Dried Beetroots: Optimization of the Osmotic Dehydration Process and Storage Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design—Chemometric Analysis
2.3. Osmotic Dehydration Parameters
- md—a mass of dry matter [g];
- mi—a mass of fresh sample [gf.s.];
- mf—a mass of sample after the osmotic dehydration process [g];
- zi—a mass fraction of water in the fresh sample [g/gf.s.];
- zf—a mass fraction of water in the sample after the osmotic dehydration [g/g];
- si—a mass fraction of dry matter in the fresh sample [g/gf.s.];
- sf—a mass fraction of dry matter in the sample after the osmotic dehydration [g/g];
- f.s.—fresh sample.
2.4. Methods for Assessing Beetroot Quality
2.4.1. Sample Preparation
2.4.2. Titratable Acidity
2.4.3. Antioxidative Activity
2.4.4. Total Flavonoid Content
2.4.5. Total Phenolic Content
2.4.6. Betaine Content
2.4.7. Mineral Content
2.4.8. Microbiological Analysis
2.5. Storage Stability of Osmotically Dehydrated Beetroots
2.6. Statistical Analysis
2.6.1. Principal Component Analysis (PCA)
2.6.2. Standard Scores
2.6.3. Artificial Neural Network (ANN) Model
2.6.4. Sensitivity Analysis
3. Results and Discussion
3.1. OD Parameters—DMC, WL, and SG
3.2. Acidity
3.3. Mineral Content
3.4. Total Phenols and Flavonoids
3.5. Betaine Content
3.6. Antioxidative Activity
3.7. Process Optimization
3.8. Correlation Analysis
3.9. Cluster Analysis
3.10. Principal Component Analysis (PCA)
3.11. Artificial Neural Network Model
3.12. Global Sensitivity Analysis—Yoon’s Interpretation Method
3.13. Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bangar, S.P.; Sharma, N.; Sanwal, N.; Lorenzo, J.M.; Sahu, J.K. The bioactive potential of beetroot (Beta vulgaris). Food Res. Int. 2022, 158, 111556. [Google Scholar] [CrossRef] [PubMed]
- Nizioł-Łukaszewska, Z.; Gawęda, M. Changes in quality of selected red beet (Beta vulgaris L.) cultivars during the growing season. Folia Hortic. 2015, 26, 139–146. [Google Scholar] [CrossRef]
- Dhiman, A.; Suhag, R.; Chauhan, D.S.; Thakur, D.; Chhikara, S.; Prabhakar, P.K. Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends Food Sci. Technol. 2021, 114, 443–458. [Google Scholar] [CrossRef]
- Tan, M.L.; Hamid, S.B.S. Beetroot as a potential functional food for cancer chemoprevention, a narrative review. J. Cancer Prev. 2021, 26, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Akan, S.; Horzum, O.; Akal, H.C. The prevention of physicochemical and microbial quality losses in fresh-cut red beets using different packaging under cold storage conditions. LWT-Food Sci. Technol. 2022, 155, 112877. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Bertolo, M.R.V.; Rodrigues, M.A.V.; da Cruz Silva, G.; de Mendonça, G.M.N.; Bogusz Junior, S.; Ferreira, M.D.; Egea, M.B. Recent advances in the development of smart, active, and bioactive biodegradable biopolymer-based films containing betalains. Food Chem. 2022, 390, 133149. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.J.; Łechtańska, J.M. Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations. Chem. Process Eng. 2015, 36, 345–354. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Pussa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembia, X.K.E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels, and anti-cancer activity. J. Sci. Food Agric. 2014, 4, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Morgado, M.; de Oliveira, G.V.; Vasconcellos, J.; Monteiro, M.L.; Conte-Junior, C.; Pierucci, A.P.T.R.; Alvares, T.S. Development of a beetroot-based nutritional gel containing high content of bioaccessible dietary nitrate and antioxidants. Int. J. Food Sci. Nutr. 2016, 67, 153–160. [Google Scholar] [CrossRef]
- Viskelis, J.; Nevidomskis, S.; Bobinas, C.; Urbonavicienė, D.; Bobinaite, R.; Karkleliene, R.; Viskelis, R. Evaluation of beetroot quality during various storage conditions. In Proceedings of the 13th Baltic Conference on Food Science and Technology “FOOD, NUTRITION, WELL-BEING” (FOODBALT 2019), Jelgava, Latvia, 2–3 May 2019; pp. 170–175. [Google Scholar]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits, and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- de Medeiros, R.A.B.; Barros, Z.M.P.; de Carvalho, C.B.O.; Neta, E.G.F.; Maciel, M.I.S.; Azoubel, P.M. Influence of dual-stage sugar substitution pretreatment on drying kinetics and quality parameters of mango. LWT-Food Sci. Technol. 2016, 67, 167–173. [Google Scholar] [CrossRef]
- Adil, R.M.; Zeng, X.A.; Han, Z.; Sun, D.W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Giancaterino, M.; Werl, C.; Jaeger, H. Evaluation of the quality and stability of freeze-dried fruits and vegetables pre-treated by pulsed electric fields (PEF). LWT-Food Sci. Technol. 2024, 191, 115651. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Gururani, P.; Bisht, B.; Kumar, V.; Kumar, N.; Joshi, R.; Vlaskin, M.S. Impact of irradiation on physicochemical and nutritional properties of fruits and vegetables: A mini-review. Heliyon 2022, 8, e10918. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Li, D.; Lv, H.; Jin, X.; Han, Q.; Su, D.; Wang, Y. Recent development of microwave fluidization technology for drying of fresh fruits and vegetables. Trends Food Sci. Technol. 2019, 86, 59–67. [Google Scholar] [CrossRef]
- Yao, J.; Chen, W.; Fan, K. Recent advances in light irradiation for improving the preservation of fruits and vegetables: A review. Food Biosci. 2023, 56, 103206. [Google Scholar] [CrossRef]
- Xu, B.; Tiliwa, E.S.; Yan, W.; Azam, S.M.R.; Wei, B.; Zhou, C.; Ma, H.; Bhandari, B. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Res. Int. 2022, 152, 110744. [Google Scholar] [CrossRef]
- Prajapat, N.; Meghwal, K.; Patel, D.P.; Suman, S.; Sharma, A. Mass Transfer kinetics during osmotic dehydration of Beetroot Tutti-Frutti. JAS 2022, 9, 244–248. [Google Scholar] [CrossRef]
- Reis, F.R.; Marques, C.; de Moraes, A.C.S.; Masson, M.L. Trends in quality assessment and drying methods used for fruits and vegetables. Food Control 2022, 142, 109254. [Google Scholar] [CrossRef]
- Agudelo, C.; Igual, M.; Talens, P.; Martínez-Navarrete, N. Optical and mechanical properties of cocona chips as affected by the drying process. Food Bioprod. Process 2015, 95, 192–199. [Google Scholar] [CrossRef]
- Singh, B.; Hathan, B.S. Optimization of osmotic dehydration process of beetroot (Beta vulgaris) in sugar solution using RSM. Int. J. Food Agric. Vet. Sci. 2013, 3, 1–10. [Google Scholar]
- Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Inn. Food Sci. Emerg. Technol. 2016, 34, 29–43. [Google Scholar] [CrossRef]
- Filipović, V.; Filipović, J.; Lončar, B.; Knežević, V.; Nićetin, M.; Filipović, I. Synergetic dehydration method of osmotic treatment in molasses and successive lyophilization of peaches. J. Food Process Preserv. 2022, 46, e16512. [Google Scholar] [CrossRef]
- Filipović, I.; Ćurčić, B.; Filipović, V.; Nićetin, M.; Filipović, J.; Knežević, V. The effects of technological parameters on chicken meat osmotic dehydration process efficiency. J. Food Process Preserv. 2017, 41, e13116. [Google Scholar] [CrossRef]
- Nićetin, M.; Lončar, B.; Filipović, V.; Cvetković, B.; Filipović, J.; Knežević, V.; Šuput, D. Osmotic dehydrationof wild garlic in sucrose–salt solution. Acta Univ. Sapientiae Aliment. 2022, 15, 27–39. [Google Scholar]
- Rulebook on methods of taking samples and performing chemical and physical analyses for quality control of fruit and vegetable products. Official Gazette of the SFRJ, No. 29/83. Available online: http://demo.paragraf.rs/demo/combined/Old/t/t2004_09/t09_0137.htm (accessed on 1 January 2024).
- Peinado, I.; Rosa, E.; Heredia, A.; Andrés, A. Use of isomaltulose to formulate healthy spreadable strawberry products. Application of response surface methodology. Food Biosci. 2015, 9, 47–59. [Google Scholar] [CrossRef]
- Bajić, A.; Pezo, L.L.; Stupar, A.; Filipčev, B.; Cvetković, B.R.; Horecki, A.T.; Mastilović, J. Application of lyophilized plum pomace as a functional ingredient in a plum spread: Optimizing texture, color and phenol antioxidants by ANN modeling. LWT-Food Sci. Technol. 2020, 130, 109588. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Kojić, J.; Krulj, J.; Ilić, N.; Lončar, E.; Pezo, L.; Mandić, A.; Bodroža Solarov, M. Analysis of betaine levels in cereals, pseudocereals and their products. J. Funct. Foods 2017, 37, 157–163. [Google Scholar] [CrossRef]
- ISO Standard 6869; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc. Method Using Atomic Absorption Spectrometry. International Organization for Standardization (ISO): Geneva, Switzerland, 2000.
- ISO 16649-2:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of β-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 °C Using 5-Bromo-4-Chloro-3-Indolyl β-D-Glucuronide. ISO: Geneva, Switzerland, 2006.
- ISO 21528-1:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae—Part 1: Detection and Enumeration by MPN Technique with Pre-Enrichment. ISO: Geneva, Switzerland, 2004.
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp. ISO: Geneva, Switzerland, 2002.
- ISO 11290-2:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes—Part 2: Enumeration method. ISO: Geneva, Switzerland, 1998.
- ISO 7937:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Clostridium perfringens—Colony-Count Technique. ISO: Geneva, Switzerland, 2004.
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2004.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. ISO: Geneva, Switzerland, 2008.
- Šuput, D.; Pezo, L.; Rakita, S.; Spasevski, N.; Tomičić, R.; Hromiš, N.; Popović, S. Camelina sativa Oilseed Cake as a Potential Source of Biopolymer Films: A Chemometric Approach to Synthesis, Characterization, and Optimization. Coatings 2024, 14, 95. [Google Scholar] [CrossRef]
- Brlek, T.; Pezo, L.; Voća, N.; Krička, T.; Vukmirović, Đ.; Čolović, R.; Bodroža-Solarov, M. Chemometric approach for assessing the quality of olive cake pellets. Fuel Process Technol. 2013, 116, 250–256. [Google Scholar] [CrossRef]
- Nićetin, M.; Pezo, L.; Lončar, B.; Filipović, V.; Šuput, D.; Knežević, V.; Filipović, J. The possibility of increasing the antioxidant activity of celery root during osmotic treatment. J. Serb. Chem. Soc. 2017, 82, 253–265. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Schmaltz, S.; Righes, F.W.; Salvalaggio, R.; de Marsillac Terra, L. Effects of pretreatment ultrasound bath and ultrasonic probe, in osmotic dehydration, in the kinetics of oven drying and the physicochemical properties of beet snacks. J. Food Process Preserv. 2017, 42, e13393. [Google Scholar] [CrossRef]
- Chandra, D.; Choi, A.J.; Kim, Y.P.; Kim, J.G. Physicochemical, microbial and sensory quality of fresh-cut red beetroots in relation to sanitization method and storage duration. IJFS 2015, 27, 208–220. [Google Scholar]
- El-Geddawy, M.; Omar, M.; Seleim, M.; Elsyiad, S. Composition and properties of egyptian beet molasses. JFDS 2012, 3, 669–679. [Google Scholar] [CrossRef]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fagioli, L.; Fusaro, I.; Biagi, G.; Formigoni, A.; Mammi, L. Short communication: Characterization of molasses chemical composition. J. Dairy Sci. 2020, 103, 6244–6249. [Google Scholar] [CrossRef] [PubMed]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Muller, U.; Hoglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.-M.; Tran, G. Tables of Composition and Nutritional Value of feed Materials Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish, 2nd ed.; NRA; Wageningen Academic Publishers: Versailles, France, 2004; pp. 77–302. [Google Scholar]
- Šuput, D.; Lazić, V.; Pezo, L.; Gubić, J.; Šojić, B.; Plavšić, D.; Lončar, B.; Nićetin, M.; Filipović, V.; Knežević, V. Shelf life and quality of dehydrated meat packed in edible coating under a modified atmosphere. Rom. Biotechnol. Lett. 2019, 24, 545–553. [Google Scholar] [CrossRef]
- Knežević, V.; Pezo, L.; Lončar, B.; Nićetin, M.; Filipović, V.; Šuput, D. Mineral content after osmotic treatment of nettle leaves (Urtica dioica L.). J. Hyg. Eng. Des. 2022, 38, 238–242. [Google Scholar]
- Nemzer, B.; Pietrzkowski, Z.; Sporna, A.; Stalica, P.; Thresher, W.; Michałowski, T.; Wybraniec, S. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Vasconcellos, J.; Conte-Junior, C.; Silva, D.; Pierucci, A.P.; Paschoalin, V.; Alvares, T.S. Comparison of total antioxidant potential, and total phenolic, nitrate, sugar, and organic acid contents in beetroot juice, chips, powder, and cooked beetroot. Food Sci. Biotechnol. 2016, 25, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Bozkir, H. Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. J. Food Process Eng. 2020, 43, e13485. [Google Scholar] [CrossRef]
- Xu, G.; Yin, H.; He, X.; Wang, D.; Zhao, Y.; Yue, J. Optimization of microwave vacuum drying of okra and the study of the product quality. J. Food Process Eng. 2020, 43, e13337. [Google Scholar] [CrossRef]
- Maleki, M.; Shahidi, F.; Varidi, M.J.; Azarpazhooh, E. Hot air-drying kinetics of novel functional carrot snack: Impregnated using polyphenolic rich osmotic solution with ultrasound pretreatment. J. Food Process Eng. 2020, 43, e13331. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Domian, E.; Masiarz, E.; Ciurzy’nska, A.; Galus, S.; Małkiewicz, A.; Lenart, A.; Kowalska, J. Physical and sensory properties of Japanese quince chips obtained by osmotic dehydration in fruit juice concentrates and hybrid drying. Molecules 2020, 25, 5504. [Google Scholar] [CrossRef]
- Nićetin, M.; Pezo, L.; Pergal, M.; Lončar, B.; Filipović, V.; Knežević, V.; Demir, H.; Filipović, J.; Manojlović, D. Celery Root Phenols Content, Antioxidant Capacities and Their Correlations after Osmotic Dehydration in Molasses. Foods 2022, 11, 1945. [Google Scholar] [CrossRef]
- Dobrijević, D.; Pastor, K.; Nastić, N.; Özogul, F.; Krulj, J.; Kokić, B.; Bartkiene, E.; Rocha, J.M.; Koji’c, J. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules 2023, 28, 4824. [Google Scholar] [CrossRef]
- Thippeswamy, B.; Joshi, A.; Sethi, S.; Dahuja, A.; Kaur, C.; Tomar, B.S.; Varghese, E. Chemical additives for preserving the betalain pigment and antioxidant activity of red beetroot. Sugar Tech. 2022, 24, 890–899. [Google Scholar] [CrossRef]
- Figiel, A. Drying kinetics and quality of beetroots dehydrated by a combination of convective and vacuum-microwave methods. J. Food Eng. 2010, 98, 461–470. [Google Scholar] [CrossRef]
- Nistor, O.V.; Seremet Ceclu, L.; Andronoiu, D.G.; Rudi, L.; Botez, E. Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chem. 2017, 236, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Su, S.; Li, J.; Zhao, Z.; Wei, J.; Fu, X.; Liu, R.H. Recovery of Phenolics from the Ethanolic Extract of Sugarcane (Saccharum officinarum L.) Baggase and Evaluation of the Antioxidant and Antiproliferative Activities. Ind. Crops Prod. 2017, 107, 360–369. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Yu, S. Optimisation of Ultrasonic-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Sugar Beet Molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Knežević, V.; Pezo, L.; Lončar, B.; Filipović, V.; Nićetin, M.; Gorjanović, S.; Šuput, D. Antioxidant Capacity of Nettle Leaves During Osmotic Treatment. Period. Polytech. Chem. Eng. 2019, 63, 491–498. [Google Scholar] [CrossRef]
- Guimarães, C.M.; Gião, M.S.; Martinez, S.S.; Pintado, A.I.; Bento, L.S.; Malcata, F.X. Antioxidant Activity of Sugar Molasses, Including Protective Effect Against DNA Oxidative Damage. J. Food Sci. 2007, 72, C039–C043. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Vega-Galvez, A.; Bilbao-Sainz, C.; Chiou, B.; Sen Uribe, E.; Quispe-Fuentes, I. Influence of vacuum drying temperature on: Physico-chemical composition and antioxidant properties of murta berries. J. Food Process Eng. 2017, 40, e12569. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Chemical fruit profiles of different raspberry cultivars grown in specific Norwegian agroclimatic conditions. Horticulturae 2022, 8, 765. [Google Scholar] [CrossRef]
- Soni, A.; Al-Sarayreh, M.; Reis, M.M.; Smith, J.; Tong, K.; Brightwell, G. Identification of cold spots using non-destructive hyperspectral imaging technology in model food processed by coaxially induced microwave pasteurization and sterilization. Foods 2020, 9, 837. [Google Scholar] [CrossRef]
- Pezo, L.; Lončar, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Pezo, M.; Aćimović, M. Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach. Life 2022, 12, 1722. [Google Scholar] [CrossRef]
- Lončar, B.; Pezo, L.; Filipović, V.; Nićetin, M.; Filipović, J.; Pezo, M.; Šuput, D.; Aćimović, M. Physico-chemical, textural and sensory evaluation of spelt muffins supplemented with apple powder enriched with sugar beet molasses. Foods 2022, 11, 1750. [Google Scholar] [CrossRef] [PubMed]
- Šovljanski, O.; Lončar, B.; Pezo, L.; Saveljić, A.; Tomić, A.; Brunet, S.; Filipović, V.; Filipović, J.; Čanadanović-Brunet, J.; Ćetković, G.; et al. Unlocking the Potential of the ANN Optimization in Sweet Potato Varieties Drying Processes. Foods 2023, 13, 134. [Google Scholar] [CrossRef]
- Demir, H.; Demir, H.; Lončar, B.; Pezo, L.; Brandić, I.; Voća, N.; Yilmaz, F. Optimization of caper drying using response surface methodology and artificial neural networks for energy efficiency characteristics. Energies 2023, 16, 1687. [Google Scholar] [CrossRef]
- Tufan, G.E.; Borazan, A.A.; Kockar, O.M. A Review on Edible Film and Coating Applications for Fresh and Dried Fruits and Vegetables. BSEU J. Sci. 2021, 8, 1073–1085. [Google Scholar]
- Bajaj, K.; Adhikary, T.; Gill, P.P.S.; Kumar, A. Edible coatings enriched with plant-based extracts preserve postharvest quality of fruits: A review. Prog. Org. Coat. 2023, 182, 107669. [Google Scholar] [CrossRef]
- Chavan, P.; Lata, K.; Kaur, T.; Jambrak, A.R.; Sharma, S.; Roy, S.; Sinhmar, A.; Thory, R.; Singh, G.P.; Aayush, K.; et al. Recent advances in the preservation of postharvest fruits using edible films and coatings: A comprehensive review. Food Chem. 2023, 418, 135916. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Wei, Y.; Zhang, L.; Ning, E.; Yu, L.; Zhu, J.; Wang, X.; Ma, Y.; Fan, Y. Qualitative and quantitative analysis of polyphenols in camelina seed and their antioxidant activities. Nat. Prod. Res. 2023, 37, 1888–1891. [Google Scholar] [CrossRef]
- Šarić, L.; Filipčev, B.; Šimurina, O.; Plavšić, D.; Šarić, B.; Lazarević, J.; Milovanović, I. Sugar beet molasses properties and applications in osmotic dehydration of fruits and vegetable. Food Feed. Res. 2016, 43, 135–144. [Google Scholar] [CrossRef]
- Adbhai, A.R.; Dewanjee, S.; Patel, K.G.; Karmakar, N. Sugar Beet Molasses Production and Utilization. In Sugar Beet Cultivation, Management and Processing; Misra, V., Srivastava, S., Mall, A.K., Eds.; Springer: Singapore, 2022; pp. 885–904. [Google Scholar]
- Akharume, F.; Singh, K.; Jaczynski, J.; Sivanandan, L. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT-Food Sci. Technol. 2018, 90, 61–69. [Google Scholar] [CrossRef]
- Bai, X.; Campagnoli, M.; Butot, S.; Putallaz, T.; Michot, L.; Zuber, S. Inactivation by osmotic dehydration and air drying of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, hepatitis A virus and selected surrogates on blueberries. Int. J. Food Microbiol. 2020, 320, 108522. [Google Scholar] [CrossRef]
- Filipović, V.; Ćurčić, B.; Nićetin, M.; Plavšić, D.; Koprivica, G.; Mišljenović, N. Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hem. Ind. 2012, 66, 743–748. [Google Scholar] [CrossRef]
- Šuput, D.; Lazarević, J.; Filipović, V.; Nićetin, M.; Knežević, V.; Lončar, B.; Pezo, L. The effect of osmotic dehydration and starch coating on the microbiological stability of apples. J. Process. Energy Agric. 2020, 24, 35–38. [Google Scholar] [CrossRef]
- Răducu (Popa), A.L.; Popa, A.; Sicuia, O.; Boiu-Sicuia, O.A.; Israel-Roming, F.; Cornea, C.P.; Jurcoane, S. Antimicrobial activity of camelina oil and hydroalcoholic seed extracts. Rom. Biotecnol. Lett. 2021, 26, 2355–2360. [Google Scholar] [CrossRef]
- Pandey, G.; Pandey, V.; Pandey, P.R.; Thomas, G. Effect of extraction solvent temperature on betalain Content, phenolic content, antioxidant activity and Stability of beetroot (Beta vulgaris L.) Powder under Different storage conditions. Plant Arch. 2018, 18, 1623–1627. [Google Scholar]
- Caldas-Cueva, J.P.; Morales, P.; Ludena, F.; Betalleluz-Pallardel, I.; Chirinos, R.; Noratto, G. Stability of Betacyanin pigments and antioxidants in Ayrampo (Opuntia soehrensii Britton and Rose) seed extracts and as a Yogurt natural colorant. J. Food Process Preserv. 2016, 40, 541–549. [Google Scholar] [CrossRef]
No. | T | Conc | t | DMC (%) | WL (g/gf.s.) | SG (g/gf.s.) | Mg (mg/kg) | K (mg/kg) | Na (mg/kg) | Ca (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 20 | 60 | 3 | 26.737 ± 0.134 c | 0.536 ± 0.006 e | 0.005 ± 0.000 ab | 375.44 ± 0.37 cd | 10,564.15 ± 22.48 abc | 3798.08 ± 19.10 bc | 595.18 ± 3.52 bc |
2 | 60 | 60 | 3 | 35.614 ± 0.270 e | 0.606 ± 0.006 g | 0.032 ± 0.002 h | 202.82 ± 0.19 a | 9050.28 ± 7474.60 a | 4007.28 ± 22.75 bcd | 1080.12 ± 9.00 f |
3 | 20 | 80 | 3 | 29.572 ± 0.178 d | 0.571 ± 0.005 f | 0.009 ± 0.000 bc | 354.46 ± 0.74 bcd | 11,477.97 ± 41.83 abc | 4178.06 ± 15.76 cde | 689.61 ± 8.58 d |
4 | 60 | 80 | 3 | 43.583 ± 0.085 g | 0.679 ± 0.006 i | 0.032 ± 0.000 f | 344.59 ± 0.27 bcd | 17,968.71 ± 113.41 d | 5893.59 ± 29.05 g | 1324.41 ± 10.99 h |
5 | 20 | 70 | 1 | 16.574 ± 0.129 a | 0.333 ± 0.000 a | 0.011 ± 0.000 bcd | 147.66 ± 0.17 a | 7861.18 ± 52.01 a | 3048.38 ± 25.06 a | 380.86 ± 1.29 a |
6 | 60 | 70 | 1 | 26.790 ± 0.183 c | 0.508 ± 0.003 d | 0.016 ± 0.000 d | 328.24 ± 0.69 bcd | 10,540.82 ± 48.81 abc | 3737.85 ± 23.29 bc | 609.54 ± 7.36 bcd |
7 | 20 | 70 | 5 | 36.969 ± 0.260 ef | 0.355 ± 0.008 a | 0.025 ± 0.000 e | 349.60 ± 0.79 bcd | 11,961.57 ± 3.68 abc | 4674.94 ± 40.07 ef | 683.11 ± 4.16 cd |
8 | 60 | 70 | 5 | 50.149 ± 0.626 h | 0.708 ± 0.004 j | 0.050 ± 0.000 g | 158.18 ± 0.11 a | 15,268.18 ± 82.90 bcd | 4729.92 ± 29.07 ef | 1706.96 ± 7.75 i |
9 | 40 | 60 | 1 | 22.921 ± 0.053 b | 0.449 ± 0.001 b | 0.009 ± 0.000 bc | 319.23 ± 1.25 bc | 8383.86 ± 65.78 a | 3037.02 ± 20.93 a | 424.39 ± 5.17 a |
10 | 40 | 80 | 1 | 23.273 ± 0.211 b | 0.479 ± 0.001 c | 0.002 ± 0.000 a | 307.67 ± 0.35 b | 9657.91 ± 68.56 ab | 3462.99 ± 11.45 ab | 572.99 ± 3.53 b |
11 | 40 | 60 | 5 | 38.287 ± 0.226 f | 0.633 ± 0.005 h | 0.036 ± 0.000 f | 377.15 ± 1.19 d | 16,112.23 ± 115.48 cd | 5339.88 ± 31.25 fg | 991.61 ± 10.36 f |
12 | 40 | 80 | 5 | 47.999 ± 0.500 h | 0.710 ± 0.002 j | 0.038 ± 0.000 f | 504.62 ± 0.72 e | 18,174.63 ± 160.90 d | 7038.92 ± 38.62 h | 1182.05 ± 9.28 g |
13 | 40 | 70 | 3 | 31.357 ± 1.462 d | 0.584 ± 0.017 fg | 0.015 ± 0.005 cd | 350.30 ± 42.53 bcd | 13,083.26 ± 560.93 abcd | 4497.41 ± 487.14 de | 794.38 ± 66.07 e |
14 | 40 | 70 | 3 | 31.087 ± 1.526 d | 0.583 ± 0.018 fg | 0.015 ± 0.005 cd | 349.73 ± 41.21 bcd | 13,106.91 ± 556.89 abcd | 4504.91 ± 476.96 de | 794.58 ± 65.25 e |
15 | 40 | 70 | 3 | 31.188 ± 1.694 d | 0.586 ± 0.015 fg | 0.015 ± 0.005 cd | 349.05 ± 41.91 bcd | 13,003.68 ± 487.00 abcd | 4497.81 ± 514.57 de | 800.30 ± 63.66 e |
No. | T | Conc | t | DPPH (IC50 (mg/mL)) | ABTS (IC50 (mg/mL)) | Flavonoids (mg ECA/100 g d.m.) | Phenols (mg eq.GA/100 g d.m.) | Acidity (% d.m.) | Betaine Content (mg/100 g d.m) | |
1 | 20 | 60 | 3 | 4.51 ± 0.01 bc | 1.92 ± 0.12 bcd | 135.50 ± 5.47 efg | 450.38 ± 68.26 cd | 1.52 ± 0.23 b | 1446.72 ± 15.32 ab | |
2 | 60 | 60 | 3 | 4.79 ± 0.01 c | 1.26 ± 0.04 abcd | 113.83 ± 13.35 bcd | 459.41 ± 65.74 cd | 1.12 ± 0.002 ab | 2475.85 ± 9.38 e | |
3 | 20 | 80 | 3 | 6.63 ± 0.01 f | 1.98 ± 0.01 bcd | 106.98 ± 0.63 abcd | 343.57 ± 9.46 abc | 1.39 ± 0.01 bcd | 1713.08 ± 40.62 bc | |
4 | 60 | 80 | 3 | 4.23 ± 0.02 bc | 0.91 ± 0.06 a | 119.17 ± 2.18 cde | 488.18 ± 10.22 d | 1.15 ± 0.14 ab | 2975.39 ± 514.49 f | |
5 | 20 | 70 | 1 | 8.34 ± 0.02 g | 3.14 ± 0.24 e | 123.32 ± 7.38 def | 301.56 ± 30.59 a | 1.42 ± 0.18 ab | 1111.45 ± 61.40 a | |
6 | 60 | 70 | 1 | 5.44 ± 0.02 d | 1.44 ± 0.08 abcd | 112.84 ± 2.61 bcd | 405.61 ± 6.20 abcd | 1.34 ± 0.001 ab | 1861.46 ± 28.84 bc | |
7 | 20 | 70 | 5 | 5.79 ± 0.01 de | 1.61 ± 0.23 abcd | 85.88 ± 3.29 a | 311.83 ± 4.74 ab | 1.07 ± 0.01 a | 1976.45 ± 15.57 cd | |
8 | 60 | 70 | 5 | 2.84 ± 0.01 a | 0.80 ± 0.08 a | 145.39 ± 2.15 g | 646.45 ± 14.07 e | 1.06 ± 0.003 a | 3828.18 ± 30.16 g | |
9 | 40 | 60 | 1 | 5.72 ± 0.01 de | 1.99 ± 0.89 cd | 142.77 ± 5.13 fg | 468.44 ± 6.94 d | 1.39 ± 0.07 ab | 1264.90 ± 28.85 a | |
10 | 40 | 80 | 1 | 6.14 ± 0.01 ef | 2.09 ± 0.57 d | 139.37 ± 2.84 efg | 457.81 ± 11.45 cd | 1.41 ± 0.14 ab | 1484.54 ± 16.16 ab | |
11 | 40 | 60 | 5 | 4.78 ± 0.01 c | 1.30 ± 0.02 abcd | 102.53 ± 0.83 abcd | 455.47 ± 9.26 cd | 1.21 ± 0.08 ab | 2386.31 ± 3.67 de | |
12 | 40 | 80 | 5 | 4.16 ± 0.01 b | 1.43 ± 0.06 abcd | 93.36 ± 1.95 ab | 400.25 ± 47.17 abcd | 1.32 ± 0.00 ab | 3140.25 ± 24.36 f | |
13 | 40 | 70 | 3 | 4.75 ± 0.42 c | 1.13 ± 0.05 abc | 101.40 ± 12.03 abc | 429.71 ± 52.07 bcd | 1.27 ± 0.09 ab | 2312.04 ± 42.95 de | |
14 | 40 | 70 | 3 | 4.74 ± 0.41 c | 1.11 ± 0.04 ab | 102.07 ± 11.77 abc | 482.18 ± 84.29 d | 1.34 ± 0.35 ab | 2220.13 ± 38.11 de | |
15 | 40 | 70 | 3 | 4.77 ± 0.42 c | 1.13 ± 0.05 abc | 101.03 ± 11.59 abc | 428.64 ± 54.17 bcd | 1.26 ± 0.09 ab | 2170.54 ± 54.22 de |
Parameters | Net Name | Performance | Error | Training Algorithm | Activation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Train | Test | Valid | Train | Test | Valid | Hidden | Output | |||
DMC | MLP 3-4-1 | 0.930 | 0.989 | 1.000 | 3.477 | 0.643 | 7.516 | BFGS 11 | Log. | Log. |
WL | MLP 3-8-1 | 0.838 | 0.807 | 1.000 | 0.001 | 0.001 | 0.000 | BFGS 4 | Log. | Exp. |
SG | MLP 3-4-1 | 0.998 | 0.659 | 0.998 | 0.000 | 0.000 | 0.000 | BFGS 18 | Tanh | Identity |
Mg | MLP 3-3-1 | 0.781 | 0.141 | 1.000 | 739.498 | 804.754 | 2067.172 | BFGS 22 | Tanh | Identity |
K | MLP 3-8-1 | 0.746 | 0.956 | 1.000 | 789,630.298 | 933,408.202 | 6,993,799.807 | BFGS 5 | Tanh | Exp. |
Na | MLP 3-3-1 | 0.866 | 0.931 | 1.000 | 33,912.074 | 31,890.460 | 1,021,189.947 | BFGS 4 | Identity | Identity |
Ca | MLP 3-6-1 | 0.760 | 0.408 | 1.000 | 63,490.819 | 13,155.770 | 69,075.745 | BFGS 2 | Tanh | Log. |
DPPH | MLP 3-4-1 | 0.885 | 0.756 | 1.000 | 0.515 | 0.044 | 0.518 | BFGS 2 | Tanh | Exp. |
ABTS | MLP 3-3-1 | 0.529 | 0.967 | 0.997 | 0.233 | 0.025 | 0.130 | BFGS 1 | Exp. | Tanh |
Flavonoids | MLP 3-7-1 | 0.660 | 0.759 | 1.000 | 58.449 | 163.423 | 107.098 | BFGS 20 | Exp. | Tanh |
Phenols | MLP 3-8-1 | 0.592 | 0.482 | 1.000 | 4631.590 | 3800.579 | 1554.333 | BFGS 2 | Exp. | Log. |
Acidity | MLP 3-3-1 | 0.967 | 0.983 | 0.360 | 0.000 | 0.000 | 0.014 | BFGS 259 | Tanh | Exp. |
Betaine | MLP 3-4-1 | 0.729 | 0.899 | 0.972 | 82,548.984 | 72,414.239 | 35,561.058 | BFGS 25 | Log. | Identity |
χ2 | RMSE | MBE | MPE | SSE | AARD | r2 | Skew | Kurt | Mean | StDev | Var | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DMC | 9.30 | 2.93 | 1.13 | 7.37 | 83.38 | 50.21 | 0.93 | 0.55 | −0.72 | 0.98 | 2.64 | 6.95 |
WL | 0.00 | 0.04 | 0.00 | 7.11 | 0.02 | 0.54 | 0.86 | −0.14 | −0.27 | 0.00 | 0.04 | 0.00 |
SG | 0.00 | 0.01 | 0.00 | 56.23 | 0.00 | 0.09 | 0.99 | 0.22 | −0.99 | 0.00 | 0.01 | 0.00 |
Mg | 2.5 × 103 | 48.47 | 8.59 | 13.73 | 25,466.62 | 696.18 | 0.76 | −0.05 | 0.60 | 7.45 | 46.07 | 2.1 × 103 |
K | 5.1 × 106 | 2.2 × 103 | 536.56 | 14.02 | 5.0 × 107 | 2.4 × 104 | 0.62 | 0.78 | −0.02 | 465.02 | 2.0 × 103 | 4.2 × 106 |
Na | 5.8 × 105 | 730.06 | 264.45 | 9.16 | 5.3 × 106 | 6.5 × 103 | 0.66 | 1.52 | 2.17 | 229.19 | 662.30 | 4.4 × 105 |
Ca | 1.4 × 105 | 354.77 | 68.23 | 35.90 | 1.4 × 106 | 3.7 × 103 | 0.72 | 1.11 | 1.10 | 59.13 | 336.34 | 1.1 × 105 |
DPPH | 1.05 | 0.99 | −0.78 | 20.42 | 5.01 | 7.62 | 0.82 | −0.21 | −0.09 | −0.67 | 0.65 | 0.42 |
ABTS | 0.43 | 0.63 | −0.16 | 39.21 | 4.16 | 6.44 | 0.47 | 1.98 | 5.52 | −0.14 | 0.59 | 0.35 |
Flavonoids | 222.93 | 14.35 | −5.90 | 10.88 | 1957.05 | 222.42 | 0.67 | −0.64 | −0.77 | −5.11 | 12.77 | 163.09 |
Phenols | 9.6 × 103 | 94.26 | −19.67 | 18.59 | 95,261.54 | 942.48 | 0.40 | 0.41 | 1.42 | −17.05 | 89.10 | 7.9 × 103 |
Acidity | 0.01 | 0.08 | 0.03 | 3.13 | 0.07 | 1.06 | 0.63 | 2.54 | 6.84 | 0.03 | 0.07 | 0.01 |
Betaine | 1.8 × 105 | 405.13 | −1.43 | 5.08 | 1.8 × 106 | 9.4 × 103 | 0.73 | 0.12 | −0.44 | −1.24 | 390.39 | 1.5 × 105 |
Sample | Acidity (% d.m.) | Phenols (mg eq.GA/100 g d.m.) | Flavonoids (mg ECA/100 g d.m.) | Betaine (mg/100 g d.m.) | DPPH IC50 (mg/mL) | ABTS IC50 (mg/mL) |
---|---|---|---|---|---|---|
OD0 | 1.30 ± 0.25 c | 1016.05 ± 21.50 fg | 238.80 ± 2.99 h | 3175.46 ± 21.36 de | 1.56 ± 0.13 c | 0.49 ± 0.01 bc |
ODC0 | 1.06 ± 0.07 abc | 1063.14 ± 24.73 g | 257.43 ± 0.32 i | 3343.13 ± 25.58 e | 1.37 ± 0.05 bc | 0.21 ± 0.00 a |
OD7 | 1.29 ± 0.12 bc | 678.02 ± 101.88 d | 127.87 ± 12.54 d | 3081.34 ± 73.88 d | 2.17 ± 0.01 e | 0.58 ± 0.06 d |
ODC7 | 0.99 ± 0.01 abc | 920.26 ± 23.50 ef | 221.73 ± 8.00 g | 3324.35 ± 18.89 e | 1.40 ± 0.01 bc | 0.20 ± 0.00 a |
OD14 | 0.85 ± 0.03 a | 468.28 ± 12.09 ab | 88.43 ± 3.65 b | 2365.16 ± 76.41 a | 1.89 ± 0.02 d | 0.70 ± 0.01 e |
ODC14 | 1.03 ± 0.07 abc | 682.43 ± 35.32 d | 172.34 ± 5.41 f | 2625.28 ± 91.13 b | 1.07 ± 0.05 a | 0.44 ± 0.00 bc |
OD21 | 0.98 ± 0.04 a | 468.06 ± 45.91 ab | 93.64 ± 6.15 bc | 2872.90 ± 61.83 c | 2.13 ± 0.17 e | 0.45 ± 0.04 bc |
ODC21 | 0.93 ± 0.08 a | 864.56 ± 15.50 e | 146.36 ± 3.24 f | 2666.85 ± 115.39 b | 1.21 ± 0.02 ab | 0.53 ± 0.00 cd |
OD28 | 0.85 ± 0.11 a | 458.09 ± 7.97 a | 63.37 ± 0.93 a | 2785.48 ± 63.7 bc | 2.22 ± 0.00 e | 0.51 ± 0.03 bc |
ODC28 | 1.09 ± 0.03 abc | 571.29 ± 14.24 cd | 105.38 ± 0.72 c | 3082.87 ± 56.24 d | 1.29 ± 0.03 b | 0.23 ± 0.01 a |
Samples | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Osmotically Dehydrated Beets | Osmotically Dehydrated Beets Coated with Camelina sativa Film | |||||||||
Storage Time (Days) | ||||||||||
Microorganisms: | 0 | 7 | 14 | 21 | 28 | 0 | 7 | 14 | 21 | 28 |
Escherichia coli (CFU/g) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Enterobacteriaceae (CFU/g) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Salmonella spp. (CFU/g) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Listeria monocytogenes (CFU/g) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Clostridium perfringens (CFU/g) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Total number of microorganisms (CFU/g) | 2600 | 1900 | 1200 | 1000 | 960 | 2400 | 1200 | 940 | 720 | 620 |
Total number of yeast and molds (CFU/g) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuput, D.; Rakita, S.; Spasevski, N.; Tomičić, R.; Dragojlović, D.; Popović, S.; Hromiš, N. Dried Beetroots: Optimization of the Osmotic Dehydration Process and Storage Stability. Foods 2024, 13, 1494. https://doi.org/10.3390/foods13101494
Šuput D, Rakita S, Spasevski N, Tomičić R, Dragojlović D, Popović S, Hromiš N. Dried Beetroots: Optimization of the Osmotic Dehydration Process and Storage Stability. Foods. 2024; 13(10):1494. https://doi.org/10.3390/foods13101494
Chicago/Turabian StyleŠuput, Danijela, Slađana Rakita, Nedeljka Spasevski, Ružica Tomičić, Danka Dragojlović, Senka Popović, and Nevena Hromiš. 2024. "Dried Beetroots: Optimization of the Osmotic Dehydration Process and Storage Stability" Foods 13, no. 10: 1494. https://doi.org/10.3390/foods13101494
APA StyleŠuput, D., Rakita, S., Spasevski, N., Tomičić, R., Dragojlović, D., Popović, S., & Hromiš, N. (2024). Dried Beetroots: Optimization of the Osmotic Dehydration Process and Storage Stability. Foods, 13(10), 1494. https://doi.org/10.3390/foods13101494