Acerola Cherry and Rosemary Extracts Improve Color and Delay Lipid Oxidation in Previously Frozen Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Product Preparation
2.2. Retail Fluid Loss
2.3. Retail Color
2.4. Metmyoglobin-Reducing Activity
2.5. Oxygen Consumption
2.6. Lipid Oxidation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Retail Fluid Loss
3.2. Retail Objective Color
3.3. Retail Subjective Color
3.4. Metmyoglobin-Reducing Activity
3.5. Oxygen Consumption
3.6. Lipid Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, B. 2022 Export Highlights. Available online: https://usmef-prod-clients-avibeweb.s3.amazonaws.com/files/A056165A-FF63-771B-34FC-A8914D6DA79D.pdf?AWSAccessKeyId=AKIATWRGK2SSWSHL6HQR&Expires=1690586200&Signature=oA8jbniTV%2BJYWJcJB5Ir0ak020U%3D (accessed on 28 July 2023).
- Gill, C.O. Extending the storage life of raw chilled meats. Meat Sci. 1996, 43, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Ramanathan, R. Effects of postmortem storage time on color and mitochondria in beef. Meat Sci. 2014, 98, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Colle, M.J.; Richard, R.P.; Killinger, K.M.; Bohlscheid, J.C.; Gray, A.R.; Loucks, W.I.; Day, R.N.; Cochran, A.S.; Nasados, J.A.; Doumit, M.E. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the gluteus medius and longissimus lumborum. Meat Sci. 2015, 110, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Colle, M.J.; Richard, R.P.; Killinger, K.M.; Bohlscheid, J.C.; Gray, A.R.; Loucks, W.I.; Day, R.N.; Cochran, A.S.; Nasados, J.A.; Doumit, M.E. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus. Meat Sci. 2016, 119, 110–117. [Google Scholar] [CrossRef] [PubMed]
- English, A.R.; Mafi, G.G.; VanOverbeke, D.L.; Ramanathan, R. Effects of extended aging and modified atmospheric packaging on beef top loin steak color. J. Anim. Sci. 2016, 94, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- U.S. Meat Export Federation. 2014. U.S. Beef Cuts for International Cuisine. Available online: https://usmef-prod-clients-avibeweb.s3.amazonaws.com/files/E8FA6F58-EE08-4C9D-BC42-F55FF2CC72F9.pdf?AWSAccessKeyId=AKIATWRGK2SSWSHL6HQR&Expires=1710885707&Signature=%2FQK9Gn6OnWjWRi7ytopMmuwBMJs%3D (accessed on 19 March 2024).
- Faustman, C.; Cassens, R.G.; Schaefer, D.M.; Buege, D.R.; Williams, S.N.; Scheller, K.K. Improvement of pigment and lipid stability in Holstein steer beef by dietary supplementation with vitamin E. J. Food Sci. 1989, 54, 858–862. [Google Scholar] [CrossRef]
- Ismail, H.A.; Lee, E.J.; Ko, K.Y.; Paik, H.D.; Ahn, D.U. Effect of antioxidant application methods on the color, lipid oxidation, and volatiles of irradiated ground beef. J. Food Sci. 2009, 74, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Min, S.C.; Shin, H.-J.; Lee, Y.-J.; Cho, A.R.; Kim, S.Y.; Han, J. Evaluation of the antioxidant activities and nutritional properties of ten edible plant extracts and their application to fresh ground beef. Meat Sci. 2013, 93, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Beriain, M.J.; Mendizabal, J.A.; Realini, C.; Purroy, A. Shelf life of ground beef enriched with omega-3 and/or conjugated linoleic acid and use of grape seed extract to inhibit lipid oxidation. Food Sci. Nutr. 2016, 4, 67–79. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Meng, Q.; He, C.; Ren, L. Effect of mulberry leaf extracts on color, lipid oxidation, antioxidant enzyme activities and oxidative breakdown products of raw ground beef during refrigerated storage. J. Food Qual. 2016, 39, 159–170. [Google Scholar] [CrossRef]
- Colle, M.J.; Richard, R.P.; Colle, M.C.; Loucks, W.I.; Murdoch, G.K.; Bass, P.D.; Williams, C.J.; Doumit, M.E. Retail display properties and consumer perception of extended aged beef topically treated with ascorbic acid and rosemary extract. Meat Muscle Biol. 2019, 3, 42–50. [Google Scholar] [CrossRef]
- Van Buren, J.B.; Buseman, B.J.; Weber, T.M.; Nasados, J.A.; Lancaster, J.M.; Smart, J.H.; Bass, P.D.; Colle, M.J. Extending the shelf life of beef steaks using acerola cherry powder and rosemary extract. Meat Muscle Biol. 2022, 6, 13217. [Google Scholar] [CrossRef]
- Van Buren, J.B.; Buseman, B.J.; Weber, T.M.; Nasados, J.A.; Lancaster, J.M.; Smart, J.H.; Church, J.A.; Price, W.J.; Bass, P.D.; Colle, M.J. Topical application of acerola cherry powder in combination with rosemary extract extends the shelf life of beef chuck roll and bone-in short rib steaks. Meat Muscle Biol. 2023, 7, 15705. [Google Scholar] [CrossRef]
- Qian, S.; Li, X.; Wang, H.; Sun, Z.; Zhang, C.; Guan, W.; Blecker, C. Effect of sub-freezing storage (−6, −9 and −12 °C) on quality and shelf life of beef. Int. J. Food Sci. Technol. 2018, 53, 2129–2140. [Google Scholar] [CrossRef]
- Pietrasik, Z.; Janz, J.A.M. Influence of freezing and thawing on the hydration characteristics, quality, and consumer acceptance of whole muscle beef injected with solutions of salt and phosphate. Meat Sci. 2009, 81, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Henriott, M.L.; Herrera, N.J.; Ribeiro, F.A.; Hart, K.B.; Bland, N.A.; Eskridge, K.; Calkins, C.R. Impact of myoglobin oxygenation state prior to frozen storage on color stability of thawed beef steaks through retail display. Meat Sci. 2020, 170, 108232. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Aroeira, C.N.; Torres Filho, R.A.; Fontes, P.R.; Gomide, L.A.M. Freezing, thawing and aging effects on beef tenderness from Bos indicus and Bos taurus cattle. Meat Sci. 2016, 116, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Colle, M.J.; Nasados, J.A.; Rogers, J.M.; Kerby, D.M.; Booker, M.M.; Van Buren, J.B.; Richard, R.P.; Doumit, M.E. Strategies to improve beef tenderness by activating calpain-2 earlier postmortem. Meat Sci. 2018, 135, 36–41. [Google Scholar] [CrossRef]
- Johnson, B.Y. Chilled vacuum-packed beef. CSIRO Food Res. 1974, 34, 14–20. [Google Scholar]
- Buettner, G.R.; Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 1996, 145, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; van de Ven, R.J.; Mao, Y.; Coombs, C.E.O.; Hopkins, D.L. Using instrumental (CIE and reflectance) measures to predict consumers’ acceptance of beef colour. Meat Sci. 2017, 127, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.K.; Granner, D.K.; Rodwell, V.W. Harper’s Illustrated Biochemistry; McGraw Hill: New York, NY, USA, 2006. [Google Scholar]
- McKenna, D.R.; Mies, P.D.; Baird, B.E.; Pfeiffer, K.D.; Ellebracht, J.W.; Savell, J.W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Lanari, M.C.; Schaefer, D.M.; Scheller, K.K. Dietary vitamin E supplementation and discoloration of pork bone and muscle following modified atmosphere packaging. Meat Sci. 1995, 41, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Hunt, M.C.; Hachmeister, K.A.; Kropf, D.H.; Johnson, D.E. Ascorbic acid minimizes vertebrae discoloration. Meat Sci. 2004, 68, 339–345. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.P.; Hunt, M.C.; Nair, M.N.; Rentfrow, G. Improving beef color stability: Practical strategies and underlying mechanisms. Meat Sci. 2014, 98, 490–504. [Google Scholar] [CrossRef]
- Ramanathan, R.; Lambert, L.H.; Nair, M.N.; Morgan, B.; Feuz, R.; Mafi, G.; Pfeiffer, M. Economic loss, amount of beef discarded, natural resources wastage, and environmental impact due to beef discoloration. Meat Muscle Biol. 2022, 6, 13218. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C.; Hachmeister, K.A.; Kropf, D.H.; Johnson, D.E. Exclusion of oxygen from modified atmosphere packages limits beef rib and lumbar vertebrae marrow discoloration during display and storage. Meat Sci. 2005, 69, 493–500. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.; Geesink, G.H.; Ilian, M.A.; Morton, J.D.; Bickerstaffe, R. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chem. 2003, 81, 175–187. [Google Scholar] [CrossRef]
- Sammel, L.M.; Hunt, M.C.; Kropf, D.H.; Hachmeister, K.A.; Johnson, D.E. Comparison of assays for metmyoglobin reducing ability in beef inside and outside semimembranosus muscle. J. Food Sci. 2002, 67, 978–984. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L., Jr. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Greene, B.E.; Cumuze, T.H. Relationship between TBA numbers and inexperienced panelists’ assessment of oxidized flavor in cooked beef. J. Food Sci. 1981, 47, 52–54. [Google Scholar] [CrossRef]
Trait | Topical Antioxidant Treatment 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | A | R | M1 | M2 | M3 | M4 | p-Value | SEM | |
Retail fluid loss, % | 1.07 | 1.12 | 1.19 | 1.06 | 1.14 | 1.24 | 1.06 | 0.823 | 0.10 |
L* | 33.7 | 34.0 | 35.4 | 38.8 | 35.0 | 39.8 | 39.5 | 0.375 | 2.6 |
b* | 15.3 | 13.4 | 14.2 | 13.9 | 14.2 | 14.3 | 14.5 | 0.676 | 0.7 |
Oxygenated lean color 2 | 4.2 | 4.4 | 4.1 | 4.0 | 4.0 | 4.0 | 4.0 | 0.676 | 0.2 |
Surface discoloration 3 | 2.6 | 2.7 | 2.4 | 2.3 | 2.3 | 2.4 | 2.4 | 0.462 | 0.1 |
Metmyoglobin-reducing activity, % | 8.07 | 8.54 | 6.85 | 10.33 | 8.96 | 11.09 | 11.91 | 0.165 | 1.77 |
Oxygen consumption, % | 49.93 | 44.84 | 42.42 | 36.90 | 45.57 | 43.47 | 41.64 | 0.553 | 4.65 |
Trait | Topical Antioxidant Treatment 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | A | R | M1 | M2 | M3 | M4 | p-Value | SEM | |
Retail fluid loss, % | 1.65 | 1.77 | 1.69 | 1.74 | 1.67 | 1.61 | 1.63 | 0.142 | 0.05 |
Bone marrow L* | 41.7 | 47.5 | 41.0 | 38.4 | 43.3 | 43.5 | 40.0 | 0.243 | 2.5 |
Bone marrow b* | 9.1 b | 12.3 a | 13.4 a | 12.1 a | 12.2 a | 12.8 a | 12.8 a | 0.001 | 0.7 |
Lean L* | 37.6 | 3.3 | 40.5 | 40.2 | 40.5 | 41.8 | 40.2 | 0.105 | 1.0 |
Lean a* | 19.2 | 18.7 | 18.2 | 18.6 | 18.8 | 17.3 | 17.4 | 0.293 | 0.6 |
Lean b* | 12.7 | 13.5 | 13.7 | 13.7 | 13.6 | 13.6 | 13.3 | 0.824 | 0.5 |
Oxygenated lean color 2 | 5.5 | 5.2 | 5.2 | 5.3 | 5.2 | 5.2 | 5.4 | 0.940 | 0.2 |
Amount of browning 3 | 2.3 | 2.1 | 2.2 | 2.2 | 2.3 | 2.0 | 2.4 | 0.725 | 0.2 |
Discoloration 4 | 2.0 | 1.9 | 1.9 | 2.0 | 2.0 | 1.9 | 2.2 | 0.786 | 0.1 |
Surface discoloration 5 | 2.2 | 2.0 | 2.2 | 2.2 | 2.2 | 2.0 | 2.5 | 0.656 | 0.2 |
Color uniformity 6 | 2.0 | 1.8 | 1.9 | 1.8 | 1.8 | 1.8 | 1.9 | 0.858 | 0.1 |
Metmyoglobin-reducing activity, % | 12.53 | 14.30 | 11.92 | 11.52 | 11.89 | 12.88 | 14.05 | 0.438 | 1.09 |
Oxygen consumption, % | 54.58 a | 56.65 a | 46.00 b | 43.37 b | 40.82 b | 39.70 b | 40.15 b | 0.001 | 3.19 |
Trait | Day of Display | Topical Antioxidant Treatment 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | A | R | M1 | M2 | M3 | M4 | p-Value | SEM | ||
a* 2 | 0 | 20.0 w | 21.0 w | 20.1 w | 20.7 w | 21.0 w | 20.0 w | 20.3 w | 0.008 | 0.7 |
1 | 18.3 wx | 18.6 x | 18.5 wx | 19.1 wx | 18.4 x | 18.5 wx | 19.8 wx | |||
2 | 17.7 xy | 16.6 y | 17.1 x | 17.6 xy | 18.0 xy | 16.9 xy | 17.9 y | |||
3 | 15.9 bc,y | 15.8 c,y | 17.7 abc,x | 17.9 ab,xy | 18.0 a,xy | 16.7 abc,xy | 18.3 a,xy | |||
4 | 14.0 c,z | 11.9 d,z | 17.8 a,x | 16.2 ab,y | 16.3 ab,y | 15.2 bc,y | 16.8 ab,y | |||
Amount of browning 3 | 0 | 1.0 z | 1.1 z | 1.0 z | 1.1 z | 1.0 z | 1.0 z | 1.0 y | 0.015 | 0.2 |
1 | 1.8 y | 1.9 y | 1.6 y | 1.8 y | 1.7 y | 1.6 y | 1.8 x | |||
2 | 2.6 a,x | 2.4 ab,x | 2.2 ab,x | 2.2 ab,x | 2.3 ab,x | 2.2 ab,x | 2.1 b,x | |||
3 | 3.7 a,w | 3.7 a,w | 2.9 b,w | 2.8 b,w | 3.0 b,w | 3.1 b,w | 3.0 b,w | |||
4 | 4.5 a,v | 4.4 a,v | 3.8 bc,v | 4.0 ab,v | 3.8 bc,v | 3.5 c,v | 3.6 bc,v | |||
Discoloration 4 | 0 | 1.2 z | 1.2 z | 1.2 y | 1.2 y | 1.3 y | 1.1 y | 1.3 y | 0.001 | 0.2 |
1 | 1.9 y | 1.7 y | 1.7 x | 1.7 x | 1.7 x | 1.6 x | 1.7 x | |||
2 | 2.5 a,x | 2.2 ab,x | 2.1 ab,w | 2.0 b,x | 1.9 b,x | 1.8 b,x | 1.9 b,x | |||
3 | 3.4 a,w | 3.5 a,w | 2.9 b,v | 2.8 b,w | 2.7 b,w | 2.9 b,w | 2.8 b,w | |||
4 | 4.1 a,v | 4.1 a,v | 3.2 c,v | 3.6 bc,v | 3.7 ab,v | 3.3 c,v | 3.4 bc,v | |||
Color uniformity 5 | 0 | 1.3 z | 1.3 y | 1.4 x | 1.6 y | 1.3 y | 1.4 y | 1.4 y | 0.003 | 0.1 |
1 | 1.8 y | 1.8 x | 1.7 x | 1.9 xy | 1.9 x | 2.0 x | 1.9 x | |||
2 | 2.4 a,x | 2.0 ab,x | 2.3 a,w | 2.1 ab,x | 1.9 b,x | 2.0 ab,x | 1.9 b,x | |||
3 | 2.9 a,w | 2.9 ab,w | 2.4 c,w | 2.7 abc,w | 2.4 c,w | 2.5 bc,w | 2.6 abc,w | |||
4 | 3.6 a,v | 3.3 ab,v | 3.2 b,v | 3.2 bc,v | 3.2 bc,v | 2.9 c,v | 3.1 bc,v | |||
Lipid oxidation 6 | 0 | 0.29 z | 0.23 z | 0.15 z | 0.19 z | 0.15 z | 0.14 z | 0.17 z | 0.021 | 0.10 |
4 | 1.40 a,y | 1.08 b,y | 0.85 bc,y | 0.77 c,y | 0.68 c,y | 0.66 c,y | 0.61 c,y |
Trait | Day of Display | Topical Antioxidant Treatment 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | A | R | M1 | M2 | M3 | M4 | p-Value | SEM | ||
Bone marrow a* 2 | 0 | 16.0 bc,w | 15.7 c,w | 20.1 ab,w | 21.1 a,w | 17.6 bc,w | 17.1 bc,w | 19.2 ab,w | 0.014 | 1.1 |
1 | 10.4 c,x | 13.0 b,x | 18.0 a,w | 18.2 a,x | 16.9 a,w | 16.8 a,w | 16.3 a,x | |||
2 | 10.3 d,x | 11.7 cd,xy | 17.9 a,w | 14.4 bc,y | 12.9 bcd,x | 15.7 ab,wx | 14.8 ab,xy | |||
3 | 10.5 b,x | 9.3 b,yz | 14.3 a,x | 12.3 ab,y | 13.7 a,x | 13.7 a,x | 14.0 a,xy | |||
4 | 10.8 ab,x | 9.2 b,z | 12.4 a,x | 12.8 a,y | 13.4 a,x | 13.3 a,x | 12.5 a,y | |||
Bone marrow color 3 | 0 | 4.9 a,z | 3.6 b,z | 4.1 ab,z | 4.2 ab,z | 3.4 b,z | 3.7 b,z | 4.1 ab,z | 0.033 | 0.3 |
1 | 5.6 a,y | 4.9 ab,y | 4.8 ab,y | 5.5 a,y | 4.7 ab,y | 4.5 b,y | 5.3 ab,y | |||
2 | 6.1 ab,x | 5.5 ab,x | 5.7 ab,x | 6.3 a,x | 5.7 ab,x | 5.3 b,x | 6.2 ab,x | |||
3 | 6.4 ab,wx | 5.9 ab,wx | 6.2 ab,w | 6.7 a,wx | 6.1 ab,w | 5.8 b,w | 6.7 a,w | |||
4 | 6.7 ab,w | 6.0 b,w | 6.4 ab,w | 6.9 a,w | 6.1 ab,w | 6.0 ab,w | 6.7 ab,w | |||
Lipid oxidation 4 | 0 | 0.09 z | 0.09 z | 0.06 z | 0.10 z | 0.09 z | 0.10 z | 0.12 z | 0.028 | 0.05 |
4 | 0.33 a,y | 0.22 bc,y | 0.27 ab,y | 0.16 c,z | 0.20 bc,y | 0.17 c,z | 0.22 bc,z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Buren, J.B.; Epperson, B.; Jepsen, S.; Heimbuch, M.; Oliver, K.; Nasados, J.; Bass, P.D.; Colle, M.J. Acerola Cherry and Rosemary Extracts Improve Color and Delay Lipid Oxidation in Previously Frozen Beef. Foods 2024, 13, 1476. https://doi.org/10.3390/foods13101476
Van Buren JB, Epperson B, Jepsen S, Heimbuch M, Oliver K, Nasados J, Bass PD, Colle MJ. Acerola Cherry and Rosemary Extracts Improve Color and Delay Lipid Oxidation in Previously Frozen Beef. Foods. 2024; 13(10):1476. https://doi.org/10.3390/foods13101476
Chicago/Turabian StyleVan Buren, Jessie B., Brooklyn Epperson, Sierra Jepsen, Mikayla Heimbuch, Kayleen Oliver, James Nasados, Phillip D. Bass, and Michael J. Colle. 2024. "Acerola Cherry and Rosemary Extracts Improve Color and Delay Lipid Oxidation in Previously Frozen Beef" Foods 13, no. 10: 1476. https://doi.org/10.3390/foods13101476
APA StyleVan Buren, J. B., Epperson, B., Jepsen, S., Heimbuch, M., Oliver, K., Nasados, J., Bass, P. D., & Colle, M. J. (2024). Acerola Cherry and Rosemary Extracts Improve Color and Delay Lipid Oxidation in Previously Frozen Beef. Foods, 13(10), 1476. https://doi.org/10.3390/foods13101476