Effect of Age, Deboning Time of Carcass, and Different Cooking Conditions on the Woody Breast Myopathies in Chicken: A Meta-Analysis
Abstract
:1. Introduction
1.1. Classification Accuracy
1.2. Compression Force (CF) and Shear Force (SF)
1.3. Meullenet-Owens Razor Shear (MORS) and Blunt Meullenet-Owens Razor Shear (BMORS)
1.4. Descriptive Sensory Analysis
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Databases and Search Criteria
2.3. Effect Size Calculations
2.4. Publication Bias
3. Data Analysis
4. Results
4.1. Effect of Deboning Time
4.2. Effect on the Age of Birds
4.3. Effect of Different Storage and Cooking Conditions
4.4. Publication Bias
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heinz, G.; Hautzinger, P. Meat Processing Technology. For Small to Medium-Scale Producers. Food and Agriculture Organization United Nations Regional Office Asia Pacific. 2020. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4cfabbd3-16aa-47f8-ac6f-b54a48cb8abd/content (accessed on 5 May 2022).
- National Chicken Council. Statistics: Broiler Chicken Industry Key Facts 2022. Available online: http://www.nationalchickencouncil.org/about-the-industry/statistics/broiler-chicken-industry-key-facts/ (accessed on 5 May 2022).
- Maiorano, G. Meat defects and emergent muscle myopathies in broiler chickens: Implications for the modern poultry industry. Anim. Sci. Genet. 2017, 13, 43–51. [Google Scholar] [CrossRef]
- Petracci, M.; Bianchi, M.; Mudalal, S.; Cavani, C. Functional ingredients for poultry meat products. Trends Food Sci. Technol. 2013, 33, 27–39. [Google Scholar] [CrossRef]
- Petracci, M.; Cavani, C. Muscle growth and poultry meat quality issues. Nutrients 2012, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sihvo, H.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Che, S.; Wang, C.; Varga, C.; Barbut, S.; Susta, L. Prevalence of breast muscle myopathies (spaghetti meat, woody breast, white striping) and associated risk factors in broiler chickens from Ontario, Canada. PLoS ONE 2022, 17, e0267019. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Owens, C.M.; Coon, C.; Hargis, B.M.; Vazquez-Anon, M. Incidence of broiler breast myopathies at 2 different ages and its impact on selected raw meat quality parameters. Poult. Sci. 2017, 96, 3005–3009. [Google Scholar] [CrossRef]
- Velleman, S.G.; Clark, D.L.; Tonniges, J.R. Fibrillar collagen organization associated with broiler wooden breast fibrotic myopathy. Avian Dis. 2017, 61, 481–490. [Google Scholar] [CrossRef]
- Soglia, F.; Gao, J.; Mazzoni, M.; Puolanne, E.; Cavani, C.; Petracci, M.; Ertbjerg, P. Superficial and deep changes of histology, texture, and particle size distribution in broiler wooden breast muscle during refrigerated storage. Poult. Sci. 2017, 96, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.; Lee, Y.; Erf, G.; Meullenet, J.; McKee, S.; Owens, C. Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poult. Sci. 2012, 91, 1240–1247. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 113. [Google Scholar] [CrossRef]
- Huang, Y.; Kangas, L.J.; Rasco, B.A. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr. 2007, 47, 113–126. [Google Scholar] [CrossRef]
- Cortez, P.; Portelinha, M.; Rodrigues, S.; Cadavez, V.; Teixeira, A. Lamb meat quality assessment by support vector machines. Neural Process. Lett. 2006, 24, 41–51. [Google Scholar] [CrossRef]
- Asmara, R.A.; Rahutomo, F.; Hasanah, Q.; Rahmad, C. Chicken meat freshness identification using the histogram color feature. In Proceedings of the 2017 International Conference on Sustainable Information Engineering and Technology (SIET), Malang, Indonesia, 24–25 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 57–61. [Google Scholar] [CrossRef]
- Ning, X.; Mu-Hua, L.; Hai-Chao, Y.; Shuang-Gen, H.; Xiao, W.; Jin-Hui, Z.; Yi-Xin, S. Classification of sulfadimidine and sulfapyridine in duck meat by surface-enhanced Raman spectroscopy combined with principal component analysis and support vector machine. Anal. Lett. 2020, 53, 1513–1524. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; McClelland, J.L. PDP Research Group. Parallel Distributed Processing; IEEE: New York, NY, USA, 1988; Volume 1, pp. 354–362. [Google Scholar] [CrossRef]
- Siddique, A.; Shirzaei, S.; Smith, A.E.; Valenta, J.; Garner, L.J.; Morey, A. Acceptability of Artificial Intelligence in Poultry Processing and Classification Efficiencies of Different Classification Models in the Categorisation of Breast Fillet Myopathies. Front. Physiol. 2021, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, L.B.; Rasmussen, M.K.; Bertram, H.C.; Jensen, J.A.; Møller, H.S.; Aaslyng, M.D.; Young, J.F. Classification of wooden breast myopathy in chicken pectoralis major by a standardized method and association with conventional quality assessments. Int. J. Food Sci. Technol. 2018, 53, 1744–1752. [Google Scholar] [CrossRef]
- Sun, X.; Koltes, D.A.; Coon, C.N.; Chen, K.; Owens, C.M. Instrumental compression force and meat attribute changes in woody broiler breast fillets during short-term storage. Poult. Sci. 2018, 97, 2600–2606. [Google Scholar] [CrossRef] [PubMed]
- Mudalal, S.; Lorenzi, M.; Soglia, F.; Cavani, C.; Petracci, M. Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animal 2015, 9, 728–734. [Google Scholar] [CrossRef]
- Soglia, F.; Mudalal, S.; Babini, E.; Di Nunzio, M.; Mazzoni, M.; Sirri, F.; Petracci, M. Histology, composition, and quality traits of chicken pectoralis major muscle affected by wooden breast abnormality. Poult. Sci. 2016, 95, 651–659. [Google Scholar] [CrossRef]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between beef consumer tenderness perception and Warner–Bratzler shear force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Dar, Y.L.; Light, J.M. (Eds.) Food Texture Design and Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Cavitt, L.C.; Meullenet, J.F.; Gandhapuneni, R.K.; Youm, G.W.; Owens, C.M. Rigor development and meat quality of large and small broilers and the use of Allo-Kramer shear needle puncture and razor blade shear to measure texture. Poult. Sci. 2005, 84, 113–118. [Google Scholar] [CrossRef]
- Meullenet, J.F.; Jonville, E.; Grezes, D.; Owens, C.M. Prediction of the texture of cooked poultry pectoralis major muscles by near-infrared reflectance analysis of raw meat. J. Texture Stud. 2004, 35, 573–585. [Google Scholar] [CrossRef]
- ASTM. Manual on Descriptive Analysis Testing for Sensory Evaluation; ASTM Manual Series: MNL 13; American Society for Testing and Materials: West Conshohocken, PA, USA, 1992. [Google Scholar]
- Lee, Y.S.; Owens, C.M.; Meullenet, J.F. The Meullenet-Owens razor shear (MORS) for predicting poultry meat tenderness: Its applications and optimization. J. Texture Stud. 2008, 39, 655–672. [Google Scholar] [CrossRef]
- Yang, F.L. Use of a Blunt Version of Meullenet-Owens Razor Shear to Analyze Meat Qualities of Broilers with Woody Breast Myopathy and Reared to Various Ages. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2016. [Google Scholar]
- Tijare, V.V.; Yang, F.L.; Kuttappan, V.A.; Alvarado, C.Z.; Coon, C.N.; Owens, C.M. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poult. Sci. 2016, 95, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Zhuang, H.; Bowker, B.C.; Sanchez-Brambila, G.; Rincon, A.M. Instrumental texture characteristics of broiler pectoralis major with the wooden breast condition. Poult. Sci. 2016, 95, 2449–2454. [Google Scholar] [CrossRef] [PubMed]
- Solo, J. Meat Quality and Sensory Analysis of Broiler Breast Fillets with Woody Breast Muscle Myopathy. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2016. [Google Scholar]
- Aguirre Cando, M.E. Study of the Woody Breast and White Striping Conditions Affecting the Pectoralis Major Muscle of Broiler Chickens: Processing Perspective. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2016. [Google Scholar]
- U-Chupaj, J.; Malila, Y.; Gamonpilas, C.; Kijroongrojana, K.; Petracci, M.; Benjakul, S.; Visessanguan, W. Differences in textural properties of cooked caponized and broiler chicken breast meat. Poult. Sci. 2017, 96, 2491–2500. [Google Scholar] [CrossRef]
- Brambila, G.S.; Chatterjee, D.; Bowker, B.; Zhuang, H. Descriptive texture analyses of cooked patties made of chicken breast with the woody breast condition. Poult. Sci. 2017, 96, 3489–3494. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, M.E.; Owens, C.M.; Miller, R.K.; Alvarado, C.Z. Descriptive sensory and instrumental texture profile analysis of woody breast in marinated chicken. Poult. Sci. 2018, 97, 1456–1461. [Google Scholar] [CrossRef] [PubMed]
- Brambila, G.S.; Bowker, B.C.; Chatterjee, D.; Zhuang, H. Descriptive texture analyses of broiler breast fillets with the wooden breast condition stored at 4 °C and −20 °C. Poult. Sci. 2018, 97, 1762–1767. [Google Scholar] [CrossRef]
- Combs, L. Effect of Cooking Method on Meat Texture in Normal and Woody Broiler Breast Fillets Using Instrumental Analysis and Descriptive Sensory Analysis. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2018. [Google Scholar]
- Bowker, B.; Zhuang, H. Detection of razor shear force differences in broiler breast meat due to the woody breast condition depends on measurement technique and meat state. Poult. Sci. 2019, 98, 6170–6176. [Google Scholar] [CrossRef]
- Pang, B.; Bowker, B.; Yang, Y.; Zhang, J.; Zhuang, H. Relationships between instrumental texture measurements and subjective woody breast condition scores in raw broiler breast fillets. Poult. Sci. 2020, 99, 3292–3298. [Google Scholar] [CrossRef]
- de Almeida Mallmann, B.; Tellez-Isaias, G.; Mauromoustakos, A.; Coon, C.N.; Owens, C.M. Fillet dimensions and meat quality attributes associated with woody breast in broilers. Meat Muscle Biol. 2020, 4, 1–9. [Google Scholar]
- Morey, A.; Smith, A.E.; Garner, L.J.; Cox, M.K. Application of bioelectrical impedance analysis to detect broiler breast filets affected with woody breast myopathy. Front. Physiol. 2020, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhuang, H.; Bowker, B.; Stelzleni, A.M.; Yang, Y.; Pang, B.; Gao, Y.; Thippareddi, H. Evaluation of multi blade shear (MBS) for determining texture of raw and cooked broiler breast fillets with the woody breast myopathy. Poult. Sci. 2021, 100, 101123. [Google Scholar] [CrossRef]
- Sun, X.; Giampietro-Ganeco, A.; Mueller, A.; Maynard, C.J.; Caldas-Cueva, J.P.; Owens, C.M. Meat quality traits and Blunt Meullenet-Owens Razor Shear characteristics of broiler breast fillets affected by woody breast condition and post-cooking meat temperature. Poult. Sci. 2021, 100, 101212. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Maynard, C.J.; Caldas-Cueva, J.P.; Coon, C.N.; Owens, C.M. Using air deformation of raw fillet surfaces to identify severity of woody breast myopathy in broiler fillets. LWT 2021, 141, 110904. [Google Scholar] [CrossRef]
- Kemp, S.E.; Ng, M.; Hollowood, T.; Hort, J. Introduction to descriptive analysis. In Descriptive Analysis in Sensory Evaluation; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Morris, S.B.; DeShon, R.P. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol. Methods 2002, 7, 105. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Comparison of two methods to detect publication bias in meta-analysis. JAMA 2006, 295, 676–680. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Souza, P.A.; Kodawara, L.M.; Pelicano, E.R.; Souza, H.B.; Oba, A.; Leonel, F.R.; Norkus, E.A.; Lima, T.M. Effect of deboning time on the quality of broiler breast meat (Pectoralis major). Braz. J. Poult. Sci. 2005, 7, 123–128. [Google Scholar] [CrossRef]
- Forrest, J.C.; Aberle, E.D.; Hedrick, H.B.; Judge, M.D.; Merkel, R.A. Principles of meat processing. In Principles of Meat Science; Kendall Hunt Publishing: Dubuque, IA, USA, 1975; pp. 190–226. [Google Scholar]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.J. Analysis of Warner-Bratzler shear pattern with regard to myofibrillar and connective tissue components of tenderness. Meat Sci. 1981, 5, 247–260. [Google Scholar] [CrossRef] [PubMed]
Reference No. | Study | Deboning Time (h) | Meat Condition and Cooking Style | Analysis Method | Age of Birds (Days) |
---|---|---|---|---|---|
[28] | Lee et al., 2014 | 0.25, 1.25, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, and 24.0 | Water Cooking and Oven-Baking | MORS and Descriptive analysis | 42 |
[29] | Yang, 2016 | 2, 4, 6, and 24 | Fillets and Conventional Oven | MORS and BMORS | 40 and 54 |
[30] | Tijare et al., 2016 | 2 and 4 | Air Convection Oven | MORS | 42 and 63 |
[31] | Chatterjee et al., 2016 | 3 | Raw and Cooked Fillets | MORS and Textural Profile Analysis | 56 |
[32] | Solo, 2016 | 2 | Air Convection Oven | MORS, Compression Force, and BMORS | 45, 63, and 70 |
[33] | Cando, 2016 | 3 | Flat top grill or in an Air Convection Oven | Textural Profile Analysis and Shear Force | 52 |
[22] | Soglia et al., 2016 | 3 | Air Convection Oven | Texture Profile Analysis | 52 |
[34] | U-Chupaj et al., 2017 | 6 | Cooked fillets | Shear Force and Textural Profile Analysis | 56 |
[35] | Brambila et al., 2017 | 3 | Fillets and Patties | Shear force and Textural Profile Analysis | 56 |
[36] | Aguirre et al., 2018 | 3 | Air Convection Oven | Textural Profile Analysis | 45 |
[37] | Brambila et al., 2018 | 3 | Air Convection Oven | Texture Profile Analysis | 42 |
[38] | Combs, 2018 | 6 | Raw, Grill, Bake, and Sous vide | MORS and BMORS | 56 |
[39] | Bowker and Zhuang, 2019 | 8 | Raw Frozen, Cooked Frozen, Raw, and Cooked | MORS and BMORS | 56 |
[40] | Pang et al., 2020 | 3 | Raw Fillets and Air Convection Oven | MORS and BMORS | 56 |
[41] | Mallmann et al., 2020 | 3 | Raw Fillets and Conventional oven | Compression force, MORS, and BMORS | 57 |
[42] | Morey et al., 2020 | 2–3 | Fillets and Conventional Oven | BMORS | 56 |
[43] | Zhang et al., 2021 | 3 | Raw and Conventional Oven | Shear Force, Compression Force, and BMORS | 56 |
[44] | Sun et al., 2021 | 3 | Fillets and Conventional Oven | BMORS | 49 |
[45] | Sun et al., 2021 | 3 | Raw Fillets and Conventional Oven | Compression Force and BMORS | 49 |
[18] | Siddique et al., 2021 | 3–3.5 | Raw Fillets | Bioelectrical Impedance, Support Vector Machines, and Back Propagation Neural Networks | 56 |
Analysis Type | Parameters | QE | df | p | QM | df | p | τ2 | I2 |
---|---|---|---|---|---|---|---|---|---|
Age of Bird | 335.02 | 8 | <0.01 | 0.54 | 5 | 0.99 | 14.55 | 99.65 | |
BMORS | Deboning Time | 274.59 | 9 | <0.01 | 1.02 | 4 | 0.90 | 12.17 | 99.69 |
Cooking and Storage | 330.30 | 7 | <0.01 | 60.60 | 7 | <0.001 | 1.16 | 98.01 | |
Age of Bird | 181.02 | 15 | <0.01 | 3.37 | 5 | 0.64 | 0.52 | 91.34 | |
MORS | Deboning Time | 64.85 | 15 | <0.01 | 32.13 | 5 | <0.0001 | 0.17 | 77.97 |
Cooking and Storage | 273.78 | 14 | <0.01 | 4.84 | 6 | 0.56 | 0.51 | 93.44 | |
Age of Bird | 176.44 | 31 | <0.01 | 14.33 | 4 | 0.0063 | 0.33 | 83.75 | |
Descriptive Sensory | Deboning Time | 202.39 | 34 | <0.01 | 3.10 | 1 | 0.07 | 0.44 | 86.93 |
Cooking and Storage | 129.79 | 27 | <0.01 | 51.83 | 8 | <0.0001 | 0.33 | 83.81 |
Parameter | Deboning Time | Effect Size (Hedges’ g [95% CI]) | I2 (%) | p-Value |
---|---|---|---|---|
Overall Effect of Deboning Time | Overall | 1.30 [0.26, 2.34] | 95 | <0.01 |
BMORS Values | Overall | 0.49 [0.09, 0.89] | 73 | <0.01 |
3 h | 0.36 [−0.23, 0.95] | 71 | <0.01 | |
2 h | 1.11 [0.30, 1.93] | NA | <0.01 | |
8 h | 0.60 [−0.39, 1.58] | 83 | <0.01 | |
MORS Analysis Values | Overall | 0.70 [−0.70, 2.09] | 95 | <0.01 |
3 h | 3.23 [−2.20, 8.66] | 92 | <0.01 | |
6 h | −0.71 [−1.97, 0.55] | 83 | <0.01 | |
6 h | 0.36 [−0.23, 0.95] | 71 | <0.01 | |
Classification Accuracy | Overall | 0.20 [−1.35, 1.74] | 98 | <0.01 |
3 h | 0.49 [−0.67, 1.65] | 82 | <0.01 | |
Shear Force Value | Overall | −0.23 [−1.43, 0.96] | 97 | <0.01 |
3 h | −0.39 [−2.24, 1.45] | 97 | <0.01 | |
Descriptive TPA | Overall | −0.11 [−2.17, 1.94] | 79 | <0.01 |
Descriptive Sensory Analysis | 3 h | −0.41 [−3.54, 2.72] | 84 | <0.01 |
Textural Profile Analysis (TPA) | Overall | −0.82 [−0.14, 1.79] | 83 | <0.01 |
2 h | −0.04 [−0.13, 0.21] | 29 | 0.19 | |
3 h | 1.11 [−0.20, 2.42] | 85 | <0.01 |
Bird Age (Days) | Parameter | Hedges’ g [95% CI] | I2 (%) | p-Value |
---|---|---|---|---|
34 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 1.43 [−2.06, 4.92] | 91 | <0.01 |
38 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 11.05 [−108.57, 132.28] | 95 | 0.58 |
42 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 0.39 [0.09, 0.68] | 0.00 | 0.86 |
45 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 2.29 [−0.49, 5.06] | 86 | <0.01 |
46 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 1.05 [0.73, 1.37] | NA | NA |
48 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 0.27 [−1.02, 1.57] | 96 | <0.01 |
52 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 0.63 [−15.62, 16.87] | 98 | <0.01 |
56 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 1.10 [−0.63, 2.83] | 96 | <0.01 |
60 | Classification Accuracy, Compression Force, Shear Force, BMORS, MORS, and TPA | 0.03 [−0.10, 0.17] | 0.00 | 0.58 |
Cooking Condition | Parameter | Hedges’ g [95% CI] | I2 (%) | p-Value |
---|---|---|---|---|
Overall Effect | All Parameters | 0.72 [0.17, 1.26] | 93 | <0.01 |
Cooked Breast Fillets | Shear Force | 0.44 [0.21, 0.67] | 54 | <0.01 |
Cooked Hot Served | Descriptive Sensory Evaluation | −0.09 [−0.44, 0.26] | 41 | 0.17 |
Cooked Cold Served | Descriptive Sensory Evaluation | 0.17 [0.13, 0.21] | 0 | 0.99 |
BMORS Shear Force (Cooked vs. Raw) | Shear Force | 0.69 [−0.22, 1.60] | 98 | <0.01 |
BMORS Shear Force (Overall Cooking Conditions) | Shear Force | 1.07 [−0.73, 2.88] | 97 | <0.01 |
MORS Shear Force (Cooked Samples) | Shear Force | 0.93 [−0.10, 7.87] | 85 | 0.01 |
Sous Vide Method | Shear Force and Descriptive Sensory Evaluation | 5.30 [−50.30, 83.40] | 98 | <0.01 |
Method and Attribute | Egger’s Test (p-Value) | Peters’ Test (p-Value) | Begg’s Test (p-Value) | Trim and Fill (Imputed Studies) | Presence of Bias |
---|---|---|---|---|---|
TPA_Hardness | 0.0182 | 0.0003 | 0.0446 | 0 | Yes |
TPA_Springiness | 0.1932 | 0.0978 | 0.0752 | 1 | Mild/Borderline |
TPA_Cohesiveness | 0.1228 | <0.0001 | 0.3585 | 0 | Yes |
TPA_Chewiness | 0.0082 | <0.0001 | 0.1802 | 0 | Yes |
MORS_Tenderness | 0.5925 | 0.1205 | 0.0117 | 0 | Mild/Borderline |
BMORS_Toughness | <0.0001 | 0.0090 | 0.0833 | 1 | Yes |
Cookloss_ | 0.0328 | <0.0001 | 0.3333 | 0 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddique, A.; Black, M.T.; Alvarado, B.W.; Garner, L.; Huang, T.-S.; Gupta, A.; Wilson, A.E.; Sawyer, J.T.; Morey, A. Effect of Age, Deboning Time of Carcass, and Different Cooking Conditions on the Woody Breast Myopathies in Chicken: A Meta-Analysis. Foods 2024, 13, 2632. https://doi.org/10.3390/foods13162632
Siddique A, Black MT, Alvarado BW, Garner L, Huang T-S, Gupta A, Wilson AE, Sawyer JT, Morey A. Effect of Age, Deboning Time of Carcass, and Different Cooking Conditions on the Woody Breast Myopathies in Chicken: A Meta-Analysis. Foods. 2024; 13(16):2632. https://doi.org/10.3390/foods13162632
Chicago/Turabian StyleSiddique, Aftab, Micah T. Black, Bet W. Alvarado, Laura Garner, Tung-Shi Huang, Ashish Gupta, Alan E. Wilson, Jason T. Sawyer, and Amit Morey. 2024. "Effect of Age, Deboning Time of Carcass, and Different Cooking Conditions on the Woody Breast Myopathies in Chicken: A Meta-Analysis" Foods 13, no. 16: 2632. https://doi.org/10.3390/foods13162632
APA StyleSiddique, A., Black, M. T., Alvarado, B. W., Garner, L., Huang, T. -S., Gupta, A., Wilson, A. E., Sawyer, J. T., & Morey, A. (2024). Effect of Age, Deboning Time of Carcass, and Different Cooking Conditions on the Woody Breast Myopathies in Chicken: A Meta-Analysis. Foods, 13(16), 2632. https://doi.org/10.3390/foods13162632