The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.1.1. Control (C)
2.1.2. Food Waste Compost (FOWC)
Vegetable Waste Compost (VWC)
Fruit Waste Compost (FRWC)
Vegetable and Fruit Waste Compost (VFWC)
Meat, Fish, and Chicken Waste Compost (MFCWC)
Bread, Pasta, and Rice Waste Compost (BPRC)
Mixed Compost (MC)
2.1.3. Vermicompost (V)
2.1.4. Chemical Fertilizer (CF)
2.2. Greenhouse Experiments
2.3. Plant Growth Measurements
2.3.1. Radish Height
- Height of the fresh radishes (including shoots, leaves, and roots) was measured using a tape measure by unit (cm).
- Height of the shoot of the fresh radish was measured using a tape measure by unit (cm).
- Height of the root of the fresh radish was measured using a tape measure by unit (cm).
- Taproot top perimeter: perimeter of the middle fresh radish was measured using a tape measure in the units (cm).
2.3.2. Radish Weight
2.3.3. Leaf Surface Area (LSA)
2.4. Determination of Total Bacterial Population in Soil Samples
2.5. Effect of Different Treatments on Soil pH, and EC
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
- Assessment of the long-term agricultural effects by examining soil health and composition using fertilizers derived from food waste across multiple growth cycles. This would demonstrate the long-lasting effectiveness of organic amendments.
- Examination of economic feasibility by comparing the cost-effectiveness of food waste and chemical fertilizers. The analysis should consider the costs of production, the efficiency of application, and the increases in yield to ascertain the economic accessibility for farmers.
- Comprehensive crop testing by conducting tests on a wider range of crops can help determine the suitability of using food waste as fertilizer in various agricultural settings. This would aid in assessing crop requirements and optimizing fertilizer compositions.
- Optimizing composting techniques and formulations is necessary to maximize the nutrient content and promote soil health. This encompasses examining both food waste and composting. The impact of these fertilizers on soil and plant water retention could have significant implications for water conservation strategies in arid agricultural regions.
- Conducting an environmental impact assessment to assess the greenhouse gas emissions of fertilizers derived from food waste. This will assess the ecological footprint of these fertilizers compared to traditional fertilizers. It is imperative to establish safety regulations for food waste fertilizers to ensure their safety, efficacy, and environmental friendliness.
- Implementation of educational programs to educate farmers and the public about the advantages and methods of using food waste as fertilizer, thereby accelerating its acceptance and implementation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, X.; Gao, B.; Zhong, D.; Wang, L.; Borrion, A.; Huang, W.; Xu, S.; Cui, S. Closing the food waste loop: Analysis of the agronomic performance and potential of food waste disposal products. J. Clean. Prod. 2023, 382, 135174. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Okareh, O.T.; Oyewole, S.A.; Taiwo, L. Conversion of food wastes to organic fertilizer: A strategy for promoting food security and institutional waste management in Nigeria. J. Res. Environ. Sci. Toxicol. 2014, 3, 68–73. [Google Scholar] [CrossRef]
- Thi, N.B.; Kumar, G.; Lin, C.Y. An overview of food waste management in developing countries: Current status and future perspective. J. Environ. Manag. 2015, 157, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.R.; Abdulla, A.I. Recycling of food waste to produce the plant fertilizer. Int. J. Eng. Sci. Technol. 2018, 7, 173–178. [Google Scholar] [CrossRef]
- Hamid, H.A.; Qi, L.P.; Harun, H.; Sunar, N.M.; Ahmad, F.H.; Muhamad, M.S.; Hamidon, N. Development of organic fertilizer from food waste by composting in UTHM campus Pagoh. J. Appl. Chem. Nat. Resour. 2019, 1, 1–6. [Google Scholar]
- Zaman, B.; Hardyanti, N.; Ramadan, B.S. An innovative thermal composter to accelerate food waste decomposition at the household level. Bioresour. Technol. Rep. 2022, 19, 101203. [Google Scholar] [CrossRef]
- Kumar, S.K.; Maji, S.M.; Kumar, S.K.; Singh, H.D. Efficacy of organic manures on growth and yield of radish (Raphanus sativus L.) cv. Japanese White. Int. J. Plant. Sci. 2014, 9, 57–60. [Google Scholar]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A review on the challenges and choices for food waste valorization: Environmental and economic impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Yagoub, M.M.; Al Hosani, N.; AlSumaiti, T.; Kortbi, O.; Alshehhi, A.A.; Aldhanhani, S.R.; Albedwawi, S.A. University students’ perceptions of food waste in the UAE. Sustainability 2022, 14, 11196. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Thi Bich Nhuong, Q.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T. Intelligent approaches for sustainable management and valorization of food waste. Bioresour. Technol. 2023, 377, 128952. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; Igalavithana, A.D.; Tang, R.; Cai, Y.; Chang, S.X. Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. Sci. Total. Environ. 2023, 881, 163311. [Google Scholar] [CrossRef] [PubMed]
- Litskas, V.D. Environmental impact assessment for animal waste, organic and synthetic fertilizers. Nitrogen 2023, 4, 16–25. [Google Scholar] [CrossRef]
- Weerahewa, J.; Dayananda, D. Land use changes and economic effects of alternative fertilizer policies: A simulation analysis with a bio-economic model for a tank village of Sri Lanka. Agric. Syst. 2023, 205, 103563. [Google Scholar] [CrossRef]
- Hazra, G. Different types of eco-friendly fertilizers: An overview. Sustain. Environ. 2016, 1, 54–70. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total. Environ. 2018, 613–614, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, K.; Konkol, I.; Świerczek, L.; Chojnacka, K.; Cenian, A.; Szufa, S. Evaluation of kitchen waste recycling as organic N-fertilizer for sustainable agriculture under cool and warm seasons. Sustainability 2023, 15, 7997. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Hagare, D.; Liu, M.-H.; Panatta, O.; Hussain, T.; Memon, S.; Noorani, A.; Chen, Z.-H. A food waste-derived organic liquid fertilizer for sustainable hydroponic cultivation of lettuce, cucumber, and cherry tomato. Foods 2023, 12, 719. [Google Scholar] [CrossRef] [PubMed]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Metzger, J.D.; Lee, S.; Welch, C. Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers, and strawberries: The 7th international symposium on earthworm ecology Cardiff· Wales·2002. Pedobiologia 2003, 47, 731–735. [Google Scholar] [CrossRef]
- Kang, S.-M.; Shaffique, S.; Kim, L.-R.; Kwon, E.-H.; Kim, S.-H.; Lee, Y.-H.; Kalsoom, K.; Aaqil Khan, M.; Lee, I.-J. Effects of organic fertilizer mixed with food waste dry powder on the growth of Chinese cabbage seedlings. Environments 2021, 8, 86. [Google Scholar] [CrossRef]
- Patel, S.K.; Das, D.; Kim, S.C.; Cho, B.K.; Kalia, V.C.; Lee, J.K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Kalamdhad, A.S.; Singh, Y.K.; Ali, M.; Khwairakpam, M.; Kazmi, A.A. Rotary drum composting of vegetable waste and tree leaves. Bioresour. Technol. 2009, 100, 6442–6450. [Google Scholar] [CrossRef] [PubMed]
- Ottani, F.; Parenti, M.; Pedrazzi, S.; Moscatelli, G.; Allesina, G. Impacts of gasification biochar and its particle size on the thermal behavior of organic waste co-composting process. Sci. Total. Environ. 2022, 817, 153022. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Sidortsov, R. Sorting out a problem: A co-production approach to household waste management in Shanghai, China. Waste. Manag. 2019, 95, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Danish Toor, M.; Kizilkaya, R.; Anwar, A.; Koleva, L.; Eldesoky, G.E. Effects of vermicompost on soil microbiological properties in lettuce rhizosphere: An environmentally friendly approach for sustainable green future. Environ. Res. 2024, 243, 117737. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Mata, A.; Molinero-García, A.; Martín-García, J.M.; Delgado, G. Sequential effects of spent coffee grounds on soil physical properties. Soil. Use. Manag. 2023, 39, 286–297. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Salama, D.M.; El-Tanahy, A.M.; Abd El-Samad, E.H. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield, and nutritional quality of red radish plants. Ann. Agric. Sci. 2019, 64, 167–175. [Google Scholar] [CrossRef]
- Sousa, R.D.; Bragança, L.; da Silva, M.V.; Oliveira, R.S. Challenges and solutions for sustainable food systems: The potential of home hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Gürsu, H. Waste-based vertical planting system proposal to increase productivity in sustainable horticulture; “PETREE”. Sustainability 2024, 16, 3125. [Google Scholar] [CrossRef]
- Fertas, L.; Alouat, M.; Benmahamed, H. The emergence of irrigated agriculture in semi-arid zones in the face of climate change and urbanization in peri-urban areas in Setif, Algeria. Sustainability 2024, 16, 1112. [Google Scholar] [CrossRef]
- Vanghele, N.A.; Pruteanu, M.A.; Petre, A.A.; Matache, A.; Mihalache, D.B.; Stanciu, M.M. The influence of environmental factors and heavy metals in the soil on plants’ growth and development. E3S Web Conf. 2020, 180, 03014. [Google Scholar] [CrossRef]
- Moubareck, C.A.; Alawlaqi, B.; Alhajeri, S. Characterization of physicochemical parameters and bacterial diversity of composted organic food wastes in Dubai. Heliyon 2023, 9, e16426. [Google Scholar] [CrossRef] [PubMed]
- Mattos, D., Jr.; Kadyampakeni, D.M.; Oliver, A.Q.; Boaretto, R.M.; Morgan, K.T.; Quaggio, J.A. Chapter 15—Soil and nutrition interactions. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 311–331. [Google Scholar] [CrossRef]
- Kaushalya Madhavi, B.G.; Bhujel, A.; Kim, N.E.; Kim, H.T. Measurement of overlapping leaf area of ice plants using digital image processing technique. Agriculture 2022, 12, 1321. [Google Scholar] [CrossRef]
- Singh, J.; Singh, L.; Kumar, A. Estimation of leaf area by mobile application: Fast and accurate method. Pharma. Innov. J. 2021, 10, 272–275. [Google Scholar] [CrossRef]
- Harley, J.P.; Prescott, L.M. Laboratory Exercises in Microbiology, 5th ed.; The McGraw-Hill Companies: New York, NY, USA, 2002. [Google Scholar]
- Barros, J.A.; Machado, R.C.; Amaral, C.D.; Schiavo, D.; Nogueira, A.R.A.; Nóbrega, J.A. Plant Nutrient Analysis Using the Agilent 5100 Synchronous Vertical Dual View ICP OES. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES); Agilent Technologies: Santa Clara, CA, USA, 2016; pp. 45–49. [Google Scholar] [CrossRef]
- USEPA. United States Environmental Protection Agency (USEPA) 3015A. In Microwave Assisted Acid Digestion of Sediments, Sludge and Oils, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1998. [Google Scholar]
- El Barnossi, A.; Moussaid, F.; Iraqi Housseini, A. Tangerine, banana and pomegranate peels valorization for sustainable environment: A review. Biotechnol. Rep. 2020, 29, e00574. [Google Scholar] [CrossRef]
- Lu, J.; Xu, S. Post-treatment of food waste digestate towards land application: A review. J. Clean. Prod. 2021, 303, 127033. [Google Scholar] [CrossRef]
- O’Connor, J.; Mickan, B.S.; Rinklebe, J.; Song, H.; Siddique, K.H.M.; Wang, H.; Kirkham, M.B.; Bolan, N.S. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. J. Environ. Manag. 2022, 318, 115519. [Google Scholar] [CrossRef]
- O’Connor, J.; Mickan, B.S.; Siddique, K.H.M.; Rinklebe, J.; Kirkham, M.B.; Bolan, N.S. Physical, chemical, and microbial contaminants in food waste management for soil application: A review. Environ. Pollut. 2022, 300, 118860. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.; Kleemann, R.; Attard, J. Vulnerable vegetables and efficient fishers: A study of primary production food losses and waste in Ireland. J. Environ. Manag. 2022, 307, 114498. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.; Hagare, D.; Jayasena, V.; Swick, R.; Rahman, M.M.; Boyle, N.; Ghodrat, M. Recycling of food waste to produce chicken feed and liquid fertilizer. Waste. Manag. 2021, 131, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Aslam, Z.; Ahmad, A.; Bellitürk, K.; Iqbal, N.; Idrees, M.; Rehman, W.U.; Akbar, G.; Tariq, M.; Raza, M.; Riasat, S.; et al. 26. Effects of vermicompost, vermi-tea and chemical fertilizer on morpho-physiological characteristics of tomato (Solanum lycopersicum) in Suleymanpasa District, Tekirdag of Turkey. Pure Appl. Biol. 2020, 9, 1920–1931. [Google Scholar] [CrossRef]
- Alharbi, S.; Majrashi, A.; Ghoneim, A.M.; Ali, E.F.; Modahish, A.S.; Hassan, F.A.S.; Eissa, M.A. A new method to recycle dairy waste for the nutrition of wheat plants. Agronomy 2021, 11, 840. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of vermicompost on growth, plant nutrient uptake and bioactivity of ex vitro pineapple (Ananas comosus var. MD2). Agronomy 2020, 10, 1333. [Google Scholar] [CrossRef]
- Rekha, G.S.; Kaleena, P.K.; Elumalai, D.; Srikumaran, M.P.; Maheswari, V.N. Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. Int. J. Recycl. Org. Waste. Agricult. 2018, 7, 83–88. [Google Scholar] [CrossRef]
- Hodson, A.K.; Sayre, J.M.; Lyra, M.C.C.P.; Rodrigues, J.L.M. Influence of recycled waste compost on soil food webs, nutrient cycling, and tree growth in a young almond orchard. Agronomy 2021, 11, 1745. [Google Scholar] [CrossRef]
- Loera-Muro, A.; Troyo-Diéguez, E.; Murillo-Amador, B.; Barraza, A.; Caamal-Chan, G.; Lucero-Vega, G.; Nieto-Garibay, A. Effects of vermicompost leachate versus inorganic fertilizer on morphology and microbial traits in the early development growth stage in mint (Mentha spicata L.) and rosemary (Rosmarinus officinalis L.) plants under closed hydroponic system. Horticulturae 2021, 7, 100. [Google Scholar] [CrossRef]
- Schröder, C.; Häfner, F.; Larsen, O.C.; Krause, A. Urban organic waste for urban farming: Growing lettuce using vermicompost and thermophilic compost. Agronomy 2021, 11, 1175. [Google Scholar] [CrossRef]
Treatments | VWC | FRWC | VFWC | MFCWC | BPRC | MC | V | CF | C | |
---|---|---|---|---|---|---|---|---|---|---|
Percentage | ||||||||||
Experiment layout | 10% | *8 (2)** | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) |
25% | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | |
50% | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) |
Plant Parameter * | Corrected Model | CF | MC | V | FRWC | VFWC | BPRC | MFCWC | VWC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
Plant length (cm) | 20.9 | <0.001 *** | 0.7 | 0.396 ns | 44.0 | <0.001 *** | 2.4 | 0.065 ns | 11.4 | <0.001 *** | 8.6 | <0.001 *** | 4.9 | 0.008 ** | 32.5 | <0.001 *** | 18.8 | <0.001 *** |
Root length (cm) | 11.8 | <0.001 *** | 0.5 | 0.469 ns | 25.8 | <0.001 *** | 4.3 | 0.006 ** | 6.1 | <0.001 *** | 3.1 | 0.048 * | 13.9 | <0.001 *** | 15.6 | <0.001 *** | 11.2 | <0.001 *** |
Shoot length (cm) | 12.1 | <0.001 *** | 1.2 | 0.275 ns | 24.1 | <0.001 *** | 1.8 | 0.148 ns | 8.9 | <0.001 *** | 7.5 | <0.001 *** | 6.1 | 0.003 ** | 16.7 | <0.001 *** | 6.7 | 0.002 ** |
Taproot top perimeter (cm) | 16.0 | <0.001 *** | 13.6 | <0.001 *** | 15.9 | <0.001 *** | 3.3 | 0.022 * | 12.6 | <0.001 *** | 9.3 | <0.001 *** | 9.3 | <0.001 *** | 17.0 | <0.001 *** | 12.6 | <0.001 *** |
Number of leaves | 4.4 | <0.001 *** | 1.9 | 0.166 ns | 7.7 | <0.001 *** | 1.2 | 0.324 ns | 2.4 | 0.065 ns | 7.5 | <0.001 *** | 1.8 | 0.161 ns | 4.3 | 0.014 * | 3.2 | 0.041 * |
Width of leaves (cm) | 10.0 | <0.001 *** | 1.3 | 0.263 ns | 13.1 | <0.001 *** | 2.1 | 0.103 ns | 14.3 | <0.001 *** | 8.1 | <0.001 *** | 4.6 | 0.012 * | 7.1 | 0.001 *** | 7.5 | <0.001 *** |
Height of leaves (cm) | 10.5 | <0.001 *** | 3.9 | 0.050 * | 12.7 | <0.001 *** | 0.5 | 0.683 ns | 5.8 | <0.001 *** | 13.7 | <0.001 *** | 7.5 | <0.001 *** | 10.1 | <0.001 *** | 6.9 | 0.001 *** |
Total fresh weight (g) | 13.9 | <0.001 *** | 0.3 | 0.601 ns | 14.4 | <0.001 *** | 5.0 | 0.002 ** | 14.1 | <0.001 *** | 17.5 | <0.001 *** | 9.8 | <0.001 *** | 13.5 | <0.001 *** | 3.3 | 0.040 * |
Shoot fresh weight (g) | 14.2 | <0.001 *** | 3.2 | 0.076 ns | 9.9 | <0.001 *** | 7.4 | <0.001 *** | 5.9 | <0.001 *** | 27.9 | <0.001 *** | 5.1 | 0.007 ** | 10.1 | <0.001 *** | 9.1 | <0.001 *** |
Root fresh weight (g) | 13.3 | <0.001 *** | 0.0 | 0.913 ns | 13.0 | <0.001 *** | 2.7 | 0.044 * | 2.4 | 0.072 ns | 5.0 | 0.008 ** | 15.0 | <0.001 *** | 15.5 | <0.001 *** | 22.6 | <0.001 *** |
Total plant dry weight (g) | 16.8 | <0.001 *** | 3.5 | 0.064 ns | 11.0 | <0.001 *** | 26.2 | <0.001 *** | 11.3 | <0.001 *** | 6.4 | 0.002 ** | 5.2 | 0.006 ** | 12.0 | <0.001 *** | 3.1 | 0.047 * |
Shoot dry weight (g) | 13.4 | <0.001 *** | 0.1 | 0.809 ns | 14.0 | <0.001 *** | 22.1 | <0.001 *** | 4.1 | 0.007 ** | 3.1 | 0.046 * | 3.1 | 0.048 * | 7.3 | <0.001 *** | 7.0 | 0.001 *** |
Root dry weight (g) | 8.8 | <0.001 *** | 9.6 | 0.002 ** | 34.0 | <0.001 *** | 3.4 | 0.020 * | 0.3 | 0.828 ns | 0.1 | 0.932 ns | 0.6 | 0.576 ns | 0.8 | 0.457 ns | 0.9 | 0.426 ns |
Total plant length | 21.1 | <0.001 *** | 1.0 | 0.323 ns | 44.8 | <0.001 *** | 3.1 | 0.028 * | 14.1 | <0.001 *** | 9.3 | <0.001 *** | 4.0 | 0.021 * | 33.1 | <0.001 *** | 17.6 | <0.001 *** |
Leaf surface area (LSA, cm2) | 78.8 | <0.001 *** | 34.4 | <0.001 *** | 109.7 | <0.001 *** | 12.8 | <0.001 *** | 43.0 | <0.001 *** | 215.6 | <0.001 *** | 26.0 | <0.001 *** | 102.4 | <0.001 *** | 43.1 | <0.001 *** |
Treatments | pH | EC mS/cm |
---|---|---|
Vegetable waste compost VWC (10%) | 6.84 | 3.81 |
Vegetable waste compost VWC (25%) | 7.07 | 5.36 |
Vegetable waste compost VWC (50%) | 7.27 | 6.07 |
Fruit waste compost FRWC (10%) | 5.75 | 2.94 |
Fruit waste compost FRWC (25%) | 6.66 | 3.73 |
Fruit waste compost FRWC (50%) | 6.97 | 4.47 |
Vegetable and fruit waste compost VFWC (10%) | 6.77 | 7.17 |
Vegetable and fruit waste compost VFWC (25%) | 7.52 | 5.11 |
Vegetable and fruit waste compost VFWC (50%) | 8.04 | 3.28 |
Meat, fish, and chicken waste compost (MFCWC 10%) | 6.09 | 5.53 |
Meat, fish, and chicken waste compost (MFCWC 25%) | 7.65 | 5.39 |
Meat, fish, and chicken waste compost (MFCWC 50%) | 8.52 | 6.25 |
Bread, pasta, and rice waste compost (BPRC 10%) | 6.5 | 6.25 |
Bread, pasta, and rice waste compost (BPRC 25%) | 6.85 | 5.24 |
Bread, pasta, and rice waste compost (BPRC 50%) | 7.31 | 3.67 |
Mixed compost (MC 10%) | 6.65 | 2.71 |
Mixed compost (MC 25%) | 6.52 | 4.57 |
Mixed compost (MC 50%) | 6.44 | 8.74 |
Vermicompost (V 10%) | 6.47 | 2.04 |
Vermicompost (V 25%) | 6.73 | 1.2 |
Vermicompost (V 50%) | 6.83 | 2.79 |
Chemical Fertilizer (CF) | 6.7 | 1.12 |
Control (C) | 6.4 | 0.53 |
Treatments | Total Bacterial Population Colony-Forming Units (×105) |
---|---|
Vegetable waste compost VWC (10%) | 20 |
Vegetable waste compost VWC (25%) | 75 |
Vegetable waste compost VWC (50%) | 144 |
Fruit waste compost FRWC (10%) | 22 |
Fruit waste compost FRWC (25%) | 61 |
Fruit waste compost FRWC (50%) | 27 |
Vegetable and fruit waste compost VFWC (10%) | 49 |
Vegetable and fruit waste compost VFWC (25%) | 42 |
Vegetable and fruit waste compost VFWC (50%) | 25 |
Meat, fish, and chicken waste compost (MFCWC 10%) | 15 |
Meat, fish, and chicken waste compost (MFCWC 25%) | 211 |
Meat, fish, and chicken waste compost (MFCWC 50%) | 16 |
Bread, pasta, and rice waste compost (BPRC 10%) | 0 |
Bread, pasta, and rice waste compost (BPRC 25%) | 18 |
Bread, pasta, and rice waste compost (BPRC 50%) | 136 |
Mixed compost (MC 10%) | 113 |
Mixed compost (MC 25%) | 3 |
Mixed compost (MC 50%) | 20 |
Vermicompost (V 10%) | 208 |
Vermicompost (V 25%) | 162 |
Vermicompost (V 50%) | 140 |
Chemical Fertilizer (CF) | 6 |
Control (C) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaramah, S.B.; Abu-Elsaoud, A.M.; Alteneiji, W.A.; Albedwawi, S.T.; El-Tarabily, K.A.; Al Raish, S.M. The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods 2024, 13, 1608. https://doi.org/10.3390/foods13111608
Almaramah SB, Abu-Elsaoud AM, Alteneiji WA, Albedwawi ST, El-Tarabily KA, Al Raish SM. The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods. 2024; 13(11):1608. https://doi.org/10.3390/foods13111608
Chicago/Turabian StyleAlmaramah, Sara B., Abdelghafar M. Abu-Elsaoud, Wejdan A. Alteneiji, Shaikha T. Albedwawi, Khaled A. El-Tarabily, and Seham M. Al Raish. 2024. "The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates" Foods 13, no. 11: 1608. https://doi.org/10.3390/foods13111608
APA StyleAlmaramah, S. B., Abu-Elsaoud, A. M., Alteneiji, W. A., Albedwawi, S. T., El-Tarabily, K. A., & Al Raish, S. M. (2024). The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods, 13(11), 1608. https://doi.org/10.3390/foods13111608