Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits—Red, Yellow, Green, and White—Obtained through Ultrasound-Assisted Green Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Extraction and Yield of Peach Palm Lipid Extracts
2.4. Fatty Acid Profile Analysis
2.5. Functional Quality of Lipid Extracts
2.6. Quality Parameters
- where A = mL (volume) of standard alkali solution in titration.
- B = mL (volume) of standard alkali solution in titration of the blank.
- M = molarity of the standard alkali solution.
- W = g of the sample (mass).
- where S = mL (volume) of standard alkali solution in titration.
- B = mL (volume) of standard alkali solution in titration of the blank.
- N = normality of the sodium thiosulfate solution.
- W = g of the sample (mass).
2.7. Color Measurements
2.8. Determination of Total Carotenoids
2.9. Thermogravimetric Analysis
2.10. Infrared Spectroscopy
2.11. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Yield of Peach Palm Lipid Extracts
3.2. Fatty Acid Profile Analysis
3.3. Functional Quality of Lipid Fractions and the Content of Total Carotenoids
3.4. Lipid Extract-Quality Parameter
3.5. Color Measurements
3.6. Thermogravimetric and Differential Analyses (TG-DTA)
3.7. Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- dos Santos, O.V.; Soares, S.D.; Dias, P.C.S.; de Paula de Almeida Duarte, S.; dos Santos, M.P.L.; das Chagas Alves do Nascimento, F. Chromatographic Profile and Bioactive Compounds Found in the Composition of Pupunha Oil (Bactris gasipaes Kunth): Implications for Human Health. Rev. Nutr. 2020, 33, e190146. [Google Scholar] [CrossRef]
- Pires, M.B.; Amante, E.R.; Lucia de Oliveira Petkowicz, C.; Esmerino, E.A.; Manoel da Cruz Rodrigues, A.; Meller da Silva, L.H. Impact of Extraction Methods and Genotypes on the Properties of Starch from Peach Palm (Bactris gasipaes Kunth) Fruits. LWT 2021, 150, 111983. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Ibañez, E.; Block, J.M. Emerging Lipids from Arecaceae Palm Fruits in Brazil. Molecules 2022, 27, 4188. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.; Mamede, R.; Rufino, M.; de Brito, E.; Alves, R. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants 2015, 4, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.J.B.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Green Emerging Extraction Technologies to Obtain High-Quality Vegetable Oils from Nuts: A Review. Innov. Food Sci. Emerg. Technol. 2022, 76, 102931. [Google Scholar] [CrossRef]
- Matos, K.A.N.; Praia Lima, D.; Pereira Barbosa, A.P.; Zerlotti Mercadante, A.; Campos Chisté, R. Peels of Tucumã (Astrocaryum Vulgare) and Peach Palm (Bactris gasipaes) Are by-Products Classified as Very High Carotenoid Sources. Food Chem. 2019, 272, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Felisberto, M.H.F.; Souza Costa, M.; Villas Boas, F.; Lopes Leivas, C.; Maria Landi Franco, C.; Michielon de Souza, S.; Pedrosa Silva Clerici, M.T.; Mach Côrtes Cordeiro, L. Characterization and Technological Properties of Peach Palm (Bactris gasipaes Var. Gasipaes) Fruit Starch. Food Res. Int. 2020, 136, 109569. [Google Scholar] [CrossRef] [PubMed]
- da Costa, R.D.S.; Rodrigues, A.M.d.C.; da Silva, L.H.M. The Fruit of Peach Palm (Bactris gasipaes) and Its Technological Potential: An Overview. In Food Science and Technology (Brazil); Sociedade Brasileira de Ciencia e Tecnologia de Alimentos, SBCTA: Campinas, Brazil, 2022. [Google Scholar] [CrossRef]
- dos Santos, O.V.; Soares, S.D.; Dias, P.C.S.; Alves do Nascimento, F.d.C.; Vieira da Conceição, L.R.; da Costa, R.S.; da Silva Pena, R. White Peach Palm (Pupunha) a New Bactris gasipaes Kunt Variety from the Amazon: Nutritional Composition, Bioactive Lipid Profile, Thermogravimetric and Morphological Characteristics. J. Food Compos. Anal. 2022, 112, 104684. [Google Scholar] [CrossRef]
- de Cássia Spacki, K.; Corrêa, R.C.G.; Uber, T.M.; Barros, L.; Ferreira, I.C.F.R.; Peralta, R.A.; de Fátima Peralta Muniz Moreira, R.; Helm, C.V.; de Lima, E.A.; Bracht, A.; et al. Full Exploitation of Peach Palm (Bactris gasipaes Kunth): State of the Art and Perspectives. Plants 2022, 11, 3175. [Google Scholar] [CrossRef]
- IBGE. Peach Palm Production (Produção de Pupunha). Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/pupunha/br (accessed on 23 March 2024).
- IBGE. Heart-of-Palm Produtction (Produção de Palmito). Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/palmito-cultivo/br (accessed on 23 March 2024).
- Amorim, I.S.; Amorim, D.S.; Godoy, H.T.; Mariutti, L.R.B.; Chisté, R.C.; da Silva Pena, R.; Bogusz Junior, S.; Chim, J.F. Amazonian Palm Tree Fruits: From Nutritional Value to Diversity of New Food Products. In Heliyon; Elsevier Ltd.: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Upadhyaya, K.C. Vegetable Oil: Nutritional and Industrial Perspective. Curr. Genom. 2016, 17, 230–240. [Google Scholar] [CrossRef]
- de Souza, F.G.; de Araújo, F.F.; de Paulo Farias, D.; Zanotto, A.W.; Neri-Numa, I.A.; Pastore, G.M. Brazilian Fruits of Arecaceae Family: An Overview of Some Representatives with Promising Food, Therapeutic and Industrial Applications. Food Res. Int. 2020, 138, 109690. [Google Scholar] [CrossRef] [PubMed]
- de Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical Fluid Extraction of Vegetable Matrices: Applications, Trends and Future Perspectives of a Convincing Green Technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Kumar, S.P.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. Green Solvents and Technologies for Oil Extraction from Oilseeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Rombaut, N.; Tixier, A.-S.; Bily, A.; Chemat, F. Green Extraction Processes of Natural Products as Tools for Biorefinery. Biofuels Bioprod. Biorefining 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Hanula, M.; Wyrwisz, J.; Moczkowska, M.; Horbańczuk, O.K.; Pogorzelska-Nowicka, E.; Wierzbicka, A. Optimization of Microwave and Ultrasound Extraction Methods of Açai Berries in Terms of Highest Content of Phenolic Compounds and Antioxidant Activity. Appl. Sci. 2020, 10, 8325. [Google Scholar] [CrossRef]
- Menezes Silva, J.V.; Silva Santos, A.; Araujo Pereira, G.; Campos Chisté, R. Ultrasound-Assisted Extraction Using Ethanol Efficiently Extracted Carotenoids from Peels of Peach Palm Fruits (Bactris gasipaes Kunth) without Altering Qualitative Carotenoid Profile. Heliyon 2023, 9, e14933. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez-Santos, L.E.; Pinzón-Zarate, L.X.; González-Salcedo, L.O. Optimization of Ultrasonic-Assisted Extraction of Total Carotenoids from Peach Palm Fruit (Bactris gasipaes) by-Products with Sunflower Oil Using Response Surface Methodology. Ultrason. Sonochem. 2015, 27, 560–566. [Google Scholar] [CrossRef]
- Cornelio-Santiago, H.P.; Mazalli, M.R.; Rodrigues, C.E.C.; de Oliveira, A.L. Extraction of Brazil Nut Kernel Oil Using Green Solvents: Effects of the Process Variables in the Oil Yield and Composition. J. Food Process Eng. 2019, 42, e13271. [Google Scholar] [CrossRef]
- ISO 5509:2000; Animal and Vegetable Fats and Oils–Preparation of Methyl Esters of Fatty Acids. ISO: London, UK, 2000.
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; American Oil Chemists’ Society: Urbana, IL, USA, 2005. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Moyano, M.J.; Meléndez-Martínez, A.J.; Alba, J.; Heredia, F.J. A Comprehensive Study on the Colour of Virgin Olive Oils and Its Relationship with Their Chlorophylls and Carotenoids Indexes (II): CIELUV and CIELAB Uniform Colour Spaces. Food Res. Int. 2008, 41, 513–521. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Penci, M.C.; Calderón-Domínguez, G.; Ribotta, P.D. Chemical Composition and Physical Properties of Sorghum Flour Prepared from Different Sorghum Hybrids Grown in Argentina. Starch-Stärke 2016, 68, 1055–1064. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; International Life Sciences Institute: Washington, DC, USA, 2001. [Google Scholar]
- Torres-Vargas, O.L.; Luzardo-Ocampo, I.; Hernandez-Becerra, E.; Rodríguez-García, M.E. Physicochemical Characterization of Unripe and Ripe Chontaduro (Bactris gasipaes Kunth) Fruit Flours and Starches. Starch-Stärke 2021, 73, 2000242. [Google Scholar] [CrossRef]
- Monteiro, S.F.; Costa, E.L.N.; Ferreira, R.S.B.; Chisté, R.C. Simultaneous Extraction of Carotenoids and Phenolic Compounds from Pulps of Orange and Yellow Peach Palm Fruits (Bactris gasipaes) by Ultrasound-Assisted Extraction. Food Sci. Technol. 2022, 42, e34021. [Google Scholar] [CrossRef]
- Vasconcelos dos Santos, O.; Medeiros Pereira, G.; Lima dos Santos, M.P.; Carvalho do Rosário, R.; Galvão Martins, M.; Das Chagas Alves do Nascimento, F.; Dias Soares, S.; Vieira da Conceição, L.R. Potencial Nutricional e Funcional Do Óleo Da Pupunha Variedade Amarela (Bactris gasipaes Kunth). Sci. Plena 2022, 18, 061501–061512. [Google Scholar] [CrossRef]
- Senrayan, J.; Venkatachalam, S. Optimization of Ultrasound-Assisted Solvent Extraction (UASE) Based on Oil Yield, Antioxidant Activity and Evaluation of Fatty Acid Composition and Thermal Stability of Coriandrum sativum L. Seed Oil. Food Sci. Biotechnol. 2019, 28, 377–386. [Google Scholar] [CrossRef]
- Serra, J.L.; Rodrigues, A.M.d.C.; de Freitas, R.A.; Meirelles, A.J.d.A.; Darnet, S.H.; Silva, L.H.M.d. Alternative Sources of Oils and Fats from Amazonian Plants: Fatty Acids, Methyl Tocols, Total Carotenoids and Chemical Composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef]
- Briggs, M.; Petersen, K.; Kris-Etherton, P. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Endo, J.; Arita, M. Cardioprotective Mechanism of Omega-3 Polyunsaturated Fatty Acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.H.H.; Sena, C.; Santos, O.V.; Da Costa, W.A.; Rodrigues, A.M.C.; Carvalho Junior, R.N. Extraction of Bacaba (Oenocarpus bacaba) Oil with Supercritical CO2: Global Yield Isotherms, Fatty Acid Composition, Functional Quality, Oxidative Stability, Spectroscopic Profile and Antioxidant Activity. Grasas Aceites 2018, 69, 246. [Google Scholar] [CrossRef]
- Basto, G.J.; Carvalho, C.W.P.; Soares, A.G.; Costa, H.T.G.B.; Chávez, D.W.H.; Godoy, R.L.d.O.; Pacheco, S. Physicochemical Properties and Carotenoid Content of Extruded and Non-Extruded Corn and Peach Palm (Bactris gasipaes, Kunth). LWT 2016, 69, 312–318. [Google Scholar] [CrossRef]
- Milanez, J.T.; Neves, L.C.; da Silva, P.M.C.; Bastos, V.J.; Shahab, M.; Colombo, R.C.; Roberto, S.R. Pre-Harvest Studies of Buriti (Mauritia Flexuosa L.F.), a Brazilian Native Fruit, for the Characterization of Ideal Harvest Point and Ripening Stages. Sci. Hortic. 2016, 202, 77–82. [Google Scholar] [CrossRef]
- Brazilian Health Ministry. RDC No 269, September 22th from 2005—Approves the Technical Regulation on the Recommended Daily Intake (RDI) of Protein, Vitamins and Minerals. 22 September 2005. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0269_22_09_2005.html (accessed on 23 March 2024).
- Britton, G.; Khachik, F. Carotenoids in Food. In Carotenoids; Britton, G., Pfander, H., Liaaen-Jensen, S., Eds.; Birkhäuser Basel: Basel, Switzerland, 2009; Volume 5, pp. 45–66. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Hassanien, M.M.M.; Abdel-Razek, A.G.; Rudzińska, M.; Siger, A.; Ratusz, K.; Przybylski, R. Phytochemical Contents and Oxidative Stability of Oils from Non-Traditional Sources. Eur. J. Lipid Sci. Technol. 2014, 116, 1563–1571. [Google Scholar] [CrossRef]
- Codex Alimentarius. Codex Alimentarius. Codex Standards for Fats and Oils. Codex Stand 210-1999. In FAO/WHO Food Standards; World Health Organization: Rome, Italy, 2001. [Google Scholar]
- Ghafoor, K.; Özcan, M.M.; AL-Juhaimi, F.; Babiker, E.E.; Fadimu, G.J. Changes in Quality, Bioactive Compounds, Fatty Acids, Tocopherols, and Phenolic Compositioninoven- and Microwave-Roastedpoppy Seeds and Oil. LWT-Food Sci. Technol. 2019, 99, 490–496. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical Methods for Determining the Peroxide Value of Edible Oils: A Mini-Review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Fernández, M.G.; Hernández-Medel, M.R.; Bernal-González, M.; Durán-Domínguez-de-Bazúa, M.C.; Solís-Fuentes, J.A. Composition, Properties, Stability and Thermal Behavior of Tamarind (Tamarindus Indica) Seed Oil. Grasas Aceites 2019, 70, 333. [Google Scholar] [CrossRef]
- Janporn, S.; Ho, C.-T.; Chavasit, V.; Pan, M.-H.; Chittrakorn, S.; Ruttarattanamongkol, K.; Weerawatanakorn, M. Physicochemical Properties of Terminalia Catappa Seed Oil as a Novel Dietary Lipid Source. J. Food Drug Anal. 2015, 23, 201–209. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Sun, X.; Liu, Y. The Mathematical Prediction Model for the Oxidative Stability of Vegetable Oils by the Main Fatty Acids Composition and Thermogravimetric Analysis. LWT-Food Sci. Technol. 2018, 96, 51–57. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Ramis-Ramos, G.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Authentication of Extra Virgin Olive Oils by Fourier-Transform Infrared Spectroscopy. Food Chem. 2010, 118, 78–83. [Google Scholar] [CrossRef]
- Araújo, A.P.C.; Do Monte, A.F.G.; Batista, F.R.X. Evaluation of the Temperature Effect on Vegetable Oils by Chemical Analysis and Ultraviolet–Visible Spectroscopy. Biosci. J. 2018, 34, 28–36. [Google Scholar] [CrossRef]
- Rohman, A.; Kuwat, T.; Retno, S.; Sismindari; Yuny, E.; Tridjoko, W. Fourier Transform Infrared Spectroscopy Applied for Rapid Analysis of Lard in Palm Oil. Int. Food Res. J. 2012, 19, 1161–1165. [Google Scholar]
- Hernández-Martínez, M.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Rapid Characterization and Identification of Fatty Acids in Margarines Using Horizontal Attenuate Total Reflectance Fourier Transform Infrared Spectroscopy (HATR-FTIR). Eur. Food Res. Technol. 2010, 231, 321–329. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Extra Virgin Olive Oil Adulterated with Palm Oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Kachel, M.; Matwijczuk, A.; Przywara, A.; Kraszkiewicz, A.; Koszel, M. Profile of Fatty Acids and Spectroscopic Characteristics of Selected Vegetable Oils Extracted by Cold Maceration. Agric. Eng. 2018, 22, 61–71. [Google Scholar] [CrossRef]
Lipid Extracts from Four Colours of Peach Palm Fruits | ||||
---|---|---|---|---|
Yield of Lipids (%) | Red | Yellow | Green | White |
8.85 ± 0.95 | 7.35 ± 0.83 | 3.35 ± 0.75 | 2.15 ± 0.17 |
Lipid Extracts from Four Colours of Peach Palm Fruits | ||||
---|---|---|---|---|
Fatty Acid Profile (%) | Red | Yellow | Green | White |
Saturated Fatty Acids—SFAs | ||||
Lauric acid (12:0) | 0.01 ± 0.00 a | 0.02 ± 0.00 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Myristic acid (14:0) | 0.08 ± 0.00 a | 0.15 ± 0.00 b | 0.08 ± 0.00 a | 0.10 ± 0.00 b |
Palmitic acid (16:0) | 23.77 ± 0.15 a | 28.96 ± 0.23 b | 33.86 ± 0.34 c | 42.62 ± 0.43 d |
Stearic acid (18:0) | Nd | 0.70 ± 0.02 a | Nd | 1.87 ± 0.23 b |
Arachidic acid (20:0) | 0.14 ± 0.02 a | 0.10 ± 0.00 a | 0.12 ± 0.03 a | 0.19 ± 0.00 a |
Monounsaturated Fatty Acids—MUFAs | ||||
Palmitoleic acid (16:1) | 9.89 ± 0.34 a | 13.23 ± 0.12 b | 3.98 ± 0.91 c | 4.99 ± 0.03 c |
Oleic acid (18:1n-9) | 60.20 ± 0.50 a | 44.85 ± 0.41 b | 57.62 ± 0.14 c | 40.73 ± 0.54 d |
Polyunsaturated Fatty Acids—PUFAs | ||||
Linoleic acid (18:2n-6) | 4.04 ± 0.61 a | 8.05 ± 0.91 b | 2.03 ± 0.14 c | 6.95 ± 0.17 d |
Alpha-linolenic acid (18:3n-3) | 1.48 ± 0.24 a | 2.50 ± 0.07 b | 0.54 ± 0.23 c | 2.14 ± 0.34 b |
∑ SFAs | 24.012 | 29.946 | 34.086 | 44.808 |
∑ MUFAs | 70.097 | 58.086 | 61.60 | 45.730 |
∑ PUFAs | 5.521 | 10.556 | 2.578 | 9.097 |
PUFAs/SFAs | 0.230 | 0.352 | 0.075 | 0.203 |
Lipid Extracts from Four Colours of Peach Palm Fruits | ||||
---|---|---|---|---|
Nutritional-Quality Indices | Red | Yellow | Green | White |
AI | 0.35 | 0.47 | 0.53 | 0.78 |
TI | 0.52 | 0.72 | 0.92 | 1.34 |
H/H | 2.75 | 1.90 | 1.77 | 1.16 |
Total carotenoids (μg of β-caroten 100 g−1 of lipid extract) | 748 ± 12.75 | 247 ± 8.63 | 207 ± 7.27 | 32 ± 3.33 |
Lipid Extracts from Four Colors of Peach Palm Fruits | ||||
---|---|---|---|---|
Parameters | Red | Yellow | Green | White |
Acidity (mg KOH g−1) | 0.85 ± 0.55 a | 0.78 ± 0.15 a | 0.82 ± 0.25 a | 1.28 ± 0.35 b |
Peroxide (mEq kg−1) | 1.75 ± 0.35 a | 1.87 ± 0.23 a | 1.85 ± 0.65 a | 2.59 ± 040 b |
Lipid Extracts from Four Colours of Peach Palm Fruits | ||||
---|---|---|---|---|
Parameters | Red | Yellow | Green | White |
L* | 27.1 b | 28.36 b | 29 ab | 38.8 a |
a* | 11.4 a | 6.3 b | 5.4 c | 2.3 d |
b* | 9.7 b | 11.43 a | 10.16 ab | 4.2 c |
ΔE | 71.71 | 70.07 | 69.20 | 58.78 |
Croma | 14.97 | 13.05 | 11.50 | 4.79 |
Hue angle (hab) | 40.39 | 61.14 | 62.01 | 61.29 |
Whiteness index (WI) | 25.57 | 27.18 | 28.08 | 38.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.P.L.d.; Santos, O.V.d.; Conceição, L.R.V.d.; Teixeira-Costa, B.E.; Lourenço, L.d.F.H.; Sousa, C.L.L.d. Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits—Red, Yellow, Green, and White—Obtained through Ultrasound-Assisted Green Extraction. Foods 2024, 13, 1475. https://doi.org/10.3390/foods13101475
Santos MPLd, Santos OVd, Conceição LRVd, Teixeira-Costa BE, Lourenço LdFH, Sousa CLLd. Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits—Red, Yellow, Green, and White—Obtained through Ultrasound-Assisted Green Extraction. Foods. 2024; 13(10):1475. https://doi.org/10.3390/foods13101475
Chicago/Turabian StyleSantos, Mayara Priscila Lima dos, Orquídea Vasconcelos dos Santos, Leyvison Rafael Vieira da Conceição, Barbara Elisabeth Teixeira-Costa, Lúcia de Fátima Henriques Lourenço, and Consuelo Lucia Lima de Sousa. 2024. "Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits—Red, Yellow, Green, and White—Obtained through Ultrasound-Assisted Green Extraction" Foods 13, no. 10: 1475. https://doi.org/10.3390/foods13101475
APA StyleSantos, M. P. L. d., Santos, O. V. d., Conceição, L. R. V. d., Teixeira-Costa, B. E., Lourenço, L. d. F. H., & Sousa, C. L. L. d. (2024). Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits—Red, Yellow, Green, and White—Obtained through Ultrasound-Assisted Green Extraction. Foods, 13(10), 1475. https://doi.org/10.3390/foods13101475