Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Jambu Leaves
2.3. Quantification of Total Carotenoids (TC)
2.4. Convective Drying Process and Mathematical Models
2.5. Determination of Effective Diffusivity and Activation Energy
2.6. Determination of Carotenoid Profile by HPLC-DAD
2.7. Statistical Analysis
3. Results and Discussion
3.1. Content of Total Carotenoids in Jambu Leaves
3.2. Drying Kinetics of Leaves
3.3. Carotenoid Profile of Jambu Leaves and the Effect of Drying Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, F.P.; Resende, O.; Sousa, E.P.; Damasceno, L.F. Comparison of powdered and fresh jambu (Acmella oleracea). Heliyon 2020, 6, e05349. [Google Scholar] [CrossRef]
- Neves, D.A.; Schmiele, M.; Pallone, J.A.L.; Orlando, E.A.; Risso, E.M.; Cunha, E.C.E.; Godoy, H.T. Chemical and nutritional characterization of raw and hydrothermal processed jambu (Acmella oleracea (L.) R.K. Jansen). Food Res. Int. 2019, 116, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Achir, N.; Randrianatoandro, V.A.; Bohuon, P.; Laffargue, A.; Avallone, S. Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur. J. Lipid Sci. Technol. 2010, 112, 349–361. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Chisté, R.C.; Costa, E.L.N.; Monteiro, S.F.; Mercadante, A.Z. Carotenoid and phenolic compound profiles of cooked pulps of orange and yellow peach palm fruits (Bactris gasipaes) from the Brazilian Amazonia. J. Food Compos. Anal. 2021, 99, 103873. [Google Scholar] [CrossRef]
- Lim, A.S.L.; Griffin, C.; Roos, Y.H. Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Res. Int. 2014, 62, 403–409. [Google Scholar] [CrossRef]
- Ouyang, M.; Huang, Y.; Wang, Y.; Luo, F.; Liao, L. Stability of carotenoids and carotenoid esters in pumpkin (Cucurbita maxima) slices during hot air drying. Food Chem. 2022, 367, 130710. [Google Scholar] [CrossRef]
- Borges, L.; de Souza Vieira, M.C.; Vianello, F.; Goto, R.; Lima, G.P.P. Antioxidant compounds of organically and conventionally fertilized jambu (Acmella oleracea). Biol. Agric. Hortic. 2016, 32, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wang, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021, 360, 130145. [Google Scholar] [CrossRef]
- Joint Expert Committee on Food Additives. Evaluation of Certain Veterinary Drug Residues in Food: Geneva, 8–17 June 2004; Report of the Joint FAO WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2005; 157p. [Google Scholar]
- Siqueira, F.C.; Leitão, D.S.T.C.; Mercadante, A.Z.; Chisté, R.C.; Lopes, A.S. Profile of phenolic compounds and carotenoids of Arrabidaea chica leaves and the in vitro singlet oxygen quenching capacity of their hydrophilic extract. Food Res. Int. 2019, 126, 108597. [Google Scholar] [CrossRef]
- Polyakov, N.E.; Leshina, T.V. Certain aspects of the reactivity of carotenoids. Redox processes and complexation. Russ. Chem. Rev. 2006, 75, 1049–1064. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; International Life Sciences Institute: Washington, DC, USA, 2001; 71p. [Google Scholar]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers [Tese]; Purdue University: West Lafayette, IN, USA, 1949. [Google Scholar]
- Henderson, S.M.; Pabis, S. Grain drying theory. II: Temperature effects on drying coefficients. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Lewis, W.K. The rate of drying of solid materials. J. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Yagcioglu, A.; Degirmencioglu, A.; Cagatay, F. Drying characteristics of laurel leaves under different conditions. In Proceedings of the International Congress on Agricultural Mechanization and Energy, Adana, Turkey, 26–27 May 1999; Faculty of Agriculture, Cukurova University: Adana, Turkey, 1999; pp. 565–569. [Google Scholar]
- Thompson, T.L.; Peart, R.M.; Foster, G.H. Mathematical simulation of corn drying: A new model. Trans. Am. Soc. Agric. Eng. 1968, 11, 582–586. [Google Scholar] [CrossRef]
- Sharaf-Eldeen, Y.I.; Blaisdell, J.L.; Hamdy, M.Y. A model for ear corn drying. Trans. Am. Soc. Agric. Eng. 1980, 23, 1261–1265. [Google Scholar] [CrossRef]
- Chisté, R.C.; Mercadante, A.Z. Identification and quantification, by HPLC-DAD-MS/MS, of carotenoids and phenolic compounds from the amazonian fruit Caryocar villosum. J. Agric. Food Chem. 2012, 60, 5884–5892. [Google Scholar] [CrossRef] [PubMed]
- ICH. Guidance for Industry, Q2B Validation of Analytical Procedures: Methodology; ICH Secretariat c/o IFPMA7–10; ICH: Geneva, Switzerland, 2005. [Google Scholar]
- NAS-IOM. Dietary Reference Intakes for Vitamin a, Vitamin k, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Akdaş, Z.Z.; Bakkalbaşı, E. Influence of different cooking methods on color, bioactive compounds, and antioxidant activity of kale. Int. J. Food Prop. 2017, 20, 877–887. [Google Scholar] [CrossRef]
- Silva, D.P.; Santos, S.G.F.; Silva, I.L.; Silva, H.W.; Rodovalho, R.S. Drying kinetics and thermodynamic properties of bitter melon (Momordica charantia L.) leaves. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 707–712. [Google Scholar] [CrossRef]
- Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Moisture Diffusivity Data Compilation in Foodstuffs. Dry. Technol. 1996, 14, 2225–2253. [Google Scholar] [CrossRef]
- Gomes, F.P.; Osvaldo, R.; Sousa, E.P.; Oliveira, D.E.C.; Neto, F.R.A. Drying kinetics of crushed mass of jambu: Effective diffusivity and activation energy. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Leitão, D.S.T.C.; Siqueira, F.C.; Sousa, S.H.B.; Mercadante, A.Z.; Chisté, R.C.; Lopes, A.S. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. Int. J. Food Prop. 2020, 23, 1452–1464. [Google Scholar] [CrossRef]
- Song, Z.-p.; Li, T.-s.; Zhang, Y.-g.; Cao, H.-j.; Gong, C.-r.; Zhang, W.-j. The Mechanism of carotenoid degradation in flue-cured tobacco and changes in the related enzyme activities at the leaf-drying stage during the bulk curing process. Agric. Sci. China 2010, 9, 1381–1388. [Google Scholar] [CrossRef]
- Britton, G.; Khachik, F. Carotenoids in Food. In Carotenoids: Volume 5, Nutrition and Health; Britton, G., Pfander, H., Liaaen-Jensen, S., Eds.; Birkhäuser: Basel, Switzerland, 2009; pp. 45–66. [Google Scholar]
Equations | Author | |
---|---|---|
Page | [15] | |
Henderson and Pabis | [16] | |
Newton | [17] | |
Logarithmic | [18] | |
Thompson | [19] | |
Diffusion approach | [20] |
N° | Total Carotenoids (μg/g) A | Producer/Municipality | Geographical Coordinates | Exsiccate Registration B |
---|---|---|---|---|
1 | 391 ± 11 a,b,c,d,e,f | J.O.C./Ananindeua | (1°19′20.34″ South) (48°23′25.25″ West) | MFS008250 |
2 | 398 ± 75 a,b,c,d,e,f | G.M.P./Ananindeua | (1°19′21.52″ South) (48°23′29.94″ West) | MFS008251 |
3 | 237 ± 41 e,f | R.T./Ananindeua | (1°19′39.68″ South) (48°23′14.65″ West) | MFS008252 |
4 | 346 ± 8 b,c,d,e,f | C.C.A./Ananindeua | (1°19′38.55″ South) (48°23′07.83″ West) | MFS008253 |
5 | 175 ± 16 f | L.S.P./Ananindeua | (1°19′37.62″ South) (48°23′07.94″ West) | MFS008261 |
6 | 488 ± 65 a,b,c,d | J.O.G.O./Ananindeua | (1°19′37.70″ South) (48°23′07.40″ West) | MFS008262 |
7 | 409 ± 69 b,c,d,e,f | M.N.C.S./Santa Izabel | (1°16′37.07″ South) (48°05′51.48″ West) | MFS008337 |
8 | 472 ± 37 a,b,c,d,e | L. A.B. J./Ananindeua | (1°19′08.75″ South) (48°23′35.63″ West) | MFS008344 |
9 | 557 ± 6 a,b | J.M./Ananindeua | (1°19′22.87″ South) (48°23′25.92″ West) | MFS008343 |
10 | 576 ± 50 a,b | J. B. N./Santa Izabel | (1°16′26.22″ South) (48°05′23.70″ West) | MFS008335 |
11 | 492 ± 177 a,b,c,d | R. B. N./Santa Izabel | (1°16′29.28″ South) (48°05′22.51″ West) | MFS008336 |
12 | 313 ± 14 c,d,e,f | M. N. S. N./Santa Izabel | (1°16′29.12″ South) (48°05′27.20″ West) | MFS008339 |
13 | 507 ± 26 a,b,c | R.D.C./Santa Izabel | (1°15′40.76″ South) (48°07′15.14″ West) | MFS008448 |
14 | 257 ± 13 d,e,f | J.R.M./Barcarena | (1°34′50.88″ South) (48°36′25.08″ West) | MFS008445 |
15 | 618 ± 46 a | M.J.C./Marituba | (1°23′12.75″ South) (48°21′03.09″ West) | MFS008447 |
16 | 442 ± 77 a,c,d,e | V.E./Ananindeua | (1°23′07.41″ South) (48°21′49.83″ West) | MFS008342 |
CV (%) | 0.3 |
Equations | T (°C) | Coefficients | Statistical Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|---|
a | k | n | b | c | R2 | P (%) | SE ×10−3 | χ2 ×10−3 | ||
Page | 35 | 0.3655 | 0.4608 | 0.99 | 5.91 | 0.503 | 0.0003 | |||
40 | 0.4691 | 0.4375 | 0.99 | 5.26 | 0.112 | 0.00001 | ||||
50 | 0.6963 | 0.4691 | 0.99 | 6.52 | 1.709 | 0.003 | ||||
60 | 0.9974 | 0.3616 | 0.99 | 8.92 | 0.600 | 0.0004 | ||||
Henderson and Pabis | 35 | 0.8011 | 0.0734 | 0.94 | 47.58 | 31.767 | 1 | |||
40 | 0.8242 | 0.1127 | 0.93 | 50.60 | 30.900 | 1 | ||||
50 | 0.9554 | 0.3861 | 0.96 | 68.68 | 20.130 | 0.4 | ||||
60 | 0.9695 | 0.4605 | 0.96 | 41.91 | 16.086 | 0.3 | ||||
Newton | 35 | 0.1122 | 0.91 | 57.30 | 43.721 | 1.9 | ||||
40 | 0.1571 | 0.92 | 58.40 | 39.473 | 1.6 | |||||
50 | 0.4091 | 0.96 | 69.79 | 20.686 | 0.4 | |||||
60 | 0.4779 | 0.96 | 67.31 | 18.942 | 0.4 | |||||
Logarithmic | 35 | 0.8045 | 0.1359 | 0.1029 | 0.97 | 43.62 | 14.815 | 0.2 | ||
40 | 0.8154 | 0.1947 | 0.0993 | 0.97 | 40.57 | 14.238 | 0.2 | |||
50 | 0.9120 | 0.5675 | 0.0757 | 0.98 | 54.78 | 6.980 | 0.05 | |||
60 | 0.9060 | 0.7148 | 0.891 | 0.98 | 32.59 | 4.506 | 0.02 | |||
Thompson | 35 | 0.0023 | 0.4776 | 0.99 | 8.71 | 1.086 | 0.001 | |||
40 | 0.0223 | 0.5456 | 0.99 | 9.42 | 1.204 | 0.001 | ||||
50 | 0.0079 | 0.8051 | 0.99 | 25.21 | 2.077 | 0.004 | ||||
60 | 0.0054 | 0.8614 | 0.99 | 22.83 | 2.557 | 0.007 | ||||
Diffusion approach | 35 | 0.5844 | 0.4135 | 0.0620 | 0.99 | 7.65 | 0.472 | 0.0002 | ||
40 | 0.5739 | 0.7009 | 0.0560 | 0.99 | 42.66 | 7.347 | 0.05 | |||
50 | 0.7338 | 1.1529 | 0.0600 | 0.99 | 6.40 | 0.150 | 0.00002 | |||
60 | 1.0078 | 0.4601 | 0.0233 | 0.96 | 44.05 | 17.731 | 0.3 |
Peak | Carotenoids A | tR (min) D | λmáx (nm) E | %III/II F | %AB/II | Freeze-Drying Leaves (µg/g de Leaves) C | Treatment (µg/g Leaves) C | |||
---|---|---|---|---|---|---|---|---|---|---|
35 °C | 40 °C | 50 °C | 60 °C | |||||||
1 | Mix de cis-carotenoids + All-trans-Violaxanthin B | 7.3 | 328 415 436 462 | 78 | 33 | 271 ± 8 a | 102 ± 4 b | 18 ± 1 c | 19 ± 0 c | 11 ± 0 c |
8.1 | 266 412 436 464 | 80 | 0 | |||||||
2 | All-trans-Luteoxanthin B | 8.6 | 310 398 420 446 | 100 | 0 | 45 ± 2 a | 11 ± 1 b | <LOQ | <LOQ | <LOQ |
3 | All-trans-Lutein | 12.2 | 266 420 444 472 | 77 | 0 | 599 ± 70 a | 416 ± 18 b | 141 ± 0.2 d | 254 ± 9 c | 274 ± 9 c |
4 | All-trans-β-carotene B | 31.5 | 276 423 450 476 | 23 | 0 | 196 ± 1 a | 188 ± 10 a | 86 ± 2 c | 127 ± 3 b | 184 ± 4 a |
5 | 9-cis-β-carotene B | 33.2 | 276 420 448 470 | nc H | nc H | 34 ± 4 a | 30 ± 2 a | 3 ± 0 d | 11 ± 0 c | 17 ± 0 b |
Total carotenoids (µg/g leaves) | 1145 ± 71 a | 748 ± 27 b | 247 ± 3 e | 411 ± 8 d | 486 ± 7 c | |||||
A vitamin value (μg RAE/g leaves) G | 18 ± 0 a | 17 ± 1 ab | 7 ± 0 d | 11 ± 0 c | 16 ± 0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, J.d.S.; Sousa, R.P.e.; Martins, L.H.d.S.; Costa, C.E.F.d.; Chisté, R.C.; Lopes, A.S. Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying. Foods 2023, 12, 1452. https://doi.org/10.3390/foods12071452
Moura JdS, Sousa RPe, Martins LHdS, Costa CEFd, Chisté RC, Lopes AS. Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying. Foods. 2023; 12(7):1452. https://doi.org/10.3390/foods12071452
Chicago/Turabian StyleMoura, Jardilene da Silva, Railson Pontes e Sousa, Luiza Helena da Silva Martins, Carlos Emmerson Ferreira da Costa, Renan Campos Chisté, and Alessandra Santos Lopes. 2023. "Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying" Foods 12, no. 7: 1452. https://doi.org/10.3390/foods12071452
APA StyleMoura, J. d. S., Sousa, R. P. e., Martins, L. H. d. S., Costa, C. E. F. d., Chisté, R. C., & Lopes, A. S. (2023). Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying. Foods, 12(7), 1452. https://doi.org/10.3390/foods12071452