Rare Earth Element Variability in Italian Extra Virgin Olive Oils from Abruzzo Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Sampled, Local Geology, and Sample Collection
2.2. Olive Oil Preparation
2.3. ICP-MS Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Elemental Profile of Olive Oils
3.2. ANOVA and Kruskal–Wallis Test
3.3. PCA
3.4. Discriminant Analysis
3.5. Cluster Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-González, D.L.; Luna, G.; Morales, M.T.; Aparicio, R. Stepwise geographical traceability of virgin olive oils by chemical profiles using artificial neural network models. Eur. J. Lipid Sci. Technol. 2009, 111, 1003–1013. [Google Scholar] [CrossRef]
- Farmaki, E.G.; Thomaidis, N.S.; Minioti, K.S.; Ioannou, E.; Georgiou, C.A.; Efstathiou, C.E. Geographical Characterization of Greek Olive Oils Using Rare Earth Elements Content and Supervised Chemometric Techniques. Anal. Lett. 2012, 45, 920–932. [Google Scholar] [CrossRef]
- Cajka, T.; Riddellova, K.; Klimankova, E.; Cerna, M.; Pudil, F.; Hajslova, J. Traceability of olive oil based on volatiles pattern and multivariate analysis. Food Chem. 2010, 121, 282–289. [Google Scholar] [CrossRef]
- Barbera, M. Reuse of food waste and wastewater as a source of polyphenolic compounds to use as food additives. J. AOAC Int. 2020, 103, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; Giammanco, M.; Tabacchi, G.; Di Majo, D.; Giammanco, S.; La Guardia, M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005, 18, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Issaoui, M.; Delgado, A.M.; Caruso, G.; Micali, M.; Barbera, M.; Atrous, H.; Ouslati, A.; Chammem, N. Phenols, flavors, and the mediterranean diet. J. AOAC Int. 2021, 103, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Martin-Cabrejas, M.A.; González de Mejia, E. Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: Their role in prevention of chronic diseases. Phytochem. Rev. 2016, 15, 405–423. [Google Scholar] [CrossRef]
- Martinez-González, M.Á.; Sánchez-Villegas, A. The emerging role of Mediterranean diets in cardiovascular epidemiology: Monounsaturated fats, olive oil, red wine or the whole pattern? Eur. J. Epidemiol. 2004, 19, 9–13. [Google Scholar] [CrossRef]
- Visioli, F.; Davalos, A.; López de las Hazas, M.C.; Crespo, M.C.; Tomé-Carneiro, J. An overview of the pharmacology of olive oil and its active ingredients. Br. J. Pharmacol. 2020, 177, 1316–1330. [Google Scholar] [CrossRef]
- International Olive Oil Council. Production of Olive Oil. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/12/IOC-Olive-Oil-Dashboard-2.html#production-1 (accessed on 4 July 2023).
- ISTAT. Coltivazioni: Superfici e Produzione—Dati in Complesso—Prov. Available online: http://dati.istat.it/Index.aspx?QueryId=37850 (accessed on 4 July 2023).
- Flamminii, F.; Marone, E.; Neri, L.; Pollastri, L.; Cichelli, A.; Di Mattia, C.D. The Effect of Harvesting Time on Olive Fruits and Oils Quality Parameters of Tortiglione and Dritta Olive Cultivars. Eur. J. Lipid Sci. Technol. 2021, 123, 2000382. [Google Scholar] [CrossRef]
- NYIOOC. Yearly Stats for 2022—Best Olive Oils. 2022. Available online: https://bestoliveoils.org/statistics/2022 (accessed on 4 July 2023).
- Bryla, P. The impact of obtaining a European quality sign on origin food producers. Qual. Assur. Saf. Crops Foods 2018, 10, 155–164. [Google Scholar] [CrossRef]
- Camin, F.; Larcher, R.; Perini, M.; Bontempo, L.; Bertoldi, D.; Gagliano, G.; Nicolini, G.; Versini, G. Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition. Food Chem. 2010, 118, 901–909. [Google Scholar] [CrossRef]
- Chiocchini, F.; Portarena, S.; Ciolfi, M.; Brugnoli, E.; Lauteri, M. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils. Food Chem. 2016, 202, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Medini, S.; Janin, M.; Verdoux, P.; Techer, I. Methodological development for 87Sr/86Sr measurement in olive oil and preliminary discussion of its use for geographical traceability of PDO Nîmes (France). Food Chem. 2015, 171, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Tescione, I.; Marchionni, S.; Casalini, M.; Vignozzi, N.; Mattei, M.; Conticelli, S. 87Sr/86Sr isotopes in grapes of different cultivars: A geochemical tool for geographic traceability of agriculture products. Food Chem. 2018, 258, 374–380. [Google Scholar] [CrossRef]
- Aceto, M.; Calà, E.; Musso, D.; Regalli, N.; Oddone, M. A preliminary study on the authentication and traceability of extra virgin olive oil made from Taggiasca olives by means of trace and ultra-trace elements distribution. Food Chem. 2019, 298, 125047. [Google Scholar] [CrossRef]
- Bimbo, F.; Bonanno, A.; Viscecchia, R. An empirical framework to study food labelling fraud: An application to the Italian extra-virgin olive oil market. Aust. J. Agric. Resour. Econ. 2019, 63, 701–725. [Google Scholar] [CrossRef]
- Mendez, J.; Mendoza, L.; Cruz-Tirado, J.P.; Quevedo, R.; Siche, R. Trends in application of NIR and hyperspectral imaging for food authentication. Sci. Agropecu. 2019, 10, 143–161. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172019000100016&lng=es&nrm=iso&tlng=en (accessed on 4 July 2023). [CrossRef]
- Calò, F.; Girelli, C.R.; Wang, S.C.; Fanizzi, F.P. Geographical Origin Assessment of Extra Virgin Olive Oil via NMR and MS Combined with Chemometrics as Analytical Approaches. Foods 2022, 11, 113. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 1151/2012 of the European Parliament and of the Council of 21 November 2012 on Quality Schemes for Agricultural Products and Foodstuffs. Off. J. Eur. Union 2012, 343, 1–29. [Google Scholar]
- Dekhili, S.; Sirieix, L.; Cohen, E. How consumers choose olive oil: The importance of origin cues. Food Qual. Prefer. 2011, 22, 757–762. [Google Scholar] [CrossRef]
- Menapace, L.; Colson, G.; Grebitus, C.; Facendola, M. Consumers’ preferences for geographical origin labels: Evidence from the Canadian olive oil market. Eur. Rev. Agric. Econ. 2011, 38, 193–212. [Google Scholar] [CrossRef]
- Aceto, M. The Use of ICP-MS in Food Traceability. In Advances in Food Traceability Techniques and Technologies: Improving Quality Throughout the Food Chain; Woodhead Publishing: Cambridge, UK, 2016; pp. 137–164. [Google Scholar]
- Nasr, E.G.; Epova, E.N.; Sebilo, M.; Larivière, D.; Hammami, M.; Souissi, R.; Abderrazak, H.; Donard, O.F. Olive Oil Traceability Studies Using Inorganic and Isotopic Signatures: A Review. Molecules 2022, 27, 2014. [Google Scholar] [CrossRef] [PubMed]
- Scatigno, C.; Festa, G. A first elemental pattern and geo-discrimination of Italian EVOO by energy dispersive X-ray fluorescence and chemometrics. Microchem. J. 2021, 171, 106863. [Google Scholar] [CrossRef]
- Gertz, C.; Gertz, A.; Matthäus, B.; Willenberg, I. A Systematic Chemometric Approach to Identify the Geographical Origin of Olive Oils. Eur. J. Lipid Sci. Technol. 2019, 121, 1900281. [Google Scholar] [CrossRef]
- Bajoub, A.; Hurtado-Fernández, E.; Ajal, E.A.; Ouazzani, N.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Comprehensive 3-year study of the phenolic profile of Moroccan monovarietal virgin olive oils from the meknès region. J. Agric. Food Chem. 2015, 63, 4376–4385. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Bertin, S.; Leik, K.; Bustamante, J.; Guardiola, F.; Valli, E.; Bendini, A.; Toschi, T.G.; Tres, A.; Vichi, S. Profiling versus fingerprinting analysis of sesquiterpene hydrocarbons for the geographical authentication of extra virgin olive oils. Food Chem. 2020, 307, 125556. [Google Scholar] [CrossRef]
- Youseff, R.; Soubh, L.; Alassaf, Z. Detection of Vegetable Oils Adulteration Using Desmethylsterols Composition. Int. J. Pharm. Sci. 2014, 28, 229–233. [Google Scholar]
- Noorali, M.; Barzegar, M.; Sahari, M.A. Sterol and Fatty Acid Compositions of Olive Oil as an Indicator of Cultivar and Growing Area. J. Am. Oil Chem. Soc. 2014, 91, 1571–1581. [Google Scholar] [CrossRef]
- Camin, F.; Pavone, A.; Bontempo, L.; Wehrens, R.; Paolini, M.; Faberi, A.; Marianella, R.M.; Capitani, D.; Vista, S.; Mannina, L. The use of IRMS, 1H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils. Food Chem. 2016, 196, 98–105. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef] [PubMed]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Voerkelius, S.; Lorenz, G.D.; Rummel, S.; Quétel, C.R.; Heiss, G.; Baxter, M.; Brach-Papa, C.; Deters-Itzelsberger, P.; Hoelzl, S.; Hoogewerff, J.; et al. Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem. 2010, 118, 933–940. [Google Scholar] [CrossRef]
- Dais, P.; Hatzakis, E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Anal. Chim. Acta 2013, 765, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Muzzalupo, I. Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy. 2012. Available online: https://www.intechopen.com/books/2986 (accessed on 4 July 2023).
- Sanmartin, C.; Venturi, F.; Sgherri, C.; Nari, A.; Macaluso, M.; Flamini, G.; Quartacci, M.F.; Taglieri, I.; Andrich, G.; Zinnai, A. The effects of packaging and storage temperature on the shelf-life of extra virgin olive oil. Heliyon 2018, 4, e00888. [Google Scholar] [CrossRef]
- Aceto, M. Metals in wine. In Reviews in Food and Nutrition Toxicity; CRCC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Angioni, A.; Cabitza, M.; Russo, M.T.; Caboni, P. Influence of olive cultivars and period of harvest on the contents of Cu, Cd, Pb, and Zn in virgin olive oils. Food Chem. 2006, 99, 525–529. [Google Scholar] [CrossRef]
- Benincasa, C.; Gharsallaoui, M.; Perri, E.; Briccoli Bati, C.; Ayadi, M.; Khlif, M.; Gabsi, S. Quality and trace element profile of tunisian olive oils obtained from plants irrigated with treated wastewater. Sci. World J. 2012, 2012, 535781. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef]
- Greenough, J.D.; Fryer, B.J.; Mallory-Greenough, L. Trace element geochemistry of Nova Scotia (Canada) maple syrup. Can. J. Earth Sci. 2010, 47, 1093–1110. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Domínguez-Perles, R.; Machado, N.; Carvalho, T.; Matos, C.; Barros, A.I.R.N.A. Effect of Agro-Environmental Factors on the Mineral Content of Olive Oils: Categorization of the Three Major Portuguese Cultivars. J. Am. Oil Chem. Soc. 2016, 93, 813–822. [Google Scholar] [CrossRef]
- Damak, F.; Asano, M.; Baba, K.; Suda, A.; Araoka, D.; Wali, A.; Isoda, H.; Nakajima, M.; Ksibi, M.; Tamura, K. Interregional traceability of Tunisian olive oils to the provenance soil by multielemental fingerprinting and chemometrics. Food Chem. 2019, 283, 656–664. [Google Scholar] [CrossRef]
- Turra, C. Sustainability of rare earth elements chain: From production to food—A review. Int. J. Environ. Health Res. 2018, 28, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Aide, M. Lanthanide Soil Chemistry and Its Importance in Understanding Soil Pathways: Mobility, Plant Uptake, and Soil Health. In Lanthanides; IntechOpen: Rijeka, Croatia, 2018; Available online: https://www.intechopen.com/state.item.id (accessed on 20 July 2023).
- Pošćić, F.; Furdek Turk, M.; Bačić, N.; Mikac, N.; Bertoldi, D.; Camin, F.; Špika, M.J.; Žanetić, M.; Rengel, Z.; Perica, S. Removal of pomace residues is critical in quantification of element concentrations in extra virgin olive oil. J. Food Compos. Anal. 2019, 77, 39–46. [Google Scholar] [CrossRef]
- Liang, T.; Ding, S.; Somg, W.; Chong, Z.; Zhang, C.; Li, H. A review of fractionations of rare earth elements in plants. J. Rare Earths 2008, 26, 7–15. [Google Scholar] [CrossRef]
- Valentin, J.L.; Watling, R.J. Provenance establishment of coffee using solution ICP-MS and ICP-AES. Food Chem. 2013, 141, 98–104. [Google Scholar] [CrossRef]
- Aceto, M.; Bonello, F.; Musso, D.; Tsolakis, C.; Cassino, C.; Osella, D. Wine Traceability with Rare Earth Elements. Beverages 2018, 4, 23. [Google Scholar] [CrossRef]
- Barbera, M.; Saiano, F.; Tutone, L.; Massenti, R.; Pisciotta, A. The Pattern of Rare Earth Elements Like a Possible Helpful Tool in Traceability and Geographical Characterization of the Soil-Olive System (Olea europaea L.). Plants 2022, 11, 2579. [Google Scholar] [CrossRef]
- Telloli, C.; Tagliavini, S.; Passarini, F.; Salvi, S.; Rizzo, A. ICP-MS triple quadrupole as analytical technique to define trace and ultra-trace fingerprint of extra virgin olive oil. Food Chem. 2023, 402, 134247. [Google Scholar] [CrossRef]
- Rollinson, H. Geochemistry by William M. White. Wiley-Blackwell, Chichester, 2013. No. of pages: Viii+660. Price: UK£42.50. ISBN 978-0-470-65668 (paperback). Geol. J. 2016, 51, 499–500. [Google Scholar] [CrossRef]
- Joebstl, D.; Bandoniene, D.; Meisel, T.; Chatzistathis, S. Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis. Food Chem. 2010, 123, 1303–1309. [Google Scholar] [CrossRef]
- Aceto, M.; Baldizzone, M.; Oddone, M. Keeping the track of quality: Authentication and traceability studies on wine. In Red Wine and Health; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 429–466. [Google Scholar]
- Rare Earths Statistics and Information|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/rare-earths-statistics-and-information#pubs (accessed on 20 July 2023).
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Inductively coupled plasma—Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements—A tutorial review. Anal. Chim. Acta 2015, 894, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, B.; Örnemark, U. Eurache Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; 2014; Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 15 November 2023).
- Šilarová, P.; Eslová, L.C.; Meloun, M. Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chem. 2017, 237, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Smeriglio, A.; Marcoccia, D.; Giofrè, S.; Toscano, G.; Mazzotti, F.; Giovanazzi, A.; Lorenzetti, S. Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. Int. J. Mol. Sci. 2017, 18, 797. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J.; Simeonov, V.; Namieśnik, J. Characterization of home-made and regional fruit wines by evaluation of correlation between selected chemical parameters. Microchem. J. 2018, 140, 66–73. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Pošćić, F.; Žanetić, M.; Fiket, Ž.; Furdek Turk, M.; Mikac, N.; Bačić, N.; Lučić, M.; Romić, M.; Bakić, H.; Jukić Špika, M.; et al. Accumulation and partitioning of rare earth elements in olive trees and extra virgin olive oil from Adriatic coastal region. Plant Soil 2020, 448, 133–151. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Marini, F.; Frezzini, M.A.; Massimi, L.; Capriotti, A.L.; Montone, C.M.; Canepari, S. Multielement Characterization and Antioxidant Activity of Italian Extra-Virgin Olive Oils. Front. Chem. 2021, 9, 769620. [Google Scholar] [CrossRef]
- Damak, F.; Bougi, M.S.; Araoka, D.; Baba, K.; Furuya, M.; Ksibi, M.; Tamura, K. Soil geochemistry, edaphic and climatic characteristics as components of Tunisian olive terroirs: Relationship with the multielemental composition of olive oils for their geographical traceability. EuroMediterr. J. Environ. Integr. 2021, 3, 37. [Google Scholar] [CrossRef]
- Sayago, A.; González-Domínguez, R.; Beltrán, R.; Fernández-Recamales, Á. Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition. Food Chem. 2018, 261, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Masuda, A. Abundances of monoisotopic REE, consistent with the Leedey chondrite values. Geochem. J. 1975, 9, 183–184. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Pederiva, S.; Brusa, F.; Mogliotti, P.; Garrone, A.; Abete, M.C. Trace and rare earth elements in monofloral and multifloral honeys from Northwestern Italy; A first attempt of characterization by a multi-elemental profile. J. Trace Elem. Med. Biol. 2020, 61, 126556. [Google Scholar] [CrossRef]
- Oddo, G. Die Molekularstruktur der radioaktiven Atome. Z. Anorg. Chem. 1914, 87, 253–268. [Google Scholar] [CrossRef]
- Harkins, W.D. The evolution of the elements and the stability of complex atoms. I. A new periodic system which shows a relation between the abundance of the elements and the structure of the nuclei of atoms. J. Am. Chem. Soc. 1917, 39, 856–879. [Google Scholar] [CrossRef]
- Ariyama, K.; Nishida, T.; Noda, T.; Kadorura, M.; Yasui, A. Effects of fertilization, crop year, variety, and provenance factors on mineral concentrations in onions. J. Agric. Food Chem. 2006, 54, 3341–3350. [Google Scholar] [CrossRef]
Abruzzo Province | Geographical Location (Number of Samples) | Sample Code | Cultivar |
---|---|---|---|
Pescara (n = 18) | Loreto Aprutino (n = 2) | B2, C6 | Frantoio |
Pianella (n = 2) | B10, C11 | Leccino | |
Pianella (n = 2) | A7, C7 | Arbequina | |
Pianella (n = 1) | A8 | Arbosana | |
Pianella (n = 1) | A3 | Koroneiki | |
Pianella (n = 2) | A5, C10 | Dritta | |
Alanno (n = 1) | A6 | FS17 | |
Alanno (n = 1) | A9 | Don Carlo | |
Loreto Aprutino (n = 1) | B1 | Dritta | |
Pianella (n = 1) | B7 | Arbequina | |
Pianella (n = 1) | B8 | Peranzana | |
Pianella (n = 1) | B9 | Koroneiki | |
Pianella (n = 1) | B6 | Arbosana | |
Pianella (n = 1) | C12 | Frantoio | |
Chieti (n = 11) | Vasto (n = 3) | A4, B3, C13 | Frantene |
Vasto (n = 2) | A2, B5 | Lecciana | |
Scerni (n = 2) | B12, C5 | Lecciana | |
Scerni (n = 2) | B13, C4 | Koroneiki | |
Casoli (n = 1) | A1 | Arbequina | |
Scerni (n = 1) | B11 | Oliana |
Light | Heavy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | La | Ce | Pr | Nd | Sm | Eu | Gd | Y | Dy | Er | Yb |
A1 | 1.28 | 2.93 | 0.37 | 1.19 | 0.27 | 0.09 | 0.27 | 2.01 | 0.37 | 0.18 | 0.37 |
A2 | 1.71 | 3.69 | 0.45 | 1.44 | 0.36 | 0.18 | 0.36 | 2.43 | 0.36 | 0.36 | 0.36 |
A4 | 1.18 | 2.59 | 0.31 | 1.02 | 0.31 | 0.16 | 0.31 | 1.65 | 0.31 | 0.16 | 0.31 |
A5 | 1.59 | 3.47 | 0.40 | 1.29 | 0.30 | 0.20 | 0.40 | 2.28 | 0.40 | 0.20 | 0.30 |
A6 | 1.52 | 3.24 | 0.38 | 1.43 | 0.29 | 0.19 | 0.38 | 2.19 | 0.38 | 0.29 | 0.29 |
A7 | 1.42 | 3.09 | 0.33 | 1.34 | 0.33 | 0.17 | 0.33 | 2.09 | 0.33 | 0.25 | 0.33 |
A8 | 1.36 | 3.22 | 0.39 | 1.27 | 0.29 | 0.10 | 0.39 | 2.05 | 0.39 | 0.19 | 0.39 |
A9 | 1.46 | 3.28 | 0.36 | 1.37 | 0.36 | 0.18 | 0.36 | 2.19 | 0.36 | 0.18 | 0.36 |
B1 | 1.75 | 3.60 | 0.45 | 1.58 | 0.34 | 0.11 | 0.39 | 2.53 | 0.45 | 0.34 | 0.34 |
B2 | 1.68 | 3.42 | 0.36 | 1.44 | 0.36 | 0.12 | 0.36 | 2.34 | 0.36 | 0.36 | 0.36 |
B3 | 1.52 | 3.21 | 0.38 | 1.36 | 0.33 | 0.11 | 0.33 | 2.18 | 0.33 | 0.27 | 0.33 |
B5 | 1.24 | 2.60 | 0.25 | 1.05 | 0.25 | 0.12 | 0.25 | 1.80 | 0.31 | 0.25 | 0.25 |
B6 | 1.49 | 3.15 | 0.34 | 1.32 | 0.34 | 0.11 | 0.29 | 2.12 | 0.34 | 0.23 | 0.34 |
B7 | 1.57 | 3.26 | 0.35 | 1.40 | 0.29 | 0.12 | 0.35 | 2.27 | 0.35 | 0.23 | 0.35 |
B8 | 1.22 | 2.55 | 0.36 | 1.09 | 0.24 | 0.12 | 0.24 | 1.70 | 0.24 | 0.24 | 0.24 |
B9 | 1.43 | 3.07 | 0.33 | 1.32 | 0.27 | 0.11 | 0.33 | 2.08 | 0.33 | 0.33 | 0.33 |
B10 | 1.63 | 3.37 | 0.36 | 1.44 | 0.36 | 0.12 | 0.36 | 2.29 | 0.36 | 0.30 | 0.36 |
B11 | 1.65 | 3.35 | 0.40 | 1.48 | 0.34 | 0.11 | 0.34 | 2.33 | 0.40 | 0.34 | 0.34 |
B12 | 1.50 | 3.13 | 0.38 | 1.25 | 0.25 | 0.13 | 0.31 | 2.19 | 0.38 | 0.25 | 0.38 |
B13 | 1.43 | 2.97 | 0.34 | 1.31 | 0.29 | 0.11 | 0.34 | 2.00 | 0.34 | 0.23 | 0.34 |
C4 | 2.02 | 4.20 | 0.47 | 1.71 | 0.31 | 0.16 | 0.47 | 2.80 | 0.47 | 0.31 | 0.47 |
C5 | 2.03 | 4.22 | 0.47 | 1.72 | 0.39 | 0.16 | 0.47 | 2.82 | 0.47 | 0.31 | 0.47 |
C6 | 1.53 | 3.27 | 0.33 | 1.42 | 0.33 | 0.11 | 0.33 | 2.18 | 0.33 | 0.33 | 0.33 |
C7 | 1.41 | 2.94 | 0.35 | 1.29 | 0.23 | 0.12 | 0.35 | 2.00 | 0.35 | 0.23 | 0.35 |
C10 | 1.65 | 3.42 | 0.35 | 1.41 | 0.35 | 0.12 | 0.35 | 2.24 | 0.35 | 0.24 | 0.35 |
C11 | 1.62 | 3.75 | 0.37 | 1.37 | 0.25 | 0.12 | 0.37 | 2.12 | 0.37 | 0.25 | 0.25 |
C12 | 1.70 | 3.52 | 0.36 | 1.58 | 0.36 | 0.12 | 0.36 | 2.30 | 0.36 | 0.24 | 0.36 |
C13 | 1.37 | 2.98 | 0.37 | 1.24 | 0.25 | 0.12 | 0.25 | 1.99 | 0.37 | 0.25 | 0.25 |
Mean | 1.53 | 3.27 | 0.37 | 1.36 | 0.31 | 0.13 | 0.35 | 2.18 | 0.36 | 0.26 | 0.34 |
sd | 0.21 | 0.40 | 0.05 | 0.17 | 0.05 | 0.03 | 0.05 | 0.27 | 0.05 | 0.06 | 0.05 |
Variable | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Dy | Er | Yb |
---|---|---|---|---|---|---|---|---|---|---|---|
Y | 1.00 | ||||||||||
La | 0.97 | 1.00 | |||||||||
Ce | 0.94 | 0.96 | 1.00 | ||||||||
Pr | 0.79 | 0.75 | 0.78 | 1.00 | |||||||
Nd | 0.94 | 0.95 | 0.91 | 0.71 | 1.00 | ||||||
Sm | 0.59 | 0.58 | 0.55 | 0.36 | 0.62 | 1.00 | |||||
Eu | 0.23 | 0.22 | 0.27 | 0.27 | 0.14 | 0.23 | 1.00 | ||||
Gd | 0.81 | 0.81 | 0.85 | 0.69 | 0.80 | 0.48 | 0.38 | 1.00 | |||
Dy | 0.83 | 0.77 | 0.81 | 0.76 | 0.75 | 0.34 | 0.21 | 0.78 | 1.00 | ||
Er | 0.58 | 0.60 | 0.49 | 0.40 | 0.60 | 0.33 | −0.04 | 0.29 | 0.29 | 1.00 | |
Yb | 0.71 | 0.64 | 0.62 | 0.55 | 0.65 | 0.55 | 0.03 | 0.68 | 0.62 | 0.19 | 1.00 |
F1 | F2 | |
---|---|---|
Y | 0.365 | −0.072 |
La | 0.360 | −0.092 |
Ce | 0.358 | 0.021 |
Pr | 0.307 | 0.102 |
Nd | 0.353 | −0.160 |
Sm | 0.236 | −0.028 |
Eu | 0.103 | 0.761 |
Gd | 0.328 | 0.242 |
Dy | 0.316 | 0.127 |
Er | 0.202 | −0.544 |
Yb | 0.275 | −0.015 |
From\to | A | B | C | Total | % Correct |
---|---|---|---|---|---|
A | 6 | 1 | 1 | 8 | 75.00% |
B | 0 | 11 | 1 | 12 | 91.67% |
C | 0 | 3 | 5 | 8 | 62.50% |
Total | 6 | 15 | 7 | 28 | 78.57% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiaudani, A.; Flamminii, F.; Consalvo, A.; Bellocci, M.; Pizzi, A.; Passamonti, C.; Cichelli, A. Rare Earth Element Variability in Italian Extra Virgin Olive Oils from Abruzzo Region. Foods 2024, 13, 141. https://doi.org/10.3390/foods13010141
Chiaudani A, Flamminii F, Consalvo A, Bellocci M, Pizzi A, Passamonti C, Cichelli A. Rare Earth Element Variability in Italian Extra Virgin Olive Oils from Abruzzo Region. Foods. 2024; 13(1):141. https://doi.org/10.3390/foods13010141
Chicago/Turabian StyleChiaudani, Alessandro, Federica Flamminii, Ada Consalvo, Mirella Bellocci, Alberto Pizzi, Chiara Passamonti, and Angelo Cichelli. 2024. "Rare Earth Element Variability in Italian Extra Virgin Olive Oils from Abruzzo Region" Foods 13, no. 1: 141. https://doi.org/10.3390/foods13010141
APA StyleChiaudani, A., Flamminii, F., Consalvo, A., Bellocci, M., Pizzi, A., Passamonti, C., & Cichelli, A. (2024). Rare Earth Element Variability in Italian Extra Virgin Olive Oils from Abruzzo Region. Foods, 13(1), 141. https://doi.org/10.3390/foods13010141