Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Orange Black Tea
2.3. Analytical Methods
2.4. Data Analysis
3. Results
3.1. Influence of Drying Methods on Sensory Quality of Orange Black Tea
3.2. Comparison of Physical and Chemical Components of Orange Black Tea Treated with Different Drying Methods
3.3. Effects of Drying Methods on Volatile Components of Orange Black Tea
3.4. Comparison of Functional Activity of Orange Black Tea Treated with Different Drying Methods
3.5. Correlation between Physical and Chemical Components and Functional Activity of Orange Black Tea
3.6. Influence of Drying Temperature on Sensory Quality of Orange Black Tea
3.7. Influence of Drying Temperature on Physical and Chemical Components of Orange Black Tea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntezimana, B.; Li, Y.C.; He, C.; Yu, X.L.; Zhou, J.T.; Chen, Y.Q.; Yu, Z.; Ni, D.J. Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods 2021, 10, 2627. [Google Scholar] [CrossRef] [PubMed]
- Balaban, O.T.; Kamiloglu, A.; Kara, H.H. Changes of some bioactive and physicochemical properties during the black tea processing. J. Food Sci. 2022, 87, 2474–2483. [Google Scholar] [CrossRef]
- Kim, E.M.; Jung, J.; Kim, H.M.; Hwang, K.H.; Kim, H.J.; Park, W.S. Efficient Extraction Method of Black Tea using Mineral Water and Antioxidant and Anti-inflammatory Activity of Extract. J. Soc. Cosmet. Sci. Korea 2022, 48, 47–53. [Google Scholar] [CrossRef]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.Q.; Qiao, Q.; Huang, L.Q.; Guo, L.P.; Gao, W.Y. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem. 2021, 365, 130585. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Bo, H.H.; Choi, E.O.; Kwon, D.H.; Kim, H.J.; Ahn, K.I.; Ji, S.Y.; Jeong, J.W.; Park, S.H.; Hong, S.H.; et al. Induction of Apoptosis by Citrus unshiu Peel in Human Breast Cancer MCF-7 Cells: Involvement of ROS-Dependent Activation of AMPK. Biol. Pharm. Bull. 2018, 41, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.I.; Choi, E.O.; Kwon, D.H.; HwangBo, H.; Kim, M.Y.; Kim, H.J.; Ji, S.Y.; Hong, S.H.; Jeong, J.W.; Park, C.; et al. Induction of apoptosis by ethanol extract of Citrus unshiu Markovich peel in human bladder cancer T24 cells through ROS-mediated inactivation of the PI3K/Akt pathway. Biosci. Trends 2017, 11, 565–573. [Google Scholar] [CrossRef]
- Huang, Y.S.; Ho, S.C. Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chem. 2010, 119, 868–873. [Google Scholar] [CrossRef]
- Wen, S.; Sun, L.L.; An, R.; Zhang, W.J.; Xiang, L.M.; Li, Q.H.; Lai, X.F.; Huo, M.G.; Li, D.L.; Sun, S.L. A combination of Citrus reticulata peel and black tea inhibits migration and invasion of liver cancer via PI3K/AKT and MMPs signaling pathway. Mol. Biol. Rep. 2020, 47, 507–519. [Google Scholar] [CrossRef]
- Lv, P.; Pan, S.Y. Synergistic antioxidant effects of total flavonoids from tangerine peel and Pu’er tea. Food Res. Dev. 2020, 41, 59–64. [Google Scholar] [CrossRef]
- Yu, L.A.; Xiao, S.; Huang, Y.H.; Li, X.X.; Lai, H.Q.; Zheng, Y.; Liang, D.H.; Zhang, X. The Antiproliferative Activities in Ganpu Tea on HepG2 and SGC-7901 Tumor Cell Lines. Mod. Food Sci. Technol. 2020, 36, 42–49. [Google Scholar] [CrossRef]
- Liang, M.; Li, X.; Ouyang, X.; Xie, H.; Chen, D. Antioxidant Mechanisms of Echinatin and Licochalcone, A. Molecules 2019, 24, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, Y.; Shi, J.; Yan, H.; Wang, M.; Ma, W.; Zhang, Y.; Peng, Q.; Chen, Y.; Lin, Z. Discrimination and Identification of Aroma Profiles and Characterized Odorants in Citrus Blend Black Tea with Different Citrus Species. Molecules 2020, 25, 4208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Li, J.; Feng, J.; Lu, S. Effect of Drying Methods on Sensory Qualities of Loquat Flower Tea and Its Toxicological Evaluation. Food Sci. 2018, 39, 116–121. [Google Scholar] [CrossRef]
- Huang, X.; Wang, B.W.; Feng, G.; Wang, H.F.; Zhang, Y.H.; Wang, J.H.; Liu, Z.Q.; Deng, W.W. Effect of different drying methods on quality of tea plant flowers. Food Sci. Technol. 2017, 42, 82–87. [Google Scholar] [CrossRef]
- Yan, G.Q.; Qu, J.L.; Ou, G.L.; Mo, J.S.; Zhong, C.M.; Chen, D.Y.; Liu, Q.H.; Zhang, D.F. Current situation and countermeasures of drying and storage technology and equipment of Citrus reticulata ‘Chachi’. J. South. Argic. 2021, 52, 2543–2553. [Google Scholar] [CrossRef]
- Xu, M.Y.; Zhong, Y.G.; Bi, J.F.; Zhou, M.; Han, D.D.; Zheng, J.K. Effect of different drying conditions on color and texture of citrus peels. Mod. Food Sci. Technol. 2016, 32, 193–264. [Google Scholar] [CrossRef]
- He, L.G.; Jiang, Y.C.; Wu, L.M.; Lang, P.; Wang, Z.J.; Tong, Z.; Xu, M.; Sun, Z.H. Determination and Comparative Analysis of Fruit Aroma Volatile Constituents from Four Different Sweet Orange Varieties. Hubei Agric. Sci. 2018, 57, 118–121. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Li, J.; Dong, C.; Hua, J.; Jiang, Y. Evaluation of taste of Yichang Congou black tea based on different brewing conditions. Sci. Technol. Food Ind. 2017, 38, 65–71+76. [Google Scholar] [CrossRef]
- Qu, F.F.; Zeng, W.C.; Tong, X.; Feng, W.; Chen, Y.Q.; Ni, D.J. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT-Food Sci. Technol. 2020, 117, 108646. [Google Scholar] [CrossRef]
- Li, Y.C.; Ran, W.; He, C.; Zhou, J.T.; Chen, Y.Q.; Yu, Z.; Ni, D.J. Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea. Food Chem. X 2022, 14, 100289. [Google Scholar] [CrossRef]
- Zhao, E.Z.; Jin, S.; Wei, Z.F.; Wei, W.; Fu, Y.J. Comparison of the Determination Methods for Total Flavonoids in Pigeon Pea Leaves. Bull. Bot. Res. 2011, 31, 499–502. [Google Scholar] [CrossRef]
- Deng, L.; Pan, X.; Sheng, J.; Shen, L. Optimization of Experimental Conditions for the Determination of Water-Soluble Protein in Apple Pulp Using Coomassie Brilliant Blue Method. Food Sci. 2012, 33, 185–189. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Wei, M.; Qian, S.H.; Zhao, S.G. Purification and α-glucosidase inhibitory activity of polyphenols from purple yam. Food Ferment. Ind. 2022, 48, 182–187. [Google Scholar] [CrossRef]
- Jiao, Y.F.; Song, Y.L.; Yan, Z.; Wu, Z.R.; Yu, Z.; Zhang, D.; Ni, D.J.; Chen, Y.Q. The New Insight into the Effects of Different Fixing Technology on Flavor and Bioactivities of Orange Dark Tea. Molecules 2023, 28, 1079. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Ou, X.; Zhang, Y.; Li, S.; Xiong, Y.; Li, Q.; Huang, J.; Liu, Z. Study on the key volatile compounds and aroma quality of jasmine tea with different scenting technology (vol 385, 132718, 2022). Food Chem. 2022, 389, 133172. [Google Scholar] [CrossRef]
- Lv, S.D.; Wu, Y.S.; Wang, C.; Gao, X.M.; Li, J.B.; Zhang, W.R.; Meng, Q.X. Comparative study of volatile components in sun-dried and baked black teas in Yunnan province. Food Sci. China 2016, 37, 62–67. [Google Scholar] [CrossRef]
- Seerangurayar, T.; Al-Ismaili, A.M.; Jeewantha, L.J.; Al-Habsi, N.A. Effect of solar drying methods on color kinetics and texture of dates. Food Bioprod. Process. 2019, 116, 227–239. [Google Scholar] [CrossRef]
- Arabhosseini, A.; Padhye, S.; Huisman, W.; van Boxtel, A.; Mueller, J. Effect of Drying on the Color of Tarragon (Artemisia dracunculus L.) Leaves. Food Bioprocess Technol. 2011, 4, 1281–1287. [Google Scholar] [CrossRef]
- Lei, Y.; Li, H.J.; Wang, S.Q.; Hou, Q.C.; Shi, G.F.; Guo, Z. Effects of different drying methods on properties of kiwi preserved fruit. Food Res. Dev. 2020, 41, 103–108. [Google Scholar] [CrossRef]
- Li, X.; Feng, T.; Zhou, F.; Zhou, S.; Liu, Y.; Li, W.; Ye, R.; Yang, Y. Effects of drying methods on the tasty compounds of Pleurotus eryngii. Food Chem. 2015, 166, 358–364. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, R.F.; Deng, S.X. Effects of different drying methods on essential oils and flavonoids from orange peels. Sci. Technol. Food Ind. 2018, 39, 77–96. [Google Scholar] [CrossRef]
- Sun, Y.J.; Shen, Y.; Liu, D.H.; Ye, X.Q. Effects of drying methods on phytochemical compounds and antioxidant activity of physiologically dropped un-matured citrus fruits. LWT-Food Sci. Technol. 2015, 60 Pt 2, 1269–1275. [Google Scholar] [CrossRef]
- Ding, S.; Wang, R.; Li, G.; Lu, H.; Fu, F.; Dan, Y. Effects of drying temperature on the drying kinetics, phenolic acids, flavonoids, and antioxidant capacities of orange peels. J. Chin. Inst. Food Sci. Technol. 2016, 16, 137–144. [Google Scholar] [CrossRef]
- Selamat, J.; Bakar, J.; Saari, N. Oxidation of polyphenols in unfermented and partly fermented cocoa beans by cocoa polyphenol oxidase and tyrosinase. J. Sci. Food Agric. 2002, 82, 559–566. [Google Scholar] [CrossRef]
- Yan, Z.; Yin, Y.X.; Jiao, Y.F.; Hao, J.; Ni, D.J.; Yu, Z.; Chen, Y.Q. Effects of different processing technology for raw tea on the quality of Qingzhuan tea. J. Food Saf. Qual. 2022, 13, 1919–1926. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hirata, S.; Yang, Z.; Baldermann, S.; Kitayama, E.; Matsumoto, S.; Suzuki, M.; Fleischmann, P.; Winterhalter, P.; Watanabe, N. Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 2010, 123, 601–606. [Google Scholar] [CrossRef]
- Zhu, J.C.; Xiao, Z.B. Characterization of the major odor-active compounds in dry jujube cultivars by application of gas chromatography-olfactometry and odor activity value. J. Agric. Food Chem. 2018, 66, 7722–7734. [Google Scholar] [CrossRef]
- Tejada Gavela, S.; Pinya Fernández, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Hesperidin from Genus Citrus Has Anti-Inflammatory Effects; University of the Balearic Islands: Palma, Spain, 2018. [Google Scholar]
- Smeriglio, A.; Cornara, L.; Denaro, M.; Barreca, D.; Burlando, B.; Xiao, J.; Trombetta, D. Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chem. 2019, 279, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Finotti, E.; Di Majo, D. Influence of solvents on the antioxidant property of flavonoids. Die Nahr. 2003, 47, 186–187. [Google Scholar] [CrossRef]
- Liu, S.Y.; Ai, Z.Y.; Qu, F.F.; Chen, Y.Q.; Ni, D.J. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against alpha-amylase, alpha-glucosidase and intestinal glucose uptake. Food Chem. 2017, 234, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tao, Y.X.; Ma, Y.T.; Dou, Z.W.; Huang, W.S. Effect of different drying method on the aroma of Kumaiti apricot. Storage Process 2020, 20, 186–194. [Google Scholar] [CrossRef]
- Chen, Q.C.; Zhu, Y.; Dai, W.D.; Lv, H.P.; Mu, B.; Li, P.L.; Tan, J.F.; Ni, D.J.; Lin, Z. Aroma formation and dynamic changes during white tea processing. Food Chem. 2019, 274, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.K.; Siew, E.S.; Soon, W.L. Drying characteristics and quality evaluation of kiwi slices under hot air natural convective drying method. Int. Food Res. J. 2015, 22, 2188–2195. [Google Scholar]
- Jiao, X.; Li, E.; Wang, Y.; Li, D.; Meng, X.; Li, B. Studies on the stability and thermal degradation kinetics of blueberry polyphenols. J. Chin. Inst. Food Sci. Technol. 2018, 18, 81–87. [Google Scholar] [CrossRef]
- Huang, S.E.; Li, Z.H.; He, X.Y. Effect of drying methods on major antioxidant components and their antioxidant activities in citrus peels. Food Mach. 2014, 30, 190–195. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, H.; Hua, J.; Jiang, Y.; Dong, C.; Deng, Y.; Yang, Y. Effects of second-drying process parameters on the hot-air drying characteristics and quality of congou black tea. Trans. Chin. Soc. Agric. Eng. 2020, 36, 287–296. [Google Scholar] [CrossRef]
Time (min) | 0 | 5 | 10 | 20 | 25 | 30 | 40 |
---|---|---|---|---|---|---|---|
Mobile phase A | 100 | 95 | 75 | 50 | 25 | 5 | 95 |
Mobile phase B | 0 | 5 | 25 | 50 | 75 | 95 | 5 |
Treatment | Appearance | Soup Color | Aroma | Taste | Total Points | |||||
---|---|---|---|---|---|---|---|---|---|---|
Comment | Aroma Coordination | Acid | Sweet | Bitter | Astringent | Taste Coordination | ||||
Hot-air drying | 6.1 ± 0.3 ** | 9.1 ± 0 | 14.0 ± 0.1 | 7.3 ± 0.3 | 7.1 ± 0.1 | 7 ± 0.1 | 7 ± 0 ** | 8 ± 0.1 ** | 6.6 ± 0.1 ** | 72.2 ± 0.3 ** |
Sun drying | 5.0 ± 0.1 | 9.0 ± 0 | 15 ± 0.2 ** | 7.2 ± 0.1 | 7.2 ± 0.1 ** | 7 ± 0.2 | 6.2 ± 0.1 | 7 ± 0.1 | 5.3 ± 0.2 | 68.9 ± 0.2 |
FRAP | DPPH | ABTS | α-Glucosidase | α-Amylase | |
---|---|---|---|---|---|
Tea polyphenols | 0.992 ** | 0.963 ** | 0.976 ** | −0.986 ** | −0.993 ** |
Amino acids | 0.724 | 0.673 | 0.817 * | −0.740 | −0.764 |
Soluble sugar | −0.133 | −0.235 | 0.038 | 0.140 | 0.080 |
Theaflavins | 0.989 ** | 0.882 * | 0.976 ** | −0.958 ** | −0.976 ** |
Thearubigins | −0.916 * | −0.867 * | −0.883 * | 0.928 ** | 0.915 * |
Theabrownine | −0.934 ** | −0.899 * | −0.943 ** | 0.921 ** | 0.938 ** |
Orange peel polyphenols | 0.975 ** | 0.899 * | 0.991 ** | −0.969 ** | −0.985 ** |
Orange peel polysaccharide | −0.860 * | −0.739 | −0.788 | 0.817 * | 0.817 * |
Soluble protein | 0.810 | 0.874 * | 0.861 * | −0.881 * | −0.863 * |
Flavonoids | 0.994 ** | 0.951 ** | 0.983 ** | −0.989 ** | −0.996 ** |
Hesperidin | 0.987 ** | 0.912 * | 0.998 ** | −0.982 ** | −0.994 ** |
Synephrine | 0.988 ** | 0.927 ** | 0.988 ** | −0.970 ** | −0.989 ** |
Limonin | 0.955 ** | 0.892 * | 0.940 ** | −0.912 * | −0.941 ** |
Drying Temperature | Appearance | Soup Color | Aroma | Taste | Total Points | |||||
---|---|---|---|---|---|---|---|---|---|---|
Comment | Aroma Coordination | Acid | Sweet | Bitter | Astringent | Taste Coordination | ||||
40 °C | 6.6 ± 0.2a | 9.2 ± 0 | 15.3 ± 0.1a | 9.0 ± 0a | 7.7 ± 0.1a | 8.2 ± 0.2a | 7.8 ± 0.1a | 7.3 ± 0.1a | 8.0 ± 0a | 79.0 ± 0.3a |
45 °C | 6.2 ± 0.2a | 9.2 ± 0 | 14.7 ± 0.1b | 8.7 ± 0ab | 7.3 ± 0.1b | 8.0 ± 0.2a | 7.3 ± 0.1b | 7.0 ± 0.1a | 8.0 ± 0a | 76.7 ± 0.4b |
50 °C | 6.0 ± 0.1a | 9.2 ± 0 | 14.5 ± 0.1c | 8.5 ± 0b | 7.2 ± 0.1b | 8.0 ± 0.1a | 7.3 ± 0.1b | 7.0 ± 0b | 7.7 ± 0.1b | 75.6 ± 0.2c |
60 °C | 5.0 ± 0.3b | 9.0 ± 0 | 14.7 ± 0.1b | 8.3 ± 0ab | 7.0 ± 0.1b | 7.5 ± 0.1b | 7.3 ± 0.1b | 7.0 ± 0b | 7.0 ± 0ab | 73.0 ± 0.3d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Zhou, Z.; Jiao, Y.; Huang, J.; Yu, Z.; Zhang, D.; Chen, Y.; Ni, D. Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying. Foods 2023, 12, 1913. https://doi.org/10.3390/foods12091913
Yan Z, Zhou Z, Jiao Y, Huang J, Yu Z, Zhang D, Chen Y, Ni D. Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying. Foods. 2023; 12(9):1913. https://doi.org/10.3390/foods12091913
Chicago/Turabian StyleYan, Zhi, Zhihu Zhou, Yuanfang Jiao, Jiasheng Huang, Zhi Yu, De Zhang, Yuqiong Chen, and Dejiang Ni. 2023. "Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying" Foods 12, no. 9: 1913. https://doi.org/10.3390/foods12091913
APA StyleYan, Z., Zhou, Z., Jiao, Y., Huang, J., Yu, Z., Zhang, D., Chen, Y., & Ni, D. (2023). Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying. Foods, 12(9), 1913. https://doi.org/10.3390/foods12091913