Compositional Changes during Storage of Industrially Produced Olive Oils Co-Milled with Olive Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Harvesting of Olive Fruits and Leaves
2.1.2. Processing of Olive Fruits
2.2. Oil Analyses
2.2.1. Quality Parameters
2.2.2. Fatty Acid Methyl Esters (FAME)
2.2.3. Pigments
2.2.4. Oxidative Stability of the Oil
2.2.5. Determination of Phenolic Compounds
2.2.6. Total Phenolic Compounds
2.2.7. Volatile Compounds Determination
2.2.8. Sensory Analysis of VOOs
2.2.9. Determination of Oil Content, Extractability Index, and Oil Yield
2.2.10. Statistical Data Analysis
3. Results
3.1. Quality Parameters
3.2. Fatty Acids
3.3. Pigments
3.4. Oxidative Stability
3.5. Total Phenols
3.6. Phenolic Compounds
3.7. Volatile Compounds
3.8. Sensory Characteristics
3.9. Principal Component Analysis (PCA)
3.10. Oil Yield and Extractability Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frankel, E.; Bakhouche, A.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols. J. Agric. Food Chem. 2013, 61, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Damak, N.; Bouaziz, M.; Ayadi, M.; Sayadi, S.; Damak, M. Effect of the maturation process on the phenolic fractions, fatty acids, and antioxidant activity of the Chétoui olive fruit cultivar. J. Agric. Food Chem. 2008, 56, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Boudhrioua, N.; Bahloul, N.; Slimen, B.I.; Kechaou, N. Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind. Crops Prod. 2009, 29, 412–419. [Google Scholar] [CrossRef]
- Abaza, L.; Taamalli, A.; Nsir, H.; Zarrouk, M. Olive tree (Olea europeae L.) leaves: Importance and advances in the analysis of phenolic compounds. Antioxidants 2015, 4, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.F.R.; Barros, L.; Soares, M.E.; Bastos, M.L.; Pereira, J.A. Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chem. 2007, 103, 188–195. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Rileya, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents. 2009, 33, 461–463. [Google Scholar] [CrossRef]
- Korukluoglu, M.; Sahan, Y.; Yigit, A.; Ozer, E.T.; Gucer, S. Antibacterial activity and chemical constitutions of Olea europaea L. leaf extracts. J. Food Process. Preserv. 2010, 34, 383–396. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Teixeira, H.; Bento, A.; Pereira, J.A. Efect of olive leaves addition during the extraction process of overmature fruits on olive oil quality. Food Bioprocess Technol. 2013, 6, 509–521. [Google Scholar] [CrossRef]
- Lockyer, S.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Olive leaf phenolics and cardiovascular risk reduction: Physiological effects and mechanisms of action. Nutr. Aging 2012, 1, 125–140. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’ and ‘Picual’ olive leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Jaber, H.; Ayadi, M.; Makni, J.; Rigane, G.; Sayadi, S.; Bouaziz, M. Stabilization of refined olive oil by enrichment with chlorophyll pigments extracted from Chemlali olive leaves. Eur. J. Lipid Sci. Technol. 2012, 114, 1274–1283. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Correia, R.; Félix, S.; Ferreira, P.; Gordon, M.H. Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. J. Agric. Food Chem. 2007, 55, 4139–4143. [Google Scholar] [CrossRef] [PubMed]
- Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Hadjipavlou-Litina, D.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. J. Am. Oil Chem. Soc. 2010, 87, 369–376. [Google Scholar] [CrossRef]
- Peršurić, Ž.; Saftić, L.; Klisović, D.; Pavelić, S.K. Polyphenol-based design of functional olive leaf infusions. Food Technol. Biotechnol. 2019, 57, 171–182. [Google Scholar] [CrossRef]
- Kovačić, I.; Bilić, J.; Dudaš, S.; Poljuha, D. Phenolic content and antioxidant capacity of Istrian olive leaf infusions. Poljoprivreda 2017, 23, 38–45. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Lama-Muñoz, A.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chem. 2020, 314, 126218. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on the substantiation of a health claim related to olive leaf (Olea europaea L.) water extract and increase in glucose tolerance pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2014, 12, 3655. [Google Scholar] [CrossRef]
- Lafka, T.I.; Lazou, A.; Sinanoglou, V.; Lazos, E. Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 2013, 2, 18–31. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Belobrajić, I. Influence of storage temperature on quality parameters, phenols and volatile compounds of Croatian virgin olive oils. Grasas Aceites 2014, 65, e034. [Google Scholar] [CrossRef]
- Suárez, M.; Romero, M.P.; Ramo, T.; Motilva, M.J. Stability of a phenol-enriched olive oil during storage. Eur. J. Lipid Sci. Technol. 2011, 113, 894–903. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; Ocaña, M.T.; De Torres, A.; Espínola, F.; Moya, M. Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: Pilot plant’s proposal. Eur. Food Res. Technol. 2020, 246, 1459–1468. [Google Scholar] [CrossRef]
- Marx, Í.M.G.; Rodrigues, N.; Veloso, A.C.A.; Casal, S.; Pereira, J.A.; Peres, A.M. Efect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. LWT-Food Sci. Technol. 2021, 137, 110426. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive leaf addition increases olive oil nutraceutical properties. Molecules 2019, 24, 545. [Google Scholar] [CrossRef] [PubMed]
- Marx, Í.M.; Casal, S.; Rodrigues, N.; Cruz, R.; Veloso, A.C.; Pereira, J.A.; Peres, A.M. Impact of incorporating olive leaves during the industrial extraction of cv. arbequina oils on the physicochemical–sensory quality and health claim fulfillment. Eur. Food Res. Technol. 2021, 248, 171–183. [Google Scholar] [CrossRef]
- Markhali, F.S.; Teixeira, J.A. Comparative study of different particle sizes of added olive leaves for the content of target polyphenols in virgin olive oil. Sustain. Food Technol. 2023, 1, 896–905. [Google Scholar] [CrossRef]
- The European Commission. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Off. J. Eur. Union. 2022, L284, 1–22. [Google Scholar]
- Ammar, S.; Zribi, A.; Gargouri, B.; Flamini, G.; Bouaziz, M. Effect of addition of olive leaves before fruits extraction process to some monovarietal Tunisian extra-virgin olive oils using chemometric analysis. J. Agric. Food Chem. 2014, 62, 251–263. [Google Scholar] [CrossRef]
- Malheiro, R.; Rodrigues, N.; Bissaro, C.; Leimann, F.; Casal, S.; Ramalhosa, E.; Pereira, J.A. Improvement of sensorial and volatile profiles of olive oil by addition of olive leaves. Eur. J. Lipid Sci. Technol. 2017, 119, 1700177. [Google Scholar] [CrossRef]
- Sanmartin, C.; Taglieri, I.; Macaluso, M.; Sgherri, C.; Ascrizzi, R.; Flamini, G.; Venturi, F.; Quartacci, M.F.; Luro, F.; Curk, F.; et al. Cold-pressing olive oil in the presence of cryomacerated leaves of olea or citrus: Nutraceutical and sensorial features. Molecules 2019, 24, 2625. [Google Scholar] [CrossRef] [PubMed]
- Novoselić, A.; Klisović, D.; Lukić, I.; Lukić, M.; Bubola, K. The Use of Olive Leaves in Buža Olive Cultivar Oil Production: Exploring the Impact on Oil Yield and Chemical Composition. Agriculture 2021, 11, 917. [Google Scholar] [CrossRef]
- Sevim, D.; Tuncay, O.; Koseoglu, O. The effect of olive leaf addition on antioxidant content and antioxidant activity of “Memecik” olive oils at two maturity stages. J. Am. Oil Chem. Soc. 2013, 90, 1359–1369. [Google Scholar] [CrossRef]
- Sevim, D.; Tuncay, O. Effect of olive leaves addition before extraction of turkish olive cultivars on olive oil minor components and antioxidant activity. Open Access Sci. Rep. 2013, 2, 2–8. [Google Scholar]
- Marx, I.M.G.; Casal, S.; Rodrigues, N.; Cruz, R.; Peres, F.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Impact of fresh olive leaves addition during the extraction of Arbequina virgin olive oils on the phenolic and volatile profiles. Food Chem. 2022, 393, 133327. [Google Scholar] [CrossRef]
- Di Giovacchino, L.; Costantini, N.; Ferrante, M.L.; Serraiocco, A. Influence of malaxation time of olive paste on oil extraction yields and chemical and organoleptic characteristics of virgin olive oil obtained by a centrifugal decanter at water saving. Grasas Aceites 2002, 53, 179–186. [Google Scholar] [CrossRef]
- Di Giovacchino, L.; Angerosa, F.; Di Giacinto, L. Effect of mixing leaves with olives on organoleptic quality of oil obtained by centrifugation. J. Am. Oil Chem. Soc. 1996, 73, 371–374. [Google Scholar] [CrossRef]
- Ammar, S.; Kelebek, H.; Zribi, A.; Abichou, M.; Selli, S.; Bouaziz, M. LC-DAD/ESI-MS/MS characterization of phenolic constituents in Tunisian extra-virgin olive oils: Effect of olive leaves addition on chemical composition. Food Res. Int. 2017, 100, 477–485. [Google Scholar] [CrossRef]
- Beltrán, G.; del Río, C.; Sánchez, S.; Martínez, L. Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. J. Sci. Food Agric. 2004, 84, 1783–1790. [Google Scholar] [CrossRef]
- IOC (International Olive Council). Determination of Free Fatty Acids, Cold Method; COI/T.20/Doc. No 34; IOC (International Olive Council): Madrid, Spain, 2017. [Google Scholar]
- IOC (International Olive Council). Determination of Peroxide Value; COI/T.20/Doc. No 35; IOC (International Olive Council): Madrid, Spain, 2017. [Google Scholar]
- IOC (International Olive Council). Spectrophotometric Investigation in the Ultraviolet; COI/T.20/Doc. No 19; IOC (International Olive Council): Madrid, Spain, 2019. [Google Scholar]
- IOC (International Olive Council). Determination of Fatty Acid Methyl esters by Gas Chromatography; COI/T.20/Doc. No 33; IOC (International Olive Council): Madrid, Spain, 2017. [Google Scholar]
- Mínguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sanchez Gomez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. AOCS Method Cd 12b-92. Official Methods and Recommended Practices of the American Oil Chemists’ Society, Oil Stability Index (OSI). Sampling and Analysis of Commercial Fats and Oils, 6th ed.; AOCS Press: Urbana, IL, USA, 1997; pp. 1–5. [Google Scholar]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovsek, U.; Mozetič Vodopivec, B. Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Žanetić, M.; Jukić Špika, M.; Lukić, M.; Koprivnjak, O.; Brkić Bubola, K. Complex interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. virgin olive oil phenols, volatiles and sensory quality. Food Chem. 2017, 232, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Lukić, I. Volatile Compounds and Sensory Profiles of Monovarietal Virgin Olive Oil from Buža, Črna and Rosinjola Cultivars in Istria (Croatia). Food Technol. Biotechnol. 2012, 50, 192–198. [Google Scholar]
- Brkić Bubola, K.; Lukić, M.; Novoselić, A.; Krapac, M.; Lukić, I. Olive fruit refrigeration during prolonged storage preserves the quality of virgin olive oil extracted therefrom. Foods 2020, 9, 1445. [Google Scholar] [CrossRef]
- IOC (International Olive Council). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil; COI/T.20/Doc. No 15; IOC (International Olive Council): Madrid, Spain, 2018. [Google Scholar]
- Brkić, K.; Radulović, M.; Sladonja, B.; Lukić, I.; Šetić, E. Application of Soxtec apparatus for oil content determination in olive fruit. Riv. Ital. Sostanze Grasse 2006, 83, 115–119. [Google Scholar]
- Beltrán, G.; Uceda, M.; Jiménez, A.; Aguilera, M.P. Olive oil extractability index as a parameter for olive cultivar characterisation. J. Sci. Food Agric. 2003, 83, 503–506. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Brkić Bubola, K.; Kosić, U. Sodium chloride compared to talc as processing aid has similar impact on volatile compounds but more favorable on ortho-diphenols in virgin olive oil. Eur. J. Lipid Sci. Technol. 2016, 118, 318–324. [Google Scholar] [CrossRef]
- MetaboAnalyst v. 5.0. Available online: http://www.metaboanalyst.ca (accessed on 15 December 2023).
- Sari, H.A.; Ekinci, R. The effect of ultrasound application and addition of leaves in the malaxation of olive oil extraction on the olive oil yield, oxidative stability and organoleptic quality. Food Sci. Technol. 2017, 37, 493–499. [Google Scholar] [CrossRef]
- Montaño, A.; Hernández, M.; Garrido, I.; Llerena, J.L.; Espinosa, F. Fatty acid and phenolic compound concentrations in eight different monovarietal virgin olive oils from Extremadura and the relationship with oxidative stability. Int. J. Mol. Sci. 2016, 17, 1960. [Google Scholar] [CrossRef]
- Allouche, Y.; Jiménez, A.; Gaforio, J.J.; Uceda, M.; Beltrán, G. How heating affects extra virgin olive oil quality indexes and chemical composition. J. Agric. Food Chem. 2007, 55, 9646–9654. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Arnaud, T.; Garrido, A. Contribution of polyphenols to the oxidative stability of virgin olive oil. J. Sci. Food Agric. 2001, 81, 1463–1470. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Gordon, M.H. Isolation and characterization of the antioxidant component 3, 4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. J. Agric. Food Chem. 2001, 49, 4214–4219. [Google Scholar] [CrossRef] [PubMed]
- Goulas, V.; Papoti, V.T.; Exarchou, V.; Tsimidou, M.Z.; Gerothanassis, I.P. Contribution of Flavonoids to the Overall Radical Scavenging Activity of Olive (Olea europaea L.) Leaf Polar Extracts. J. Agric. Food Chem. 2010, 58, 3303–3308. [Google Scholar] [CrossRef]
- Japon-Lujan, R.; Ruiz-Jiménez, J.; Luque de Castro, M.D. Discrimination and classification of olive tree varieties and cultivation zones by biophenol contents. J. Agric. Food Chem. 2006, 54, 9706–9712. [Google Scholar] [CrossRef]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L. The effect of malaxation temperature on the virgin olive oil phenolic profile under laboratory-scale conditions. Eur. J. Lipid Sci. Technol. 2008, 110, 735–741. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin olive oil volatile compounds: Composition, sensory characteristics, analytical approaches, quality control, and authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem. 2004, 88, 151–157. [Google Scholar] [CrossRef]
- Salas, J.J.; Sánchez, C.; García-González, D.L.; Aparicio, R. Impact of the suppression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. J. Agric. Food Chem. 2005, 53, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor Chemistry of Virgin Olive Oil: An Overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: Characterization of virgin oils from two distinct geographical areas of northern Italy. J. Agric. Food Chem. 2003, 51, 6572–6577. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Beltrán, G.; Uceda, M. High-power ultrasoundin olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrason. Sonochem. 2007, 14, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Koprivnjak, O. Djevičansko Maslinovo Ulje: Od Masline do Stola; MIH: Poreč, Croatia, 2006; p. 39. [Google Scholar]
- Baraniak, B.; Krzepilko, A. Inhibition of broccoli lipoxygenase by some phenolic compounds—A short report. Pol. J. Food Nutr. Sci. 2004, 54, 339–342. [Google Scholar]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Tena, N.; Lazzez, A.; Aparicio, R.; Garcia-Gonzales, D.L. Volatile compounds characterizing Tunisian Chemlali and Chetoui virgin olive oils. J. Agric. Food Chem. 2007, 55, 7852–7858. [Google Scholar] [CrossRef]
- Tandon, K.S.; Baldwin, E.A.; Shewfelt, R.L. Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum, Mill.) as affected by the medium of evaluation. Postharvest Biol. Technol. 2000, 20, 261–268. [Google Scholar] [CrossRef]
- Gutiérrez-Rosales, F.; Ríos, J.J.; Gómez-Rey, M.L. Main Polyphenols in the Bitter Taste of Virgin Olive Oil. Structural Confirmation by On-Line High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 6021–6025. [Google Scholar] [CrossRef]
- Cui, M.; Chen, B.; Xu, K.; Rigakou, A.; Diamantakos, P.; Melliou, E.; Logothetis, D.E.; Magiatis, P. Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Sci. Rep. 2021, 11, 22340. [Google Scholar] [CrossRef]
Quality Parameters | L-0-cont | L-0-L | L-6-cont | L-6-L | L-12-cont | L-12-L | EVOO * |
---|---|---|---|---|---|---|---|
FFA (% of oleic acid) | 0.14 ± 0.00 | 0.15 ± 0.00 | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.01 b | 0.19 ± 0.01 a | ≤0.80 |
PV (meq O2/kg) | 4.20 ± 0.00 | 4.17 ± 0.06 | 6.30 ± 0.00 | 6.27 ± 0.06 | 7.00 ± 0.00 b | 8.00 ± 0.10 a | ≤20.0 |
K232 | 1.73 ± 0.10 | 1.86 ± 0.06 | 1.93 ± 0.03 | 2.06 ± 0.11 | 2.12 ± 0.03 | 2.21 ± 0.08 | ≤2.50 |
K268 | 0.13 ± 0.01 b | 0.15 ± 0.01 a | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.17 ± 0.01 | ≤0.22 |
ΔK | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | ≤0.01 |
Fatty Acid (%) | L-0-cont | L-0-L | L-6-cont | L-6-L | L-12-cont | L-12-L | EVOO * |
---|---|---|---|---|---|---|---|
Myristic (C 14:0) | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | ≤0.03 |
Palmitic (C 16:0) | 14.78 ± 0.19 | 14.83 ± 0.21 | 14.20 ± 0.12 | 14.38 ± 0.10 | 13.86 ± 0.12 | 13.89 ± 0.04 | 7.50–20.00 |
Palmitoleic (C 16:1) | 1.49 ± 0.02 | 1.53 ± 0.04 | 1.40 ± 0.02 | 1.44 ± 0.03 | 1.28 ± 0.05 | 1.36 ± 0.05 | 0.30–3.50 |
Heptadecanoic (C 17:0) | 0.04 ± 0.00 a | 0.03 ± 0.00 b | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | ≤0.40 |
Heptadecenoic (C 17:1) | 0.09 ± 0.00 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.10 ± 0.01 | 0.10 ± 0.00 | ≤0.60 |
Stearic (C 18:0) | 1.82 ± 0.01 | 1.83 ± 0.01 | 1.81 ± 0.01 b | 1.83 ± 0.00 a | 1.81 ± 0.01 b | 1.83 ± 0.00 a | 0.50–5.00 |
Oleic (C 18:1) | 74.27 ± 0.17 | 74.44 ± 0.22 | 75.10 ± 0.10 | 75.08 ± 0.09 | 75.78 ± 0.12 | 75.70 ± 0.04 | 55.00–85.00 |
Linoleic (C 18:2) | 6.07 ± 0.19 | 5.86 ± 0.05 | 5.91 ± 0.02 a | 5.77 ± 0.04 b | 5.71 ± 0.04 | 5.69 ± 0.05 | 2.50–21.00 |
Linolenic (C18:3) | 0.73 ± 0.01 a | 0.70 ± 0.01 b | 0.69 ± 0.01 a | 0.65 ± 0.00 b | 0.64 ± 0.01 | 0.62 ± 0.01 | ≤1.00 |
Arachidic (C 20:0) | 0.29 ± 0.01 | 0.28 ± 0.01 | 0.31 ± 0.00 | 0.30 ± 0.01 | 0.32 ± 0.01 | 0.30 ± 0.01 | ≤0.60 |
Eicosenoic (C 20:1) | 0.30 ± 0.01 | 0.29 ± 0.01 | 0.32 ± 0.00 a | 0.31 ± 0.01 b | 0.33 ± 0.01 | 0.32 ± 0.01 | ≤0.50 |
Behenic (C 22:0) | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.09 ± 0.00 a | 0.08 ± 0.00 b | 0.10 ± 0.00 | 0.09 ± 0.00 | ≤0.20 |
Erucic (C 22:1) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
Lignoceric (C 24:0) | 0.04 ± 0.00 a | 0.03 ± 0.00 b | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.01 | 0.05 ± 0.00 | ≤0.20 |
∑SFA | 17.05 ± 0.18 | 17.10 ± 0.21 | 17.05 ± 0.18 | 17.10 ± 0.21 | 16.18 ± 0.13 | 16.21 ± 0.03 | |
∑MUFA | 76.15 ± 0.16 | 76.35 ± 0.19 | 76.15 ± 0.16 | 76.35 ± 0.19 | 77.49 ± 0.17 | 77.48 ± 0.05 | |
∑PUFA | 6.80 ± 0.20 | 6.56 ± 0.04 | 6.80 ± 0.20 | 6.56 ± 0.04 | 6.34 ± 0.04 | 6.31 ± 0.05 | |
C18:1/C18:2 ratio | 12.24 ± 0.39 | 12.71 ± 0.11 | 12.70 ± 0.04 b | 13.01 ± 0.07 a | 13.28 ± 0.11 | 13.30 ± 0.10 |
Phenolic Compound (mg/kg) 1 | L-0-cont | L-0-L | L-6-cont | L-6-L | L-12-cont | L-12-L |
---|---|---|---|---|---|---|
Simple phenols | ||||||
Tyrosol | 3.37 ± 0.01 b | 5.00 ± 0.16 a | 5.28 ± 0.01 b | 7.28 ± 0.04 a | 7.32 ± 0.12 b | 8.86 ± 0.13 a |
Hydroxytyrosol | 2.38 ± 0.13 b | 4.44 ± 0.12 a | 5.77 ± 0.18 b | 7.88 ± 0.20 a | 8.33 ± 0.14 b | 12.60 ± 0.63 a |
Hydroxytyrosol acetate S | 0.03 ± 0.01 b | 0.06 ± 0.01 a | 0.06 ± 0.01 b | 0.09 ± 0.01 a | 0.08 ± 0.01 b | 0.13 ± 0.02 a |
Vanillin | 0.42 ± 0.01 | 0.41 ± 0.04 | 0.40 ± 0.02 | 0.38 ± 0.02 | 0.40 ± 0.02 | 0.39 ± 0.01 |
Total simple phenols | 6.20 ± 0.13 b | 9.91 ± 0.26 a | 11.50 ± 0.17 b | 15.63 ± 0.18 a | 16.13 ± 0.07 b | 21.98 ± 0.78 a |
Secoiridoids | ||||||
Elenoic acid glucoside (isomer) S | 0.81 ± 0.01 b | 1.02 ± 0.03 a | 1.05 ± 0.07 b | 1.24 ± 0.05 a | 1.28 ± 0.07 b | 1.55 ± 0.13 a |
Oleacein (3,4-DHPEA-EDA) S | 303.34 ± 13.49 b | 436.78 ± 4.81 a | 258.35 ± 6.63 b | 315.13 ± 16.74 a | 237.97 ± 17.78 b | 287.23 ± 9.98 a |
Oleuropein aglycone (isomer I) S | 9.66 ± 0.15 a | 9.17 ± 0.36 a | 1.25 ± 0.06 | 1.14 ± 0.07 | 1.11 ± 0.07 | 1.12 ± 0.09 |
Oleochantal (p-HPEA-EDA) S | 176.28 ± 7.10 b | 190.58 ± 5.02 a | 163.60 ± 9.67 | 152.70 ± 7.58 | 165.34 ± 5.03 | 172.58 ± 2.22 |
Oleuropein + ligstroside aglycones (isomers I i II) S | 11.45 ± 0.31 b | 12.85 ± 0.46 a | 4.47 ± 0.23 b | 10.21 ± 0.21 a | 9.05 ± 0.20 b | 9.62 ± 0.22 a |
Oleuropein aglycone (isomer II) S | 9.91 ± 0.33 a | 8.43 ± 0.43 b | 8.73 ± 0.48 | 8.40 ± 0.63 | 8.33 ± 0.09 b | 9.15 ± 0.16 a |
Ligstroside aglycone (isomer II) S | 7.04 ± 0.43 b | 12.88 ± 0.18 a | 7.76 ± 0.19 b | 12.37 ± 0.25 a | 6.53 ± 0.29 b | 13.04 ± 0.45 a |
Oleuropein aglycone (isomer III) S | 2.50 ± 0.25 | 2.60 ± 0.46 | 2.60 ± 0.40 | 2.36 ± 0.13 | 3.84 ± 0.16 | 3.73 ± 0.27 |
Total secoiridoids | 521.10 ± 15.88 b | 674.48 ± 8.75 a | 447.91 ± 9.24 b | 503.75 ± 17.93 a | 433.71 ± 21.29 b | 498.33 ± 12.73 a |
Flavonoids | ||||||
Luteolin | 1.39 ± 0.06 b | 1.81 ± 0.16 a | 1.56 ± 0.06 b | 2.07 ± 0.10 a | 1.35 ± 0.32 b | 2.44 ± 0.22 a |
Apigenin | 0.28 ± 0.03 b | 0.44 ± 0.00 a | 0.34 ± 0.02 b | 0.57 ± 0.01 a | 0.33 ± 0.05 b | 0.77 ± 0.03 a |
Total flavonoids | 1.67 ± 0.09 b | 2.25 ± 0.16 a | 1.91 ± 0.07 b | 2.64 ± 0.12 a | 1.69 ± 0.34 b | 3.22 ± 0.25 a |
Lignans | ||||||
Pinoresinol | 5.85 ± 0.30 b | 8.26 ± 0.29 a | 6.27 ± 0.57 b | 7.68 ± 0.29 a | 6.15 ± 0.24 b | 7.09 ± 0.03 a |
Acetoxypinoresinol S | 12.94 ± 0.30 b | 14.94 ± 0.14 a | 16.85 ± 0.67 | 17.58 ± 0.95 | 16.94 ± 0.29 b | 19.60 ± 0.32 a |
Total lignans | 18.79 ± 0.41 b | 23.20 ± 0.42 a | 23.13 ± 1.15 b | 25.27 ± 0.67 a | 23.09 ± 0.24 b | 26.69 ± 0.31 a |
Phenolic acids | ||||||
Vanillic acid | 0.27 ± 0.01 | 0.29 ± 0.02 | 0.29 ± 0.02 | 0.30 ± 0.01 | 0.30 ± 0.01 | 0.31 ± 0.02 |
p-coumaric acids | 0.41 ± 0.01 | 0.40 ± 0.01 | 0.50 ± 0.02 | 0.45 ± 0.03 | 0.52 ± 0.03 | 0.50 ± 0.03 |
Total phenolic acids | 0.68 ± 0.03 | 0.69 ± 0.02 | 0.79 ± 0.04 | 0.75 ± 0.03 | 0.84 ± 0.04 | 0.82 ± 0.05 |
Total phenolic content | 548.43 ± 15.71 b | 710.53 ± 8.33 a | 485.23 ± 10.46 b | 548.03 ± 18.30 a | 475.17 ± 21.23 b | 544.63 ± 13.90 a |
Volatile Compound (mg/kg) 1 | L-0-cont | L-0-L | L-6-cont | L-6-L | L-12-cont | L-12-L |
---|---|---|---|---|---|---|
3-Pentanone | 0.124 ± 0.006 b | 0.145 ± 0.006 a | 0.114 ± 0.009 b | 0.134 ± 0.001 a | 0.107 ± 0.006 | 0.101 ± 0.006 |
1-Penten-3-one | 1.929 ± 0.016 b | 2.160 ± 0.058 a | 0.983 ± 0.084 b | 1.145 ± 0.055 a | 0.629 ± 0.010 a | 0.569 ± 0.025 b |
(E)-2-Penten-1-ol | 0.860 ± 0.068 | 0.956 ± 0.040 | 0.689 ± 0.033 b | 0.853 ± 0.031 a | 0.640 ± 0.047 | 0.595 ± 0.025 |
(Z)-2-Pentenal | 0.004 ± 0.003 | 0.000 ± 0.000 | n.d. | n.d. | 0.043 ± 0.013 | 0.037 ± 0.014 |
(E)-2-Pentenal | 0.111 ± 0.008 | 0.109 ± 0.003 | 0.068 ± 0.003 | 0.070 ± 0.002 | 0.054 ± 0.005 | 0.047 ± 0.002 |
Hexanal | 0.440 ± 0.027 b | 0.510 ± 0.021 a | 0.423 ± 0.045 b | 0.538 ± 0.041 a | 0.522 ± 0.017 | 0.546 ± 0.018 |
(E)-2-Hexenal | 35.139 ± 1.105 a | 31.000 ± 1.063 b | 25.700 ± 1.163 | 23.373 ± 1.559 | 21.820 ± 0.690 a | 15.498 ± 0.961 b |
(Z)-2-Hexenal * | 0.326 ± 0.013 a | 0.258 ± 0.010 b | 0.159 ± 0.002 a | 0.138 ± 0.007 b | 0.110 ± 0.003 a | 0.083 ± 0.003 b |
(E)-3-Hexenal * | 0.134 ± 0.007 a | 0.109 ± 0.005 b | 0.058 ± 0.005 a | 0.047 ± 0.004 b | 0.037 ± 0.002 a | 0.023 ± 0.002 b |
(Z)-3-Hexenal * | 0.094 ± 0.009 a | 0.067 ± 0.006 b | 0.047 ± 0.005 a | 0.037 ± 0.004 b | n.d. | n.d. |
1-Hexanol | 0.380 ± 0.010 a | 0.294 ± 0.014 b | 0.313 ± 0.020 a | 0.255 ± 0.016 b | 0.264 ± 0.005 a | 0.173 ± 0.013 b |
(E)-3-Hexen-1-ol | 0.014 ± 0.003 | 0.011 ± 0.001 | 0.010 ± 0.001 | 0.009 ± 0.001 | n.d. | n.d. |
(Z)-3-Hexen-1-ol | 0.546 ± 0.049 a | 0.347 ± 0.015 b | 0.447 ± 0.054 a | 0.287 ± 0.024 b | 0.390 ± 0.039 a | 0.204 ± 0.014 b |
(E)-2-Hexen-1-ol | 0.733 ± 0.037 | 1.186 ± 0.289 | 0.869 ± 0.027 | 1.175 ± 0.326 | 0.796 ± 0.043 b | 0.978 ± 0.077 a |
(Z)-2-Hexen-1-ol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
3-Methylbutanal | 0.057 ± 0.004 b | 0.090 ± 0.012 a | 0.038 ± 0.002 b | 0.066 ± 0.008 a | 0.038 ± 0.002 b | 0.051 ± 0.003 a |
(Z)-2-Penten-1-ol + (Z)-3-Hexenyl-acetat | 1.859 ± 0.032 b | 2.012 ± 0.052 a | 1.329 ± 0.024 b | 1.500 ± 0.061 a | 1.181 ± 0.048 a | 1.000 ± 0.077 b |
Acetic acid * | 0.007 ± 0.002 | 0.008 ± 0.005 | 0.023 ± 0.001 | 0.029 ± 0.006 | 0.049 ± 0.004 b | 0.118 ± 0.004 a |
Total ketones | 2.053 ± 0.017 b | 2.305 ± 0.058 a | 1.097 ± 0.080 b | 1.279 ± 0.055 a | 0.736 ± 0.004 a | 0.671 ± 0.019 b |
Total aldehydes | 35.690 ± 1.137 a | 31.620 ± 1.050 b | 26.191 ± 1.209 | 23.981 ± 1.521 | 22.396 ± 0.678 a | 16.090 ± 0.951 b |
Total alcoholes | 3.532 ± 0.046 | 3.850 ± 0.293 | 2.968 ± 0.108 | 3.225 ± 0.331 | 2.631 ± 0.067 a | 2.354 ± 0.042 b |
Total C5 volatiles | 4.772 ± 0.108 b | 5.273 ± 0.138 a | 3.115 ± 0.085 b | 3.632 ± 0.097 a | 2.557 ± 0.080 a | 2.266 ± 0.075 b |
Total C6 volatiles | 37.252 ± 1.145 a | 33.349 ± 0.788 b | 27.762 ± 1.291 | 25.637 ± 1.237 | 23.792 ± 0.756 a | 17.399 ± 0.899 b |
Total volatiles | 41.275 ± 1.195 a | 37.775 ± 0.799 b | 30.877 ± 1.256 | 29.269 ± 1.243 | 26.348 ± 0.685 a | 19.664 ± 0.948 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoselić, A.; Gallina Tosci, T.; Klisović, D.; Tura, M.; Brkić Bubola, K. Compositional Changes during Storage of Industrially Produced Olive Oils Co-Milled with Olive Leaves. Foods 2024, 13, 73. https://doi.org/10.3390/foods13010073
Novoselić A, Gallina Tosci T, Klisović D, Tura M, Brkić Bubola K. Compositional Changes during Storage of Industrially Produced Olive Oils Co-Milled with Olive Leaves. Foods. 2024; 13(1):73. https://doi.org/10.3390/foods13010073
Chicago/Turabian StyleNovoselić, Anja, Tullia Gallina Tosci, Dora Klisović, Matilde Tura, and Karolina Brkić Bubola. 2024. "Compositional Changes during Storage of Industrially Produced Olive Oils Co-Milled with Olive Leaves" Foods 13, no. 1: 73. https://doi.org/10.3390/foods13010073
APA StyleNovoselić, A., Gallina Tosci, T., Klisović, D., Tura, M., & Brkić Bubola, K. (2024). Compositional Changes during Storage of Industrially Produced Olive Oils Co-Milled with Olive Leaves. Foods, 13(1), 73. https://doi.org/10.3390/foods13010073