Marine Capture Fisheries from Western Indian Ocean: An Excellent Source of Proteins and Essential Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Amino Acid Composition and Protein Content
2.3. Statistical Analyses
3. Results
3.1. Protein Content
3.2. Distribution of Essential Amino Acids
3.3. Taurine Concentration
4. Discussion
4.1. Protein Content
4.2. Contribution to Daily Recommended Intake
4.3. Protein Quality
4.4. Taurine
4.5. Regional Food and Nutrition Security
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Hilborn, R.; Banobi, J.; Hall, S.J.; Pucylowski, T.; Walsworth, T.E. The environmental cost of animal source foods. Front. Ecol. Environ. 2018, 16, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Caldeira, K.; Chopin, T.; Gaines, S.; Haugan, P.; Hemer, M.; Howard, J.; Konar, M.; Krause-Jensen, D.; Lindstad, E. The ocean as a solution to climate change: Five Opportunities for Action. Available online: https://www.wri.org/events/2019/10/ocean-solution-climate-change-5-opportunities-action (accessed on 8 May 2021).
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022; 266p. [Google Scholar]
- Thomsen, S.T.; Assuncao, R.; Afonso, C.; Boué, G.; Cardoso, C.; Cubadda, F.; Garre, A.; Kruisselbrink, J.W.; Mantovani, A.; Pitter, J.G.; et al. Human health risk—benefit assessment of fish andother seafood: A scoping review. Food Sci. Nutr. 2022, 62, 7479–7502. [Google Scholar] [CrossRef]
- Bodin, N.; Lesperance, D.; Albert, R.; Hollanda, S.; Michaud, P.; Degroote, M.; Churlaud, C.; Bustamante, P. Trace elements in oceanic pelagic communitites in the western Indian Ocean. Chemosphere 2017, 174, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.P.W.; Maire, E.; Bodin, N.; Hempson, T.N.; Graham, N.A.J.; Wilson, S.K.; MacNeil, M.A.; Hicks, C.C. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 2022, 5, 98–108. [Google Scholar] [CrossRef]
- Larsen, R.; Eilertsen, K.E.; Elvevoll, E.O. Health benefits of marine foods and ingredients. Biotechnol. Adv. 2011, 29, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Jensen, I.J.; Walquist, M.; Liaset, B.; Elvevoll, E.O.; Eilertsen, K.E. Dietary intake of cod and scallop reduces atherosclerotic burden in female apolipoprotein E-deficient mice fed a Western-type high fat diet for 13 weeks. Nutr. Metab. 2016, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Spitze, A.R.; Wong, D.L.; Rogers, Q.R.; Fascetti, A.J. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J. Anim. Physiol. Anim. Nutr. 2003, 87, 251–262. [Google Scholar] [CrossRef]
- Elvevoll, E.O.; Eilertsen, K.E.; Brox, J.; Dragnes, B.T.; Falkenberg, P.; Olsen, J.O.; Kirkhus, B.; Lamglait, A.; Osterud, B. Seafood diets: Hypolipidemic and antiatherogenic effects of taurine and n-3 fatty acids. Atherosclerosis 2008, 200, 396–402. [Google Scholar] [CrossRef]
- Yamori, Y.; Liu, L.; Ikeda, K.; Miura, A.; Mizushima, S.; Miki, T.; Nara, Y.; Disease, W.H.-C.; Alimentary Comprarison Study, G. Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: Results from the WHO-CARDIAC study. Hypertens. Res. 2001, 24, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Sabino, M.A.; Bodin, N.; Govinden, R.; Arrisol, R.; Churlaud, C.; Pethybridge, H.; Bustamante, P. The role of tropical small-scale fisheries in trace element delivery for a Small Island Developing State community, the Seychelles. Mar. Pollut. Bull. 2022, 181, 113870. [Google Scholar] [CrossRef]
- Sardenne, F.; Bodin, N.; Médieu, A.; Antha, M.; Arrisol, R.; Le Grand, F.; Bideau, A.; Munaron, J.-M.; Le Loc’h, F.; Chassot, E. Benefit-risk associated with the consumption of fish bycatch from tropical tuna fisheries. Environ. Pollut. 2020, 267, 115614. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Health Benefits of Seafood (Fish and Shellfish) Consumption in Relation to Health Risks Associated with Exposure to Methylmercury; EFSA: Parma, Italy, 2014. [Google Scholar]
- FAO; WHO. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption; FAO: Rome, Italy, 2011. [Google Scholar]
- VKM. Benefit and Risk Assessment of Fish in the Norwegian Diet. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment; VKM: Oslo, Norway, 2022. [Google Scholar]
- Munschy, C.; Vigneau, E.; Bely, N.; Héas-Moisan, K.; Olivier, N.; Pollono, C.; Hollanda, S.; Bodin, N. Legacy and emerging organic contaminants: Levels and profiles in top predator fish from the western Indian Ocean in relation to their trophic ecology. Environ. Res. 2020, 188, 109761. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Spiller, P.; Brenna, J.T.; Golding, J.; Holub, B.J.; Harris, W.S.; Kris-Etherton, P.; Lands, B.; Connor, S.L.; Myers, G.; et al. Relationships between seafood consumption during pregnancy and childhood and neurocognitive development: Two systematic reviews. Prostaglandins Leukot Essent Fat. Acids 2019, 151, 14–36. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P.W.; van Wijngaarden, E.; Shamlaye, C.; Strain, J.J.; Myers, G.J. Putting findings from the Seychelles Child Development Study into perspective: The importance of a historical special issue of the Seychelles Medical and Dental Journal. Neurotoxicology 2020, 76, 111–113. [Google Scholar] [CrossRef]
- Strain, J.J.; Love, T.M.; Yeates, A.J.; Weller, D.; Mulhern, M.S.; McSorley, E.M.; Thurston, S.W.; Watson, G.E.; Mruzek, D.; Broberg, K.; et al. Associations of prenatal methylmercury exposure and maternal polyunsaturated fatty acid status with neurodevelopmental outcomes at 7 years of age: Results from the Seychelles Child Development Study Nutrition Cohort 2. Am. J. Clin. Nutr. 2021, 113, 304–313. [Google Scholar] [CrossRef]
- Strain, J.J.; Yeates, A.J.; van Wijngaarden, E.; Thurston, S.W.; Mulhern, M.S.; McSorley, E.M.; Watson, G.E.; Love, T.M.; Smith, T.H.; Yost, K.; et al. Prenatal exposure to methyl mercury from fish consumption and polyunsaturated fatty acids: Associations with child development at 20 mo of age in an observational study in the Republic of Seychelles. Am. J. Clin. Nutr. 2015, 101, 530–537. [Google Scholar] [CrossRef] [Green Version]
- FAO. Fishery and Aquaculture Country Profiles. The Republic of Seychelles. Available online: http://www.fao.org/fishery/facp/SYC/en (accessed on 20 October 2022).
- Seychelles Fisheries Sector Policy and Strategy. 2019. Available online: http://www.mofa.gov.sc/downloads/Seychelles%20Fisheries%20Sector%20Policy%20.pdf (accessed on 20 October 2022).
- Strain, J.J. Eating fish for two. Nutr. Bull. 2014, 39, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, I.; Bovet, P.; Viswanathan, B.; Luke, A.; Marques-Vidal, P. Nutrition transition in a middle-income country: 22-year trends in the Seychelles. Eur. J. Clin. Nutr. 2012, 67, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Bovet, P.; Chiolero, A.; Shamlaye, C.; Paccaud, F. Prevalence of overweight in the Seychelles: 15 year trends and association with socio-economic status. Obes. Rev. 2008, 9, 511–517. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Lewis, J. Codex Nutrient Reference Values; FAO: Rome, Italy, 2019. [Google Scholar]
- Khalili Tilami, S.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. Aquac. 2017, 26, 243–253. [Google Scholar] [CrossRef]
- Greenfield, H.; Southate, D. Food Composition Data: Production, Management, and Use; FAO: Rome, Italy, 2003. [Google Scholar]
- Robinson, J.P.W.; Robinson, J.; Gerry, C.; Govinden, R.; Freshwater, C.; Graham, N.A.J. Diversification insulates fisher catch and revenue in heavily exploited tropical fisheries. Sci. Adv. 2020, 6, eaaz0587. [Google Scholar] [CrossRef] [Green Version]
- Maehre, H.K.; Dalheim, L.; Edvinsen, G.K.; Elvevoll, E.O.; Jensen, I.J. Protein Determination-Method Matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.; Stein, W.H. Chromatographic determination of amino acids by the use of automatic recording equipment. Meth. Enzymol. 1963, 6, 819–831. [Google Scholar] [CrossRef]
- Maehre, H.K.; Hamre, K.; Elvevoll, E.O. Nutrient evaluation of rotifers and zooplankton: Feed for marine fish larvae. Aquacult. Nutr. 2013, 19, 301–311. [Google Scholar] [CrossRef]
- Maclean, W.C.; Harnly, J.M.; Chen, J.; Chevassus-Agnes, S.; Gilani, G.; Livesey, G.; Mathioudakis, B.; Munoz De Chavez, M.; Devasconcellos, M.T.; Warwick, P. Food Energy—Methods of Analysis and Conversion Factors. In Food and Agriculture Organization of the United Nations Technical Workshop Report; FAO: Rome, Italy, 2003. [Google Scholar]
- Pickering, M.; Newton, P. Amino acid hydrolysis: Old problems, new solutions. LC GC Mag. Sep. Sci. 1990, 8, 778–781. [Google Scholar]
- Larsen, R.; Stormo, S.K.; Dragnes, B.T.; Elvevoll, E.O. Losses of taurine, creatine, glycine and alanine from cod (Gadus morhua L.) fillet during processing. J. Food Comp. Anal. 2007, 20, 396–402. [Google Scholar] [CrossRef]
- Larsen, R.; Mierke-Klemeyer, S.; Mæhre, H.; Elvevoll, E.O. Retention of health beneficial components during hot- And cold-smoking of African catfish (Ciarias gariepinus) fillets. Arch. Für Lebensm. 2010, 61, 31–35. [Google Scholar] [CrossRef]
- FAO. Protein Quality Evaluation in Human Diets. Report of a Joint FAO/WHO Expert Consultation; FAO: Rome, Italy, 1991. [Google Scholar]
- Jong, C.J.; Sandal, P.; Schaffer, S.W. The role of taurine in mitochnodria health: More than just an antioxidant. Molecules 2021, 26, 4913. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.W.; Ito, T.; Azyma, J. Clinical significance of taurine. Amino Acids 2013, 46, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-Y.; Zhang, T.-T.; Yu, Z.-L.; Wang, C.-C.; Zhao, Y.-C.; Wang, Y.-M.; Xue, C.-H. Taurine alleviates trimethylamine N-oxide-induced atherosclerosis by regulating bile acid metabolism in ApoE–/– mice. J Agric. Food Chem. 2022, 70, 5738–5747. [Google Scholar] [CrossRef] [PubMed]
- Gormley, T.R.; Neumann, T.; Fagan, J.D.; Brunton, N.P. Taurine content of raw and processed fish fillets/portions. Eur. Food Res. Technol. 2007, 225, 837–842. [Google Scholar] [CrossRef]
- Gibson, R.; Lau, C.-H.E.; Loo, R.L.; Ebbels, T.M.D.; Chekmeneva, E.; Dyer, A.R.; Miura, K.; Ueshima, H.; Zhao, L.; Daviglus, M.L.; et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am. J. Clin. Nutr. 2020, 111, 280–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragnes, B.T.; Larsen, R.; Erntsen, M.H.; Mæhre, H.; Elvevoll, E.O. Impact of processing on the taurine content in processed seafood and their corresponding unprocessed raw materials. Int. J. Food Sci. Nutr. 2009, 60, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, F.; Vita, G.; Müller, D.B. Food Security for an Aging and Heavier Population. Sustainability 2018, 10, 3683. [Google Scholar] [CrossRef] [Green Version]
- Nash, K.L.; MacNeil, M.A.; Blanchard, J.L.; Cohen, P.J.; Farmery, A.K.; Graham, N.A.J.; Thorne-Lyman, A.L.; Watsen, R.A.; Hicks, C.C. Trade and foreign fishing mediate global marine nutrient supply. Sustain. Sci. 2022, 119, e2120817119. [Google Scholar] [CrossRef]
- Fanzo, J.; Drewnowski, A.; Blumberg, J.; Miller, G.; Kraemer, K.; Kennedy, E. Nutrients, foods, diets, people: Promoting healthy eating. Curr. Dev. Nutr. 2020, 4, nzaa069. [Google Scholar] [CrossRef] [Green Version]
- Farmery, A.K.; Alexander, K.; Anderson, K.; Blanchard, J.L.; Carter, C.G.; Evans, K.; Fischer, M.; Fleming, A.; Frusher, S.; Fulton, E.A.; et al. Food for all: Designing sustainable and secure future seafood systems. Rev. Fish Biol. Fish 2022, 32, 101–121. [Google Scholar] [CrossRef]
Group Family | Scientific Name | English Name | FAO Code | Habitat | Fishing Area | Fishing Year | N | Length | Weight |
---|---|---|---|---|---|---|---|---|---|
Crustacean | |||||||||
Palinuridae | Panulirus longipes | Longlegged spiny lobster | LOJ | reef-associated | Nearshore | 2014 | 5 | 8.2 ± 0.7 | 0.6 ± 0.1 |
Panulirus penicillatus | Pronghorn spiny lobster | NUP | reef-associated | Nearshore | 2014 | 4 | 9.3 ± 1.3 | 0.7 ± 0.2 | |
Raninidae | Ranina ranina | Spanner crab | RAQ | reef-associated | Nearshore | 2014 | 5 | 9.7 ± 1.1 | 0.3 ± 0.1 |
Shark | |||||||||
Carcharhinidae | Carcharhinus falciformis | Silky shark | FAL | reef-associated | Nearshore | 2015 | 5 | 79.8 ± 11.4 | NA |
Teleost fish | |||||||||
Siganidae | Siganus argenteus | Streamlined spinefoot | IGA | reef-associated | Nearshore | 2015 | 4 | 26.0 ± 1.1 | 0.3 ± 0.0 |
Scaridae | Scarus ghobban | Blue-barred parrotfish | USY | reef-associated | Nearshore | 2015 | 4 | 29.8 ± 3.5 | 0.5 ± 0.2 |
Acanthuridae | Acanthurus mata | Elongate surgeonfish | DGW | reef-associated | Nearshore | 2016 | 4 | 46.8 ± 1.5 | 2.1 ± 0.1 |
Balistidae | Canthidermis maculata | Rough triggerfish | CNT | reef-associated | Nearshore | 2015 | 5 | 31.8 ± 3.9 | 0.7 ± 0.2 |
Carangidae | Gnathanodon speciosus | Golden trevally | GLT | reef-associated | Nearshore | 2016 | 2 | 66.0 ± 19.8 | 5.8 ± 4.6 |
Carangoides malabaricus | Malabar trevally | NGS | reef-associated | Nearshore | 2016 | 2 | 67.5 ± 6.4 | 4.6 ± 0.4 | |
Carangoides fulvoguttatus | Yellowspotted trevally | NGU | reef-associated | Nearshore | 2016 | 9 | 52.4 ± 9.0 | 2.6 ± 1.2 | |
Elagatis bipinnulata | Rainbow runner | RRU | reef-associated | Nearshore | 2015 | 5 | 75.1 ± 15.5 | NA | |
Lethrinidae | Lethrinus crocineus | Yellowtail emperor | ICZ | reef-associated | Nearshore | 2016 | 5 | 36.0 ± 5.1 | 1.0 ± 0.5 |
Lethrinus microdon | Smalltooth emperor | LEN | reef-associated | Nearshore | 2016 | 4 | 45.8 ± 2.2 | 1.5 ± 0.2 | |
Lethrinus nebulosus | Spangled emperor | LHN | reef-associated | Nearshore | 2016 | 1 | 41 | 1.2 | |
Lethrinus variegatus | Slender emperor | LHV | reef-associated | Nearshore | 2016 | 10 | 29.0 ± 1.3 | 0.4 ± 0.1 | |
Lethrinus mahsena | Sky emperor | LTQ | reef-associated | Nearshore | 2016 | 10 | 33.7 ± 3.2 | 0.9 ± 0.2 | |
Lutjanidae | Aprion virescens | Green jobfish | AVR | reef-associated | Nearshore | 2015 | 14 | 52.2 ± 3.3 | 2.0 ± 0.4 |
Etelis coruscans | Deepwater longtail red snapper | ETC | reef-associated | Nearshore | 2014 | 10 | 57.3 ± 11.3 | 2.8 ± 1.4 | |
Lutjanus bohar | Two-spot red snapper | LJB | reef-associated | Nearshore | 2015 | 15 | 58.6 ± 15.6 | 4.4 ± 2.7 | |
Lutjanus gibbus | Humpback red snapper | LJG | reef-associated | Nearshore | 2016 | 9 | 36.0 ± 3.6 | 1.0 ± 0.3 | |
Lutjanus sebae | Emperor red snapper | LUB | reef-associated | Nearshore | 2014 | 10 | 56.8 ± 6.9 | 4.2 ± 1.5 | |
Serranidae | Cephalopholis argus | Peacock hind | CFF | reef-associated | Nearshore | 2014 | 8 | 30.5 ± 3.3 | 0.5 ± 0.2 |
Epinephelus fasciatus | Blacktip grouper | EEA | reef-associated | Nearshore | 2016 | 3 | NA | 0.4 ± 0.1 | |
Epinephelus chlorostigma | Brownspotted grouper | EFH | reef-associated | Nearshore | 2014 | 9 | 37.2 ± 2.0 | 0.7 ± 0.1 | |
Cephalopholis sonnerati | Tomato hind | EFT | reef-associated | Nearshore | 2014 | 9 | 40.2 ± 4.4 | 1.1 ± 0.4 | |
Epinephelus multinotatus | White-blotched grouper | EWU | reef-associated | Nearshore | 2014 | 10 | 64.0 ± 5.6 | 4.2 ± 1.1 | |
Sphyraenidae | Sphyraena barracuda | Great barracuda | GBA | reef-associated | Nearshore | 2014 | 5 | 106.2 ± 9.0 | 7.6 ± 2.7 |
Scombridae | Gymnosarda unicolor | Dogtooth tuna | DOT | reef-associated | Offshore | 2016 | 1 | 93 | 12.2 |
Rastrelliger kanagurta | Indian mackerel | RAG | pelagic-neritic | Offshore | 2014 | 10 | 25.9 ± 0.5 | 0.3 ± 0.0 | |
Katsuwonus pelamis | Skipjack tuna | SKJ | pelagic-oceanic | Offshore | 2014 | 3 | 45.4 ± 3.5 | 2.0 ± 0.4 | |
Coryphaenidae | Coryphaena hippurus | Common dolphinfish | DOL | pelagic-neritic | Offshore | 2014 | 10 | 99.1 ± 7.2 | 6.4 ± 1.7 |
Xiphiidae | Xiphias gladius | Swordfish | SWO | pelagic-oceanic | Offshore | 2014 | 20 | 158.9 ± 32.1 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, I.-J.; Bodin, N.; Govinden, R.; Elvevoll, E.O. Marine Capture Fisheries from Western Indian Ocean: An Excellent Source of Proteins and Essential Amino Acids. Foods 2023, 12, 1015. https://doi.org/10.3390/foods12051015
Jensen I-J, Bodin N, Govinden R, Elvevoll EO. Marine Capture Fisheries from Western Indian Ocean: An Excellent Source of Proteins and Essential Amino Acids. Foods. 2023; 12(5):1015. https://doi.org/10.3390/foods12051015
Chicago/Turabian StyleJensen, Ida-Johanne, Nathalie Bodin, Rodney Govinden, and Edel Oddny Elvevoll. 2023. "Marine Capture Fisheries from Western Indian Ocean: An Excellent Source of Proteins and Essential Amino Acids" Foods 12, no. 5: 1015. https://doi.org/10.3390/foods12051015
APA StyleJensen, I. -J., Bodin, N., Govinden, R., & Elvevoll, E. O. (2023). Marine Capture Fisheries from Western Indian Ocean: An Excellent Source of Proteins and Essential Amino Acids. Foods, 12(5), 1015. https://doi.org/10.3390/foods12051015