FODMAP di-et compared to a low lactose diet in IBS patients: A randomized, cross-over designed study. Clin. Nutr. Espen 2020, 40, 83–89. [Google Scholar] [CrossRef]
- Yang, J.; Deng, Y.; Chu, H.; Cong, Y.; Zhao, J.; Pohl, D.; Misselwitz, B.; Fried, M.; Dai, N.; Fox, M. Prevalence and presenta-tion of lactose intolerance and effects on dairy product intake in healthy subjects and patients with irritable bowel syn-drome. Clin. Gastroenterol. Hepatol. 2013, 11, 262–268.e1. [Google Scholar] [CrossRef] [PubMed]
- Bouchoucha, M.; Fysekidis, M.; Rompteaux, P.; Raynaud, J.; Sabate, J.; Benamouzig, R. Lactose Sensitivity and Lactose Mal-absorption: The 2 Faces of Lactose Intolerance. J. Neurogastroenterol. Motil. 2021, 27, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Rippe, J.M.; Angelopoulos, T.J. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health ef-fects: What do we really know? Adv. Nutr. 2013, 4, 236–245. [Google Scholar] [CrossRef] [Green Version]
- DiNicolantonio, J.J.; Lucan, S.C. Is fructose malabsorption a cause of irritable bowel syndrome? Med. Hypotheses 2015, 85, 295–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syn-drome. Adv. Nutr. 2017, 8, 587–596. [Google Scholar] [CrossRef]
- Beaugerie, L.; Flourié, B.; Marteau, P.; Pellier, P.; Franchisseur, C.; Rambaud, J.-C. Digestion and absorption in the human intestine of three sugar alcohols. Gastroenterology 1990, 99, 717–723. [Google Scholar] [CrossRef]
- Fernandez-Banares, F.; Esteve-Pardo, M.; De Leon, R.; Humbert, P.; Cabre, E.; Llovet, J.M.; Gassull, M.A. Sugar malabsorp-tion in functional bowel disease: Clinical implications. Am. J. Gastroenterol. 1993, 88, 2044–2050. [Google Scholar]
- Hyams, J.S. Sorbitol Intolerance: An Unappreciated Cause of Functional Gastrointestinal Complaints. Gastroenterology 1983, 84, 30–33. [Google Scholar] [CrossRef]
- Sperber, A.; Dumitrascu, D.; Fukudo, S.; Gerson, C.; Ghoshal, U.C.; Gwee, K.A.; Hungin, A.P.; Kang, J.-Y.; Minhu, C.; Schmulson, M.; et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: A Rome Foundation working team literature review. Gut 2016, 66, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Varney, J.; Barrett, J.; Scarlata, K.; Catsos, P.; Gibson, P.R.; Muir, J.G. FODMAPs: Food composition, defining cutoff values and international application. J. Gastroenterol. Hepatol. 2017, 32 (Suppl. 1), 53–61. [Google Scholar] [CrossRef]
- Data from Monash University. Available online: https://monashfodmap.com/about-fodmap-and-ibs/ (accessed on 1 October 2022).
- Liljebo, T.; Störsrud, S.; Andreasson, A. Presence of Fermentable Oligo-, Di-, Monosaccharides, and Polyols (FODMAPs) in commonly eaten foods: Extension of a database to indicate dietary FODMAP content and calculation of intake in the general population from food diary data. BMC Nutr. 2020, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.S.; Gibson, P.R. Development and Validation of a Comprehensive Semi-Quantitative Food Frequency Questionnaire that Includes FODMAP Intake and Glycemic Index. J. Am. Diet. Assoc. 2010, 110, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, J.R.; Rosella, O.; Rose, R.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet. 2011, 24, 154–176. [Google Scholar] [CrossRef] [PubMed]
- Haskå, L.; Nyman, M.; Andersson, R. Distribution and characterisation of fructan in wheat milling fractions. J. Cereal Sci. 2008, 48, 768–774. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Molognoni, L.; de Sá Ploêncio, L.A.; Costa, F.B.M.; Daguer, H.; Dea Lindner, J.D. Use of sourdough fer-mentation to reducing FODMAPs in breads. Eur. Food Res. Technol. 2019, 245, 1183–1195. [Google Scholar] [CrossRef]
- Radoš, K.; Mustač, N.; Varga, K.; Drakula, S.; Voučko, B.; Ćurić, D.; Novotni, D. Development of High-Fibre and Low-FODMAP Crackers. Foods 2022, 11, 2577. [Google Scholar] [CrossRef]
- Habuš, M.; Mykolenko, S.; Iveković, S.; Pastor, K.; Kojić, J.; Drakula, S.; Ćurić, D.; Novotni, D. Bioprocessing of Wheat and Amaranth Bran for the Reduction of Fructan Levels and Application in 3D-Printed Snacks. Foods 2022, 11, 1649. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the irritable bowel syn-drome-FODMAP levels of modern and ancient species and their retention during bread making. J. Funct. Foods 2016, 25, 257–266. [Google Scholar] [CrossRef]
- Laurent, J.; Struyf, N.; Bautil, A.; Bakeeva, A.; Chmielarz, M.; Lyly, M.; Herrera-Malaver, B.; Passoth, V.; Verstrepen, K.J.; Courtin, C.M. The Potential of Kluyveromyces marxianus to Produce Low-FODMAP Straight-Dough and Sourdough Bread: A Pilot-Scale Study. Food Bioprocess Technol. 2021, 14, 1920–1935. [Google Scholar] [CrossRef]
- Atzler, J.J.; Ispiryan, L.; Gallagher, E.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Enzymatic degradation of FODMAPS via appli-cation of β-fructofuranosidases and α-galactosidases-A fundamental study. J. Cereal Sci. 2020, 95, 102993. [Google Scholar] [CrossRef]
- Nyyssölä, A.; Nisov, A.; Lille, M.; Nikinmaa, M.; Rosa-Sibakov, N.; Ellilä, S.; Valkonen, M.; Nordlund, E. Enzymatic reduc-tion of galactooligosaccharide content of faba bean and yellow pea ingredients and food products. Future Foods 2021, 4, 100047. [Google Scholar] [CrossRef]
- Ispiryan, L.; Kuktaite, R.; Zannini, E.; Arendt, E.K. Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process. Food Chem. 2020, 343, 128549. [Google Scholar] [CrossRef]
- Escobedo, A.; Mora, C.; Mojica, L. Thermal and enzymatic treatments reduced α-galactooligosaccharides in common bean (Phaseolus vulgaris L.) flour. J. Food Process. Preserv. 2019, 43, e14273. [Google Scholar] [CrossRef]
- Struyf, N.; Van der Maelen, E.; Hemdane, S.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Bread dough and baker’s yeast: An uplifting synergy. Compr. Rev. Food Sci. Food Saf. 2017, 16, 850–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struyf, N.; Vandewiele, H.; Herrera-Malaver, B.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Kluyveromyces marxianus yeast enables the production of low FODMAP whole wheat breads. Food Microbiol. 2018, 76, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Laurent, J.; Timmermans, E.; Struyf, N.; Verstrepen, K.J.; Courtin, C.M. Variability in yeast invertase activity determines the extent of fructan hydrolysis during wheat dough fermentation and final FODMAP levels in bread. Int. J. Food Microbiol. 2020, 326, 108648. [Google Scholar] [CrossRef] [PubMed]
- Fraberger, V.; Call, L.M.; Domig, K.J.; D’Amico, S. Applicability of yeast fermentation to reduce fructans and other FOD-MAPs. Nutrients 2018, 10, 1247. [Google Scholar] [CrossRef] [Green Version]
- Longin, C.; Beck, H.; Gütler, A.; Gütler, H.; Heilig, W.; Zimmermann, J.; Bischoff, S.; Würschum, T. Influence of wheat variety and dough preparation on FODMAP content in yeast-leavened wheat breads. J. Cereal Sci. 2020, 95, 103021. [Google Scholar] [CrossRef]
- Pejcz, E.; Spychaj, R.; Gil, Z. Technological Methods for Reducing the Content of Fructan in Wheat Bread. Foods 2019, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Pejcz, E.; Spychaj, R.; Gil, Z. Technological methods for reducing the content of fructan in rye bread. Eur. Food Res. Technol. 2020, 246, 1839–1846. [Google Scholar] [CrossRef]
- Shewry, P.R.; America, A.H.; Lovegrove, A.; Wood, A.J.; Plummer, A.; Evans, J.; Broeck, H.C.V.D.; Gilissen, L.; Mumm, R.; Ward, J.L.; et al. Comparative compositions of metabolites and dietary fibre components in doughs and breads produced from bread wheat, emmer and spelt and using yeast and sourdough processes. Food Chem. 2021, 374, 131710. [Google Scholar] [CrossRef] [PubMed]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.-M.; Loponen, J.; Poussa, T.; Huang, X.; Sontag-Strohm, T.; Salmenkari, H.; Korpela, R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients 2017, 9, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Sciurba, E. Determination of FODMAP contents of common wheat and rye breads and the effects of processing on the final contents. Eur. Food Res. Technol. 2020, 247, 395–410. [Google Scholar] [CrossRef]
- Albiac, M.A.; Di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: A proof of concept. Microb. Cell Factories 2020, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Loponen, J.; Ganzle, M.G. Characterization of the extracellular fructanase FruA in Lactobacillus crispatus and its con-tribution to fructan hydrolysis in breadmaking. J. Agric. Food Chem. 2020, 68, 8637–8647. [Google Scholar] [CrossRef]
- Joehnke, M.S.; Jeske, S.; Ispiryan, L.; Zannini, E.; Arendt, E.K.; Bez, J.; Petersen, I.L. Nutritional and anti-nutritional proper-ties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chem. X 2021, 9, 100112. [Google Scholar] [CrossRef]
- Gélinas, P.; McKinnon, C.; Gagnon, F. Fructans, water-soluble fibre and fermentable sugars in bread and pasta made with ancient and modern wheat. Int. J. Food Sci. Technol. 2015, 51, 555–564. [Google Scholar] [CrossRef]
- Escarnot, E.; Dornez, E.; Verspreet, J.; Agneessens, R.; Courtin, C.M. Quantification and visualization of dietary fibre com-ponents in spelt and wheat kernels. J. Cereal Sci. 2015, 62, 124–133. [Google Scholar] [CrossRef]
- Di Cairano, M.; Condelli, N.; Caruso, M.C.; Cela, N.; Tolve, R.; Galgano, F. Use of Underexploited Flours for the Reduction of Glycaemic Index of Gluten-Free Biscuits: Physicochemical and Sensory Characterization. Food Bioprocess Technol. 2021, 14, 1490–1502. [Google Scholar] [CrossRef]
- Xiaoli, X.; Liyi, Y.; Shuang, H.; Wei, L.; Yi, S.; Hao, M.; Jusong, Z.; Xiaoxiong, Z. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatography. Food Chem. 2008, 111, 215–219. [Google Scholar] [CrossRef]
- Bhise, S.; Kaur, A. Baking quality, sensory properties and shelf life of bread with polyols. J. Food Sci. Technol. 2014, 51, 2054–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, S.; Wehrle, K.; Stanton, C.; Arendt, E.K. Incorporation of dairy ingredients into wheat bread: Effects on dough rhe-ology and bread quality. Eur. Food Res. Technol. 2000, 210, 391–396. [Google Scholar] [CrossRef]
- Atzler, J.J.; Sahin, A.W.; Gallagher, E.; Zannini, E.; Arendt, E.K. Investigation of different dietary-fibre-ingredients for the design of a fibre enriched bread formulation low in FODMAPs based on wheat starch and vital gluten. Eur. Food Res. Technol. 2021, 247, 1939–1957. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Petersen, I.L.; Joehnke, M.S.; Sørensen, J.C.; Bez, J.; Detzel, A.; Busch, M.; Krueger, M.; O’Mahony, J.A.; Arendt, E.K.; et al. Comparison of Faba Bean Protein Ingredients Produced Using Dry Fractionation and Isoelectric Precipitation: Techno-Functional, Nutritional and Environmental Performance. Foods 2020, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Ispiryan, L.; Zannini, E.; Arendt, E.K. FODMAP modulation as a dietary therapy for IBS: Scientific and market perspective. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1491–1516. [Google Scholar] [CrossRef]
- Nyyssölä, A.; Ellilä, S.; Nordlund, E.; Poutanen, K. Reduction of FODMAP content by bioprocessing. Trends Food Sci. Technol. 2020, 99, 257–272. [Google Scholar] [CrossRef]
- Loponen, J.; Mikola, M.; Sibakov, J. Enzyme Exhibiting Fructan Hydrolase Activity. U.S. Patent 10,716,308, 21 July 2020. [Google Scholar]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Balmus, I.-M.; Copolovici, D.; Copolovici, L.; Ciobica, A.; Gorgan, D.L. Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology. Molecules 2022, 27, 2403. [Google Scholar] [CrossRef]
- Bousdouni, P.; Kandyliari, A.; Koutelidakis, A.E. Probiotics and Phytochemicals: Role on Gut Microbiota and Efficacy on Irritable Bowel Syndrome, Functional Dyspepsia, and Functional Constipation. Gastrointest. Disord. 2022, 4, 30–48. [Google Scholar] [CrossRef]
- Thomas, A.; Quigley, E.M. Diet and irritable bowel syndrome. Curr. Opin. Gastroenterol. 2015, 31, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Fifi, A.C.; Axelrod, C.H.; Chakraborty, P.; Saps, M. Herbs and spices in the treatment of functional gastrointestinal disor-ders: A review of clinical trials. Nutrients 2018, 10, 1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingrosso, M.R.; Ianiro, G.; Nee, J.; Lembo, A.J.; Moayyedi, P.; Black, C.J.; Ford, A.C. Systematic review and meta-analysis: Efficacy of peppermint oil in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2022, 56, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Li, X.; Zhou, D.; Wang, Y.; Wen, X.; Wang, C.; Liu, X.; Feng, Y.; Li, B.; et al. Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends Food Sci. Technol. 2021, 111, 475–482. [Google Scholar] [CrossRef]
- Nozu, T.; Miyagishi, S.; Ishioh, M.; Takakusaki, K.; Okumura, T. Phlorizin attenuates visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Biomed. Pharmacother. 2021, 139, 111649. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-F.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.-K. Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence. Molecules 2021, 26, 2090. [Google Scholar] [CrossRef]
- Hekmatdoost, A.; Jalili, M.; Vahedi, H.; Poustchi, H. Effects of Vitamin D supplementation in patients with irritable bowel syndrome: A randomized, double-blind, placebo-controlled clinical trial. Int. J. Prev. Med. 2019, 10, 16. [Google Scholar] [CrossRef]
- Tazzyman, S.; Richards, N.; Trueman, A.R.; Evans, A.L.; Grant, V.A.; Garaiova, I.; Plummer, S.F.; Williams, E.; Corfe, B.M. Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: Outcomes from a pilot trial. BMJ Open Gastroenterol. 2015, 2, e000052. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Vahedi, H.; Poustchi, H.; Hekmatdoost, A. Soy isoflavones and cholecalciferol reduce inflammation, and gut permeability, without any effect on antioxidant capacity in irritable bowel syndrome: A randomized clinical trial. Clin. Nutr. ESPEN 2019, 34, 50–54. [Google Scholar] [CrossRef]
Classes | Examples |
---|---|
Oligosaccharides | Fructans (FOS), Galacto-oligosaccharides (GOS) |
Polysaccharides | Lactose |
Monosaccharides | Fructose |
Polyols | Sorbitol, mannitol, xylitol, erythritol, polydextrose, and maltitol |
Food | Low FODMAPs | High FODMAPs |
---|---|---|
Fruits | Kiwifruit, blueberry, banana, mandarin, orange, passionfruit, grapefruit. | Peaches, apples, pears, watermelon, cherries, mango, apricots. |
Vegetables | Carrot, celery, lettuce, eggplant, zucchini, green beans, bok choy. | Asparagus, Brussels sprout, cabbage, fennel, mushrooms, onion, garlic. |
Dairy | Brie/camembert cheese, feta cheese, lactose-free milk. | Cow, sheep and goat milk, ice cream, yoghurt, ricotta, cottage. |
Grain/cereals | Gluten-free bread/cereal products, sourdough spelt bread, quinoa/rice/corn pasta. | Pasta, wheat bread, biscuits, couscous. |
Sweeteners | Maple, rice malt and golden syrups, sucrose. | Honey, high fructose corn syrup, sorbitol, mannitol, xylitol. |
Approaches | Product | Type of Flour | Results | Reference |
---|---|---|---|---|
Ingredient selection and fermentation time | Bread | Wheat | Prolonged proofing time (>4 h) ↓ FODMAPs content up to 90% | Ziegler et al. [49] |
Ingredients selection | Cracker | Wholemeal, buckwheat, millet, and white maize | High fibre, low-FODMAP product | Radoš et al. [47] |
Enzymatic (β-fructofuranosidases and α-galactosidases) | Flour | Wholemeal wheat and lentil flours (degradation on FODMAPs extract) | Inulinase degraded over 90% GOS and fructans α—galoctosidase degrade 100% GOS invertase low degradation yield | Atzler et al. [51] |
Enzymatic (α-GOS) | High moisture meat analogues Crackers Spoonable product | Faba bean and yellow been | ↓ GOS over 90% | Nyyssölä et al. [52] |
Enzymatic (activation of endogenous enzymes by malting) | Grains | Spring malting barley, wheat, chickpeas, oat, lentils, buckwheat | Malting ↓ 80–90%GOS in lentils and chickpeas—fructans not synthetized in oat barley and wheat malts slightly higher fructans content | Ispyrian et al. [53] |
Enzymatic (α-galactosidases) and soaking treatmentand thermal treatment | Flour | Common bean | Ezymatic hydrolysis (α-GOS) and soaking and thermal treatment ↓ GOS up to 97.6% | Escobendo et al. [54] |
Yeast fermentation (inulinase producer) | Bread | Wheat flour | Kluyveromyces marxiaus strain ↓ 90% fructans level; Saccharomices cerevies ↓ 56% reduction; co-culture of the two-strain leads to a bread low FODMAP and good loaf volume | Struyf et al. [55] |
Yeast fermentation (30 K. marxianus strains) | Bread | Wheat | Kluyveromyces marxianus strain CBS6014 can degrade more than 90% of the fructans | Struyf et al. [56] |
Yeast fermentation (28 S. cerevisiae strains) | Bread | Wholewheat | Final fructan level of 0.3% dm, Strains with a low invertase activity yielded fructan levels around 0.6% dm. The non-bakery strains produced lower levels of CO2 in the bread | Laurent et al. [57] |
Yeast fermentation | Model system | Different rye and sourdough as yeast source | Saccharomyces cerevisiae isolated from Austrian traditional sourdough showed the highest degree of degradation of the total fructan content and the highest gas building capacity, followed by Torulaspora delbrueckii | Fraberger et al. [58] |
Yeast fermentation and fermentation time | Bread | Wheat (21 varieties) | Different wheat varieties differ up to 5 times in their potential to form FODMAPs in bread. FODAMPs content tend to be lower in long fermentation but not significant FODMAPs reduction >65% | Longin et al. [59] |
Yeast fermentation and enzymatic (inulinase) | 3D printed snack | Wheat and amaranth bran | ↓ fructan content up to 93% | Habuš et al. [48] |
Yeast and LAB (sourdough) fermentation and ingredients selection | Bread | Light and whole wheat | Sourdough and extended fermentation time ↓ fructans content use of light flour ↓ fructans content | Pejcz et al. [60] |
Yeast and LAB fermentation (sourdough) and ingredients selection and fermentation time | Bread | Rye flour (endosperm and whole meal | Sourdough ↓ fructans content— prolonged fermentation time no effect on fructans content | Pejcz et al. [61] |
Yeast and LAB (sourdough) fermentation | Bread | Wheat, rye, emmer | Wheat bread ↑ fibre and fructan contents compared to other flours- Yeast fermentation ↑ reduction of fructans and raffinose | Shewry et al. [62] |
Yeast and LAB (sourdough) fermentation | Bread | Wheat flour | Sourdough ↓ FODMAPs-sourdough bread not best tolerated by IBS patients than yest fermented | Laatikainen et al. [63] |
LAB (sourdough) and fermentation time | Bread | Wheat flour and rye flour (wholemeal and refined) | Prolonged proofing time ↓ fructans content sourdough changed FODMAPs composition by ↓ fructans content and ↑ mannitol content-refined wheat flour bread meets low FODMAPs criteria—rye and whole meal wheat flour high FODMAPs regardless of processing condition employed | Schmidt and Sciurba [64] |
LAB fermentation (25 fructophilic lactic acid bacteria strains) | Bread/dough | Durum wheat | Fermenting dough resulted in lower loaf volumes | Acín Albiac et al. [65] |
LAB (sourdough) fermentation | Bread | Wheat | Sourdough ↓ of fructans up to 69–75% | Menezes et al. [46] |
LAB (sourdough) fermentation + Lactobacillus crispatus | Bread | Rye and wheat flour | Sourdough fermentation with L. crispatus ↓ fructans more than 90% Conventional sourdough fermentation ↓ fructans (65–70%) | Li et al. [66] |
Other approaches isoelectric precipitation and ultrafiltration | Lentil protein isolate | Lentil | ↓ GOS 58% isoelectric precipitation ↓ GOS 91% ultrafiltration | Joehnke et al. [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galgano, F.; Mele, M.C.; Tolve, R.; Condelli, N.; Di Cairano, M.; Ianiro, G.; D’Antuono, I.; Favati, F. Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives. Foods 2023, 12, 856. https://doi.org/10.3390/foods12040856
Galgano F, Mele MC, Tolve R, Condelli N, Di Cairano M, Ianiro G, D’Antuono I, Favati F. Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives. Foods. 2023; 12(4):856. https://doi.org/10.3390/foods12040856
Chicago/Turabian StyleGalgano, Fernanda, Maria Cristina Mele, Roberta Tolve, Nicola Condelli, Maria Di Cairano, Gianluca Ianiro, Isabella D’Antuono, and Fabio Favati. 2023. "Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives" Foods 12, no. 4: 856. https://doi.org/10.3390/foods12040856
APA StyleGalgano, F., Mele, M. C., Tolve, R., Condelli, N., Di Cairano, M., Ianiro, G., D’Antuono, I., & Favati, F. (2023). Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives. Foods, 12(4), 856. https://doi.org/10.3390/foods12040856