Simulation Study of Xylitol-Mediated Effect on NaCl Diffusion Behavior in Cured Pork Tenderloin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Cured Pork Tenderloin Sample Preparation
2.2.2. Measurements of Moisture and NaCl Contents
2.2.3. Evaluation of Changes in Water, Salt, and Total Weight
2.2.4. Construction of Mass Transfer Kinetic Model
2.2.5. NaCl Diffusion Coefficient (De)
2.2.6. Evaluation of the Link between NaCl Content and Diffusion Distance
2.3. One-Way Model Simulations of the Kinetics of NaCl Diffusion
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total Weight, Moisture, and NaCl Contents
3.2. Application of Predictive Models to Detect Changes
3.3. Link between NaCl Content and Diffusion Distance
3.4. Simulating Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Zhang, Y.; Zhou, G.; Ren, X.; Peng, Z. Lipolytic degradation, water and flavor properties of low sodium dry cured beef. Int. J. Food Prop. 2019, 22, 1322–1339. [Google Scholar] [CrossRef] [Green Version]
- Vidal, V.A.S.; Paglarini, C.S.; Freitas, M.Q.; Coimbra, L.O.; Esmerino, E.A.; Pollonio, M.A.R.; Cruz, A.G.Q. Methodology: An interesting strategy for concept profile and sensory description of low sodium salted meat. Meat Sci. 2019, 161, 108000. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, L.; Tang, H.; Wang, H.; Shen, Q. Tenderness improvement of reduced-fat and reduced-salt meat gels as affected by high pressure treating time. Innov. Food Sci. Emerg. Technol. 2021, 2, 102687. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, H.W.; Choi, Y.S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods 2021, 10, 957. [Google Scholar] [CrossRef]
- Matsuo, T.; Miyata, Y.; Otsubo, A.; Mukae, Y.; Sakai, H. Efficacy of salt reduction for managing overactive bladder symptoms: A prospective study in patients with excessive daily salt intake. Sci. Rep. 2021, 11, 4064. [Google Scholar] [CrossRef] [PubMed]
- Inguglia, E.S.; Zhang, Z.H.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Pateiro, M.; Munekata, P.E.; Cittadini, A.; Domínguez, R.; Lorenzo, J.M. Metallic-based salt substitutes to reduce sodium content in meat products. Curr. Opin. Food Sci. 2021, 2021 38, 21–31. [Google Scholar] [CrossRef]
- Teixeira, A.; Domínguez, R.; Ferreira, I.; Pereira, E.; Lorenzo, J.M. Effect of NaCl Replacement by other Salts on the Quality of Bísaro Pork Sausages (PGI Chouria de Vinhais). Foods 2021, 2021 10, 961. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Granato, D.; Kerry, J.P.; Tiwari, B.K.; Burgess, C.M. Ultrasound for Meat Processing: Effects of Salt Reduction and Storage on Meat Quality Parameters. Appl. Sci. 2020, 11, 117. [Google Scholar] [CrossRef]
- Morton, J.D.; Pearson, R.G.; Lee, Y.Y.; Smithson, S.; Mason, S.L.; Bickerstaffe, R. High pressure processing improves the tenderness and quality of hot-boned beef. Meat Sci. 2017, 2017 133, 69–74. [Google Scholar] [CrossRef]
- Vidal, V.A.S.; Bernardinelli, O.D.; Paglarini, C.S.; Sabadini, E.; Pollonio, M.A.R. Understanding the effect of different chloride salts on the water behavior in the salted meat matrix along 180 days of shelf life. Food Res. Int. 2019, 125, 108634. [Google Scholar] [CrossRef] [PubMed]
- Gullón, P.; Astray, G.; Gullón, B.; Franco, D.; Lorenzo, J.M. Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Curr. Opin. Food Sci. 2020, 40, 20–25. [Google Scholar] [CrossRef]
- Ojha, K.S.; Tiwari, B.K.; O’Donnell, C.P. Effect of Ultrasound Technology on Food and Nutritional Quality. Adv. Food Nutr. Res. 2018, 84, 207–240. [Google Scholar]
- Kong, F.; Kang, S.; An, Y.; Li, W.; Han, H.; Guan, B.; Yang, M.; Zheng, Y.; Yue, X. The effect of non-covalent interactions of xylitol with whey protein and casein on structure and functionality of protein. Int. Dairy J. 2020, 111, 104841. [Google Scholar] [CrossRef]
- Geonzon, L.C.; Yuson, H.A.; Takahashi, K.; Matsukawa, S. Study on salinity penetration process into fish meat by simulation and MRI. Fish. Sci. 2021, 87, 609–617. [Google Scholar] [CrossRef]
- Hansen, C.L.; Berg, F.; Ringgaard, S.; Stodkilde-Jorgensen, H.; Karlsson, A.H. Diffusion of NaCl in meat studied by 1H and 23Na magnetic resonance imaging. Meat Sci. 2008, 80, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Mcdonnell, C.K.; Allen, P.; Duggan, E.; Arimi, J.M.; Casey, E.; Duane, G.; Lyng, J.G. The effect of salt and fibre direction on water dynamics, distribution and mobility in pork muscle: A low field NMR study. Meat Sci. 2013, 95, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mathioulakis, E.; Karathanos, V.T.; Belessiotis, V.G. Simulation of air movement in a dryer by computational fluid dynamics: Application for the drying of fruits. J. Food Eng. 1998, 36, 183–200. [Google Scholar] [CrossRef]
- Uyar, R.; Erdogdu, F.; Sarghini, F.; Marra, F. Computer simulation of radio-frequency heating applied to block-shaped foods: Analysis on the role of geometrical parameters. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2016, 98, 310–319. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shi, J.; Li, Z.; Huang, X.; Liang, J.; Zhang, X.; Zhang, D.; Zou, X.; Hu, X. Simulation of diffusion behavior of NaCl in multi-tissue beef marination process. Food Chem. 2023, 402, 134164. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Hu, X.; Li, Z.; Huang, X.; Liang, J.; Zhang, X.; Zhang, D.; Zou, X.; Shi, J. Quantitative characterization of the diffusion behavior of sucrose in marinated beef by HSI and FEA. Meat Sci. 2023, 195, 109002. [Google Scholar] [CrossRef] [PubMed]
- Dimakopoulou-Papazoglou, D.; Katsanidis, E. Mass transfer kinetics during osmotic processing of beef meat using ternary solutions. Food Bioprod. Process. 2016, 100, Part B, 560–569. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.J.; Wang, Z.F.; Emara, A.M.; He, Z.F. Effects of NaCl substitutes on physicochemical properties of salted pork. Meat Sci. 2020, 169, 108205. [Google Scholar] [CrossRef] [PubMed]
- Gallart-Jornet, L.; Barat, J.M.; Rustad, T.; Erikson, U.; Escriche, I.; Fito, P. A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). J. Food Eng. 2007, 79, 261–270. [Google Scholar] [CrossRef]
- Nguyen, M.V.; Thorarinsdottir, K.A.; Gudmundsdottir, A. The effects of salt concentration on conformational changes in cod (Gadus morhua) proteins during brine salting. Food Chem. 2011, 125, 1013–1019. [Google Scholar] [CrossRef]
- Barat, J.M.; Gallart-Jornet, L.; Andrés, A.; Akse, L.; Carlehög, M.; Skjerdal, O.T. Influence of cod freshness on the salting, drying and desalting stages. J. Food Eng. 2006, 73, 9–19. [Google Scholar] [CrossRef]
- Pajonk, A.S.; Saurel, R.; Andrieu, J. Experimental study and modeling of effective NaCl diffusion coefficients values during Emmental cheese brining. J. Food Eng. 2003, 60, 307–313. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Zhou, Y.; Leng, Y. Effect of ultrasonic-assisted brining on mass transfer of beef. J. Food Process Eng. 2019, 42, 13257. [Google Scholar] [CrossRef]
- Villacis, M.F.; Rastogi, N.K.; Balasubramaniam, V.M. Effect of high pressure on moisture and NaCl diffusion into turkey breast. Lwt-Food Sci. Technol. 2008, 41, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, Y.; Chi, Y. Change in rapid salting kinetics and characteristics of hen egg yolks. J. Food Eng. 2022, 329, 111090. [Google Scholar] [CrossRef]
- Graiver, N.; Pinotti, A.; Califano, A.; Zaritzky, N. Mathematical modeling of the uptake of curing salts in pork meat. J. Food Eng. 2009, 95, 533–540. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E. Application of ultrasound-assisted vacuum impregnation for improving the diffusion of salt in beef cubes. Meat Sci. 2021, 1, 108469. [Google Scholar] [CrossRef] [PubMed]
- Chang-Cheng, Z.; Jong-Bang, E. Influence of ultrasound application and NaCl concentrations on brining kinetics and textural properties of Chinese cabbage. Ultrason. Sonochemistry 2018, 49, 137–144. [Google Scholar]
- Yim, D.G.; Shin, D.J.; Jo, C.; Nam, K.C. Effect of Sodium-Alternative Curing Salts on Physicochemical Properties during Salami Manufacture. Food Sci. Anim. Resour. 2020, 40, 946–956. [Google Scholar] [CrossRef]
- Liu, C.; Wan, J.; Zhou, Y.; Hu, K.; Zhu, Q.; Tang, P.; Xu, S.; Song, L. Proteome profile of glycrol-mediated salt-reduction cured meat reveals the formation mechanism of eating quality. Food Chem. 2022, 15, 382. [Google Scholar] [CrossRef]
- Crehan, C.M.; Troy, D.J.; Buckley, D.J. Effects of salt level and high hydrostatic pressure processing on frankfurters formulated with 1.5 and 2.5% salt. Meat Sci. 2000, 55, 123–130. [Google Scholar] [CrossRef]
- Mcdonnell, C.K.; Allen, P.; Duane, G.; Morin, C.; Casey, E. One-directional modelling to assess the mechanistic actions of power ultrasound on NaCl diffusion in pork. Ultrason. Sonochemistry 2018, 40, 206–212. [Google Scholar] [CrossRef]
- Samakradhamrongthai, R.S.; Jannu, T. Effect of stevia, xylitol, and corn syrup in the development of velvet tamarind (Dialium indum L.) chewy candy. Food Chem. 2021, 352, 129353. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Zhou, Y. Modeling the NaCl diffusion in beef during brining process. J. Food Sci. 2020, 85, 2852–2856. [Google Scholar] [CrossRef]
- Andrés, A.; Rodríguez-Barona, S.; Barat, J.M. Mass transfer kinetics during cod salting operation. Food Sci. Technol. Int. 2002, 8, 309–314. [Google Scholar] [CrossRef]
- Lebert, A.; Daudin, J.D. Modelling the distribution of aw, pH and ions in marinated beef meat. Meat Sci. 2014, 97, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Borsato, D.; Moreira, M.B.; Moreira, I.; Pina, M.V.R.; Silva, R.S.S.F.; Bona, E. Saline distribution during multicomponent salting in pre-cooked quail eggs. Food Sci. Technol. 2012, 32, 281–288. [Google Scholar] [CrossRef] [Green Version]
a. Kinetic Parameters of Pork Tenderloin Cured in Different Xylitol Concentrations | ||||
Addition of Xylitol/(w/w) | De/(10−9 m2 s−1) | K | R2 | |
0% | 2.58 ± 0.12 | −0.1060 | 0.9569 | |
4% | 2.25 ± 0.10 | −0.1272 | 0.9327 | |
8% | 2.20 ± 0.03 | −0.1697 | 0.9065 | |
12% | 2.35 ± 0.08 | −0.2088 | 0.9001 | |
b. Kinetic Parameters for Δ, Δ, and Δ and Fitting Correlation Coefficients | ||||
Variables | Addition of xylitol/(w/w) | K1 | K2 | R2 |
Δ | 0% | 0.94972 | 0.066870 | 0.9464 |
4% | 0.95896 | 0.056627 | 0.9533 | |
8% | 0.98067 | 0.047707 | 0.9775 | |
12% | 0.96797 | 0.032758 | 0.9160 | |
Δ | 0% | 0.95202 | 0.060436 | 0.9403 |
4% | 0.97873 | 0.047178 | 0.9669 | |
8% | 0.98555 | 0.036387 | 0.9650 | |
12% | 0.97978 | 0.029523 | 0.9500 | |
Δ | 0% | 0.99072 | 0.010715 | 0.9189 |
4% | 0.99204 | 0.009633 | 0.9246 | |
8% | 0.99316 | 0.008951 | 0.9302 | |
12% | 0.99345 | 0.008060 | 0.9232 |
Predictive Model | Addition of Xylitol (w/w) | Equation | R2 | De (10−9 m2·s−1) |
---|---|---|---|---|
linear function time-varying model | 0% | ZNaCl = 0.0014143t + 0.0294540 | 0.6238 | 1.57 |
4% | ZNaCl = 0.0013564t + 0.028745 | 0.6117 | 1.47 | |
8% | ZNaCl = 0.0013992t + 0.0280392 | 0.6313 | 1.5 | |
12% | ZNaCl = 0.0013282t + 0.0262829 | 0.6461 | 1.36 | |
Power function time-varying model | 0% | ZNaCl = 0.026587t0.212376 + 0.005467 | 0.98558 | 1.29 |
4% | ZNaCl = 0.025606t0.212376 + 0.005471 | 0.981743 | 1.21 | |
8% | ZNaCl = 0.024312t0.212376 + 0.005456 | 0.978139 | 1.14 | |
12% | ZNaCl = 0.022290t0.212376 + 0.005470 | 0.981368 | 1.01 | |
Exponential function time-varying model | 0% | ZNaCl = 0.053269(1 − e−0.408018t) | 0.952283 | 1.21 |
4% | ZNaCl = 0.051846(1 − e−0.3930302t) | 0.962545 | 1.16 | |
8% | ZNaCl = 0.0523298(1 − e−0.3473287t) | 0.968102 | 1.23 | |
12% | ZNaCl = 0.04943(1 − e−0.33598t) | 0.960972 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zhu, Q.; Zhou, Y.; Wan, J.; Deng, L.; Wang, L.; Liu, L.; Gu, S.; Huang, Y.; Zhou, Y.; et al. Simulation Study of Xylitol-Mediated Effect on NaCl Diffusion Behavior in Cured Pork Tenderloin. Foods 2023, 12, 1451. https://doi.org/10.3390/foods12071451
Chen D, Zhu Q, Zhou Y, Wan J, Deng L, Wang L, Liu L, Gu S, Huang Y, Zhou Y, et al. Simulation Study of Xylitol-Mediated Effect on NaCl Diffusion Behavior in Cured Pork Tenderloin. Foods. 2023; 12(7):1451. https://doi.org/10.3390/foods12071451
Chicago/Turabian StyleChen, Dan, Qiujin Zhu, Ying Zhou, Jing Wan, Li Deng, Lei Wang, Linggao Liu, Sha Gu, Yanpei Huang, Yeling Zhou, and et al. 2023. "Simulation Study of Xylitol-Mediated Effect on NaCl Diffusion Behavior in Cured Pork Tenderloin" Foods 12, no. 7: 1451. https://doi.org/10.3390/foods12071451
APA StyleChen, D., Zhu, Q., Zhou, Y., Wan, J., Deng, L., Wang, L., Liu, L., Gu, S., Huang, Y., Zhou, Y., & Bi, S. (2023). Simulation Study of Xylitol-Mediated Effect on NaCl Diffusion Behavior in Cured Pork Tenderloin. Foods, 12(7), 1451. https://doi.org/10.3390/foods12071451