Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Porous Starch
2.2.1. Enzymatic Treatment
2.2.2. Ultrasonication
2.2.3. Combination Treatment
2.3. Scanning Electron Microscopy (SEM)
2.4. Udon Noodle-Making and Quality Assessment
2.5. Cooking Quality and Texture
2.5.1. Optimal Cooking Time
2.5.2. Water Absorption Capacity
2.5.3. Cooking Loss
2.5.4. Texture
2.5.5. Turbidity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Morphology of Starch Granules
3.2. Quality Attributes of Noodles
3.2.1. Optimum Cooking Time (OCT)
3.2.2. Water Absorption Capacity (WAC)
3.2.3. Cooking Loss
3.2.4. Turbidity
3.2.5. Texture Analysis
3.3. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jang, A.; Kim, J.Y.; Lee, S. Rheological, Thermal Conductivity, and Microscopic Studies on Porous-Structured Noodles for Shortened Cooking Time. LWT 2016, 74, 1–6. [Google Scholar] [CrossRef]
- Fu, B.X. Asian Noodles: History, Classification, Raw Materials, and Processing. Food Res. Int. 2008, 41, 888–902. [Google Scholar] [CrossRef]
- Hou, G.; Center, W.M.; Cato, L. AACCI Approved Methods Technical Committee Report on the Guidelines for Laboratory Preparation of Japanese Udon Noodles. Cereal Foods World 2015, 60, 140–142. [Google Scholar] [CrossRef]
- Kim, S.; Iwashita, C. Cooking Identity and Food Tourism: The Case of Japanese Udon Noodles. Tour. Recreat. Res. 2016, 41, 89–100. [Google Scholar] [CrossRef]
- Hou, G.G.; Saini, R.; Ng, P.K.W. Relationship between Physicochemical Properties of Wheat Flour, Wheat Protein Composition, and Textural Properties of Cooked Chinese White Salted Noodles. Cereal Chem. 2013, 90, 419–429. [Google Scholar] [CrossRef]
- Australian Crop Report: February Edition 2020; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia. 2020. Available online: https://www.agriculture.gov.au/abares/research-topics/agricultural-outlook/australian-crop-report/western-australia (accessed on 23 November 2020).
- Elliot, P.; Kingwell, R.; Carter, C.; Yamamoto, M.; White, P. Western Australia’s Noodles Wheat Industry; Australian Export Grains Innovation Centre: South Perth, Australia, 2015. [Google Scholar]
- Narisawa, T.; Nakajima, H.; Umino, M.; Kojima, T.; Asakura, T.; Yamada, M. Volatile Compounds from Japanese Noodles,” Udon,” and Their Formation during Noodle-Making. J. Food Process. Technol. 2017, 8, 1000700. [Google Scholar]
- Cato, L.; Mullan, D. Breeding, Selection, and Quality of Partial Waxy Wheat: An Australian Perspective. Cereal Foods World 2020, 65. [Google Scholar] [CrossRef]
- Li, Q.; Obadi, M.; Qi, Y.; Liu, S.; Jiang, Y.; Zhang, Q.; Sun, J.; Jiang, S.; Xu, B. Softness, Elasticity, and Smoothness Characteristics of Cooked Udon Noodles Based on Texture Analysis. J. Texture Stud. 2020, 51, 444–452. [Google Scholar] [CrossRef]
- Hou, G.G. Asian Noodles: Science, Technology, and Processing; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Li, Q.; Li, C.; Li, E.; Gilbert, R.G.; Xu, B. A Molecular Explanation of Wheat Starch Physicochemical Properties Related to Noodle Eating Quality. Food Hydrocoll. 2020, 108, 106035. [Google Scholar] [CrossRef]
- Moon, Y.; Kim, K.H.; Kweon, M. Effects of Flour Quality and Drying Rates Controlled by Temperature, Air Circulation, and Relative Humidity on the Quality of Dried White-salted Noodles. Cereal Chem. 2019, 96, 1011–1021. [Google Scholar] [CrossRef]
- Diantom, A.; Carini, E.; Curti, E.; Cassotta, F.; D’Alessandro, A.; Vittadini, E. Effect of Water and Gluten on Physico-Chemical Properties and Stability of Ready to Eat Shelf-Stable Pasta. Food Chem. 2016, 195, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dhital, S.; Wei, Y. Multilevel Structure of Wheat Starch and Its Relationship to Noodle Eating Qualities. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1042–1055. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Liu, J.; Xu, X. Preparation, Characterization, Physicochemical Property and Potential Application of Porous Starch: A Review. Int. J. Biol. Macromol. 2020, 148, 1169–1181. [Google Scholar] [CrossRef]
- Bangar, S.P.; Ali, N.A.; Olagunju, A.I.; Pastor, K.; Ashogbon, A.O.; Dash, K.K.; Lorenzo, J.M.; Ozogul, F. Starch-based Noodles: Current Technologies, Properties, and Challenges. J. Texture Stud. 2022, 54, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, B.; Li, M.-N.; Chen, H.-Q. Effects of Cross-Linking with Sodium Trimetaphosphate on Structural and Adsorptive Properties of Porous Wheat Starches. Food Chem. 2019, 289, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Kumari, A.; Zeng, X.-A.; Farooq, M.A.; Siddique, R.; Khalifa, I.; Siddeeg, A.; Ali, M.; Manzoor, M.F. Ultrasound Based Modification and Structural-Functional Analysis of Corn and Cassava Starch. Ultrason. Sonochem. 2021, 80, 105795. [Google Scholar] [CrossRef]
- Liu, L.; Shen, W.; Zhang, W.; Li, F.; Zhu, Z. Porous Starch and Its Applications. In Functional Starch and Applications in Food; Springer: Berlin/Heidelberg, Germany, 2018; pp. 91–117. [Google Scholar]
- Sun, D.; Yoo, B. Effect of Tapioca Starch Addition on Rheological, Thermal, and Gelling Properties of Rice Starch. LWT 2015, 64, 205–211. [Google Scholar] [CrossRef]
- Yokoyama, K. Recent Trend in the Noodles Use of the Starch. Starch Inf. 2010, 32, 1–7. [Google Scholar]
- Majzoobi, M.; Hedayati, S.; Farahnaky, A. Functional Properties of Microporous Wheat Starch Produced by α-Amylase and Sonication. Food Biosci. 2015, 11, 79–84. [Google Scholar] [CrossRef]
- AACC. Pasta and Noodle Cooking Quality—Firmness. In Approved Methods of Analysis; AACC International: St. Paul, MN, USA, 1999. [Google Scholar]
- Nocente, F.; Natale, C.; Galassi, E.; Taddei, F.; Gazza, L. Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods 2021, 10, 502. [Google Scholar] [CrossRef]
- Jayasena, V.; Leung, P.; Nasar-Abbas, S.M.; Palta, J.; Berger, J. Development and Quality Evaluation of Lupin-Fortified Instant Noodles. In Proceedings of the 12th International Lupin Conference: Lupins for Health and Wealth Fremantle, Fremantle, WA, Australia, 14–18 September 2008; International Lupin Association: Canterbury, New Zealand, 2008. [Google Scholar]
- Jeon, K.H.; Hwang, Y.S.; Kim, Y.B.; Kim, E.M.; Park, J.D.; Choi, J.Y. Effects of Ground, Concentrated, and Powdered Beef on the Quality of Noodle Products. Korean J. Food Sci. Anim. Resour. 2014, 34, 784. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wei, M.; Ren, R.; Li, H.; Liu, S.; Yang, D. Morphological Changes of Blocklets during the Gelatinization Process of Tapioca Starch. Carbohydr. Polym. 2017, 163, 324–329. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, S.; Tang, Z.; Chen, X.; Zhang, Z. Structural Changes of Cassava Starch Granules Hydrolyzed by a Mixture of α-Amylase and Glucoamylase. Carbohydr. Polym. 2011, 85, 272–275. [Google Scholar] [CrossRef]
- Prompiputtanapon, K.; Sorndech, W.; Tongta, S. Surface Modification of Tapioca Starch by Using the Chemical and Enzymatic Method. Starch-Stärke 2020, 72, 1900133. [Google Scholar] [CrossRef]
- Valetudie, J.; Colonna, P.; Bouchet, B.; Gallant, D.J. Hydrolysis of Tropical Tuber Starches by Bacterial and Pancreatic A-amylases. Starch-Stärke 1993, 45, 270–276. [Google Scholar] [CrossRef]
- Sujka, M.; Jamroz, J. Ultrasound-Treated Starch: SEM and TEM Imaging, and Functional Behaviour. Food Hydrocoll. 2013, 31, 413–419. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; García, M.A. Microstructural and Techno-Functional Properties of Cassava Starch Modified by Ultrasound. Ultrason. Sonochem. 2018, 42, 795–804. [Google Scholar] [CrossRef]
- Raza, H.; Ameer, K.; Ma, H.; Liang, Q.; Ren, X. Structural and Physicochemical Characterization of Modified Starch from Arrowhead Tuber (Sagittaria sagittifolia L.) Using Tri-Frequency Power Ultrasound. Ultrason. Sonochem. 2021, 80, 105826. [Google Scholar] [CrossRef]
- Li, J.; Jiao, A.; Rashed, M.M.A.; Deng, L.; Xu, X.; Jin, Z. Effect of Thermostable A-amylase Addition on Producing the Porous-structured Noodles Using Extrusion Treatment. J. Food Sci. 2018, 83, 332–339. [Google Scholar] [CrossRef]
- Kasemsuwan, T.; Bailey, T.; Jane, J. Preparation of Clear Noodles with Mixtures of Tapioca and High-Amylose Starches. Carbohydr. Polym. 1998, 36, 301–312. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C. Effect of Insoluble Dietary Fibre Addition on Technological, Sensory, and Structural Properties of Durum Wheat Spaghetti. Food Chem. 2012, 130, 299–309. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Q.; Zhou, X.; Li, X.; Wang, F.; Liu, Y. Identification of Characteristic Starch Properties of Wheat Varieties Used to Commercially Produce Dried Noodles. Int. J. Food Sci. Technol. 2021, 56, 794–803. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, L.; Li, L.; Xu, Y.; Zhang, Y.; Zeng, H. Properties and Digestibility of a Novel Porous Starch from Lotus Seed Prepared via Synergistic Enzymatic Treatment. Int. J. Biol. Macromol. 2022, 194, 144–152. [Google Scholar] [CrossRef]
- Benavent-Gil, Y.; Rosell, C.M. Morphological and Physicochemical Characterization of Porous Starches Obtained from Different Botanical Sources and Amylolytic Enzymes. Int. J. Biol. Macromol. 2017, 103, 587–595. [Google Scholar] [CrossRef]
- Nawaz, A.; Xiong, Z.; Li, Q.; Xiong, H.; Liu, J.; Chen, L.; Wang, P.; Walayat, N.; Irshad, S.; Regenstein, J.M. Effect of Wheat Flour Replacement with Potato Powder on Dough Rheology, Physiochemical and Microstructural Properties of Instant Noodles. J. Food Process. Preserv. 2019, 43, e13995. [Google Scholar] [CrossRef]
- Kim, Y.; Kee, J.I.; Lee, S.; Yoo, S.-H. Quality Improvement of Rice Noodle Restructured with Rice Protein Isolate and Transglutaminase. Food Chem. 2014, 145, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Park, E.Y.; Kim, H.Y.; Shin, H.; Jeon, Y.; Kim, J.; Kim, S.; Kim, J. Change in Textural Properties, Starch Digestibility, and Aroma of Nonfried Instant Noodles by Substitution of Konjac Glucomannan. Cereal Chem. 2019, 96, 784–791. [Google Scholar] [CrossRef]
- Epstein, J.; Morris, C.F.; Huber, K.C. Instrumental Texture of White Salted Noodles Prepared from Recombinant Inbred Lines of Wheat Differing in the Three Granule Bound Starch Synthase (Waxy) Genes. J. Cereal Sci. 2002, 35, 51–63. [Google Scholar] [CrossRef]
- Qazi, I.; Rakshit, S.K.; Tran, T.; Ullah, J.; Khan, M.Z. Effect of Blending Selected Tropical Starches with Rice Flour on the Cooking Quality and Texture of Rice Based Noodles. Sarhad J. Agric. 2014, 30, 257–264. [Google Scholar]
- Baah, R.O.; Duodu, K.G.; Emmambux, M.N. Cooking Quality, Nutritional and Antioxidant Properties of Gluten-Free Maize–Orange-Fleshed Sweet Potato Pasta Produced by Extrusion. LWT 2022, 162, 113415. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Jiang, S.; Xu, F. Effect of Wheat Flour Particle Size on the Quality of Fresh White Salted Noodles. J. Food Process. Preserv. 2020, 44, e14972. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Xu, Z.; Zhou, R.; Huang, W.; Sui, Z.; Corke, H. Addition of Waxy, Low-or High-amylose Rice Starch Differentially Affects Microstructure, Water Migration, Texture and Cooking Quality of Dried Potato Starch Noodles. Int. J. Food Sci. Technol. 2021, 56, 5619–5628. [Google Scholar] [CrossRef]
Source | OCT | WAC | Cooking Loss | Turbidity | Texture | |||||
---|---|---|---|---|---|---|---|---|---|---|
MS | F | MS | F | MS | F | MS | F | MS | F | |
Model | 5.30 | 56.35 | 417.40 | 10.26 | 0.9045 | 11.75 | 0.0114 | 16.39 | 1.178 × 106 | 4.44 |
Variety | 6.97 | 74.17 | 774.40 | 19.04 | 0.7785 | 10.11 | 0.0038 | 5.37 | 1.661 × 106 | 6.26 |
PS | 18.11 | 192.57 | 2.07 | 0.0510 * | 3.46 | 44.96 | 0.0938 | 134.35 | 2.921 × 106 | 11.01 |
Variety * PS | 0.8860 | 9.42 | 168.13 | 4.13 | 0.5938 | 7.71 | 0.0014 | 2.00 * | 5.552 × 105 | 2.09 * |
p model | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0030 | |||||
R2 | 0.9690 | 0.8508 | 0.8672 | 0.9010 | 0.7116 | |||||
Adj R2 | 0.9519 | 0.7679 | 0.7934 | 0.8460 | 0.5514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharel, A.; Jaidka, R.K.; Sruthi, N.U.; Bhattarai, R.R. Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles. Foods 2023, 12, 1662. https://doi.org/10.3390/foods12081662
Pokharel A, Jaidka RK, Sruthi NU, Bhattarai RR. Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles. Foods. 2023; 12(8):1662. https://doi.org/10.3390/foods12081662
Chicago/Turabian StylePokharel, Anju, Randhir Kumar Jaidka, N. U. Sruthi, and Rewati Raman Bhattarai. 2023. "Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles" Foods 12, no. 8: 1662. https://doi.org/10.3390/foods12081662
APA StylePokharel, A., Jaidka, R. K., Sruthi, N. U., & Bhattarai, R. R. (2023). Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles. Foods, 12(8), 1662. https://doi.org/10.3390/foods12081662