Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation
Abstract
:1. Introduction
2. Navigating Food Safety and Industry Challenges in the Era of COVID-19
2.1. Food Consumption Amid the COVID-19 Pandemic
2.2. Addressing Food Safety Challenges in the Pandemic
2.3. The Resilience of the Food Industry during the Pandemic
3. Exploring the Intersection of Food and Mental Health
3.1. The Dynamic Relationship between Food and Mental Health
3.2. Impact of Nutrients on Mental Well-Being
3.3. Impact of Nutrients on Immune System
3.4. Insights into Mental Health Disorders in the Modern World
3.5. Influence of Nutrition and Hunger on Mental Health
3.6. Mental Health Shapes Food Choices
3.7. COVID-19’s Influence on Mental Health and Dietary Habits
4. Ensuring Food Security and Safety Amid the COVID-19 Crisis
4.1. Big Data Impacting Dynamic Food Safety in the Food Chain
4.2. Innovations in Food Quality Assurance Technologies
- Omics techniques (genomics, transcriptomics, proteomics, and metabolomics) scrutinize DNA, mRNA, and protein alterations under diverse physiological and environmental conditions.
- The adoption of omics techniques broadens sampling programs, amplifying the detection of both known and unknown microorganisms along the food chain, including spoilage and pathogenic agents, thus enhancing food safety.
- WGS, a pivotal omics technique, facilitates the early identification of foodborne illness outbreaks and traces microorganisms throughout the food production continuum. High-resolution subtyping aids in pinpointing outbreak origins and contamination incidents.
- Omics approaches offer insights into microbial adaptation along the food continuum and strain-specific characteristics impacting human and animal health (e.g., virulence genes and antimicrobial resistance), guiding preventive measures and improving food safety.
- Integrating omics with other disciplines (e.g., genomics, proteomics, and metabolomics) reveals intricate interactions among phenomes, genomes, and environmental factors, enhancing the comprehension of crop breeding strategies and refining crop management practices.
- Revealing genetic information: WGS provides a comprehensive view of an organism’s DNA, allowing for a detailed analysis of its genetic makeup. It offers unmatched precision in understanding genetic variations within and between species.
- Widely adopted: WGS has been widely embraced by public health, food safety authorities, and the food industry for various food safety and quality applications.
- Tracing transmission chains: WGS is used to trace pathogens and spoilage organisms’ introduction and transmission chains in food production. It aids in identifying and assessing microbiological quality issues, guiding mitigation efforts for safer food production.
- Predicting adaptation and survival: WGS predicts the adaptation and survival of pathogens and spoilage organisms, including their resistance to biocides and metals. This information helps prevent their persistence in the production environment.
- Outbreak investigation: WGS aids in outbreak investigations by clearing food products and identifying the outbreak profile. It can rule out producers if the profile is not found, aiding in swift intervention and prevention.
- Monitoring and persistence: The monitoring of emerging pathogens and antimicrobial resistance aids in early detection and control.
- Source identification: WGS identifies the source of contamination for a food product, enabling public health officials to locate and remove harmful ingredients quickly. This facilitates rapid response and prevents additional illnesses.
- Comprehensive information: WGS provides valuable insights into pathogenicity, virulence, adaptation, survival, and resistance, allowing for the design and implementation of effective interventions.
- Improving safety and quality: The enhancement of the safety, quality, and shelf life of foods can be achieved through understanding bacterial genes associated with public health and spoilage.
4.3. Mitigating COVID-19 Transmission Risks in Food Handling
4.4. Tactics for Preserving Food Safety and Mental Well-Being throughout the Pandemic
Nutrients | Rich Sources | Effect | Mechanism of Action | References |
---|---|---|---|---|
Vitamin C | Citrus fruits (e.g., oranges, lemons), strawberries, kiwi, and bell peppers |
|
| [84,131,132] |
Vitamin D | Sun exposure, fatty fish (e.g., salmon, mackerel), and fortified dairy products |
|
| [133,134] |
Zinc | Oysters, beef, pumpkin seeds, and chickpeas |
|
| [86,135] |
Omega-3 Fatty Acids | Fatty fish (e.g., salmon, sardines), flaxseeds, and chia seeds |
|
| [136,137,138] |
Quercetin | Onions, apples, and berries (e.g., blueberries, cranberries) |
|
| [131,139,140] |
N-acetylcysteine (NAC) | Garlic, onions, and cruciferous vegetables. |
|
| [141,142,143] |
Selenium | Brazil nuts, fish (e.g., tuna, halibut), and whole grains |
|
| [144,145] |
Vitamin A | Sweet potatoes, carrots, and leafy greens (e.g., spinach, kale) |
|
| [146,147,148] |
Vitamin E | Nuts (e.g., almonds, sunflower seeds) and vegetable oils (e.g., sunflower oil and safflower oil) |
|
| [149,150,151] |
Magnesium | Spinach, nuts, seeds, and whole grains. |
|
| [152,153] |
Vitamin B6 | Chicken, turkey, potatoes, and bananas. |
|
| [154,155,156,157] |
Protein | Meats, poultry, fish, eggs, dairy products, legumes, nuts, and seeds |
|
| [154,155,158] |
Carbohydrates | Whole grains, fruits, vegetables, legumes, and dairy products |
|
| [157,159] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Penninx, B.W.; Benros, M.E.; Klein, R.S.; Vinkers, C.H. How COVID-19 shaped mental health: From infection to pandemic effects. Nat. Med. 2022, 28, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Rando, H.M.; Bennett, T.D.; Byrd, J.B.; Bramante, C.; Callahan, T.J.; Chute, C.G.; Davis, H.E.; Deer, R.; Gagnier, J.; Koraishy, F.M. Challenges in defining Long COVID: Striking differences across literature, Electronic Health Records, and patient-reported information. MedRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Mertens, G.; Gerritsen, L.; Duijndam, S.; Salemink, E.; Engelhard, I.M. Fear of the coronavirus (COVID-19): Predictors in an online study conducted in March 2020. J. Anxiety Disord. 2020, 74, 102258. [Google Scholar] [CrossRef] [PubMed]
- Cudjoe, T.K.M.; Kotwal, A.A. “Social Distancing” Amid a Crisis in Social Isolation and Loneliness. J. Am. Geriatr. Soc. 2020, 68, E27–E29. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Lin, Z. COVID-19, Economic Impact, Mental Health, and Coping Behaviors: A Conceptual Framework and Future Research Directions. Front. Psychol. 2021, 12, 759974. [Google Scholar] [CrossRef]
- Kellerman, J.K.; Hamilton, J.L.; Selby, E.A.; Kleiman, E.M. The Mental Health Impact of Daily News Exposure During the COVID-19 Pandemic: Ecological Momentary Assessment Study. JMIR Ment. Health 2022, 9, e36966. [Google Scholar] [CrossRef]
- van Schaik, T.; Brouwer, M.A.; Knibbe, N.E.; Knibbe, H.J.J.; Teunissen, S.C.C.M. The Effect of the COVID-19 Pandemic on Grief Experiences of Bereaved Relatives: An Overview Review. OMEGA-J. Death Dying 2022, 00302228221143861. [Google Scholar] [CrossRef]
- Pujolar, G.; Oliver-Anglès, A.; Vargas, I.; Vázquez, M.-L. Changes in Access to Health Services during the COVID-19 Pandemic: A Scoping Review. Int. J. Environ. Res. Public. Health 2022, 19, 1749. [Google Scholar] [CrossRef]
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre-and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. [Google Scholar] [CrossRef]
- Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. npj Sci. Food 2018, 2, 14. [Google Scholar] [CrossRef]
- Uyttendaele, M.; De Boeck, E.; Jacxsens, L. Challenges in food safety as part of food security: Lessons learnt on food safety in a globalized world. Procedia Food Sci. 2016, 6, 16–22. [Google Scholar] [CrossRef]
- Singh, J.; Singh, J. COVID-19 and its impact on society. Electron. Res. J. Soc. Sci. Humanit. 2020, 2, 168–172. [Google Scholar]
- Rak, A.; Donina, S.; Zabrodskaya, Y.; Rudenko, L.; Isakova-Sivak, I. Cross-Reactivity of SARS-CoV-2 Nucleocapsid-Binding Antibodies and Its Implication for COVID-19 Serology Tests. Viruses 2022, 14, 2041. [Google Scholar] [CrossRef]
- Hâncean, M.-G.; Perc, M.; Lerner, J. Early spread of COVID-19 in Romania: Imported cases from Italy and human-to-human transmission networks. R. Soc. Open Sci. 2020, 7, 200780. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.L.; Marr, L.C.; Randall, K.; Ewing, E.T.; Tufekci, Z.; Greenhalgh, T.; Tellier, R.; Tang, J.W.; Li, Y.; Morawska, L. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic? Indoor Air 2022, 32, e13070. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Ghosh, I. A mechanistic model for airborne and direct human-to-human transmission of COVID-19: Effect of mitigation strategies and immigration of infectious persons. Eur. Phys. J. Spec. Top. 2022, 231, 3371–3389. [Google Scholar] [CrossRef] [PubMed]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, K.H.; More, S.; Mortensen, A.; Naegeli, H.; Noteborn, H.; Ockleford, C.; et al. Update: Use of the benchmark dose approach in risk assessment. EFSA J. 2017, 15, e04658. [Google Scholar] [CrossRef] [PubMed]
- Administrative guidance for the processing of applications for regulated products (update 2019). EFSA Support. Publ. 2018, 15, 1362E. [CrossRef]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Ferreira da Costa, L.; Germini, A.; Goumperis, T.; et al. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef]
- Radwan, H.; Al Kitbi, M.; Hasan, H.; Al Hilali, M.; Abbas, N.; Hamadeh, R.; Saif, E.R.; Naja, F. Diet and lifestyle changes during COVID-19 lockdown in the United Arab Emirates: Results of a cross-sectional study. Res. Sq. 2020, 16, PPR214846. [Google Scholar] [CrossRef]
- Bennett, G.; Young, E.; Butler, I.; Coe, S. The impact of lockdown during the COVID-19 outbreak on dietary habits in various population groups: A scoping review. Front. Nutr. 2021, 8, 626432. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef] [PubMed]
- Aoun, C.; Nassar, L.; Soumi, S.; El Osta, N.; Papazian, T.; Rabbaa Khabbaz, L. The cognitive, behavioral, and emotional aspects of eating habits and association with impulsivity, chronotype, anxiety, and depression: A cross-sectional study. Front. Behav. Neurosci. 2019, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; De Edelenyi, F.S.; Allès, B.; Andreeva, V.A.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M. Diet and physical activity during the coronavirus disease 2019 (COVID-19) lockdown (March–May 2020): Results from the French NutriNet-Santé cohort study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, S.; Dhir, A.; Sagar, M.; Gupta, B. Determinants of organic food consumption. A systematic literature review on motives and barriers. Appetite 2019, 143, 104402. [Google Scholar] [CrossRef] [PubMed]
- Marty, L.; de Lauzon-Guillain, B.; Labesse, M.; Nicklaus, S. Food choice motives and the nutritional quality of diet during the COVID-19 lockdown in France. Appetite 2021, 157, 105005. [Google Scholar] [CrossRef] [PubMed]
- Drieskens, S.; Berger, N.; Vandevijvere, S.; Gisle, L.; Braekman, E.; Charafeddine, R.; De Ridder, K.; Demarest, S. Short-term impact of the COVID-19 confinement measures on health behaviours and weight gain among adults in Belgium. Arch. Public Health 2021, 79, 22. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de-Quel, Ó.; Suárez-Iglesias, D.; López-Flores, M.; Pérez, C.A. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: A longitudinal study. Appetite 2021, 158, 105019. [Google Scholar] [CrossRef]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef]
- Carducci, B.; Keats, E.; Ruel, M.; Haddad, L.; Osendarp, S.; Bhutta, Z. Food systems, diets and nutrition in the wake of COVID-19. Nat. Food 2021, 2, 68–70. [Google Scholar] [CrossRef]
- Ruiz-Roso, M.B.; de Carvalho Padilha, P.; Mantilla-Escalante, D.C.; Ulloa, N.; Brun, P.; Acevedo-Correa, D.; Arantes Ferreira Peres, W.; Martorell, M.; Aires, M.T.; de Oliveira Cardoso, L. COVID-19 confinement and changes of adolescent’s dietary trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-M.; Sant’Anna, A.C.; Etienne, X. How did COVID-19 impact US household foods? an analysis six months in. PLoS ONE 2021, 16, e0256921. [Google Scholar] [CrossRef] [PubMed]
- Carolan, M. Practicing social change during COVID-19: Ethical food consumption and activism pre-and post-outbreak. Appetite 2021, 163, 105206. [Google Scholar] [CrossRef] [PubMed]
- Roe, B.E.; Bender, K.; Qi, D. The impact of COVID-19 on consumer food waste. Appl. Econ. Perspect. Policy 2021, 43, 401–411. [Google Scholar] [CrossRef]
- Leeds, J.; Keith, R.; Woloshynowych, M. Food and Mood: Exploring the determinants of food choices and the effects of food consumption on mood among women in Inner London. World Nutr. 2020, 11, 68–96. [Google Scholar] [CrossRef]
- Philippe, K.; Chabanet, C.; Issanchou, S.; Monnery-Patris, S. Child eating behaviors, parental feeding practices and food shopping motivations during the COVID-19 lockdown in France: (How) did they change? Appetite 2021, 161, 105132. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Fernández, C.; Palet, D.; Haeger, P.A.; Román Mella, F. The perceived impact of COVID-19 on comfort food consumption over time: The mediational role of emotional distress. Nutrients 2021, 13, 1910. [Google Scholar] [CrossRef] [PubMed]
- Garnett, P.; Doherty, B.; Heron, T. Vulnerability of the United Kingdom’s food supply chains exposed by COVID-19. Nat. Food 2020, 1, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Weinroth, M.D.; Belk, A.D.; Belk, K.E. History, development, and current status of food safety systems worldwide. Anim. Front. 2018, 8, 9–15. [Google Scholar] [CrossRef]
- Gizaw, Z. Public health risks related to food safety issues in the food market: A systematic literature review. Environ. Health Prev. Med. 2019, 24, 68. [Google Scholar] [CrossRef]
- Dudek, M.; Śpiewak, R. Effects of the COVID-19 Pandemic on Sustainable Food Systems: Lessons Learned for Public Policies? The Case of Poland. Agriculture 2022, 12, 61. [Google Scholar] [CrossRef]
- Prosekov, A.Y.; Ivanova, S.A. Food security: The challenge of the present. Geoforum 2018, 91, 73–77. [Google Scholar] [CrossRef]
- Ahmed, N.; Azra, M.N. Aquaculture production and value chains in the COVID-19 pandemic. Curr. Environ. Health Rep. 2022, 9, 423–435. [Google Scholar] [CrossRef]
- Mahdy, M.A.; Younis, W.; Ewaida, Z. An overview of SARS-CoV-2 and animal infection. Front. Vet. Sci. 2020, 7, 596391. [Google Scholar] [CrossRef]
- Ding, Z.; Qian, H.; Xu, B.; Huang, Y.; Miao, T.; Yen, H.-L.; Xiao, S.; Cui, L.; Wu, X.; Shao, W.; et al. Toilets dominate environmental detection of severe acute respiratory syndrome coronavirus 2 in a hospital. Sci. Total Environ. 2021, 753, 141710. [Google Scholar] [CrossRef]
- Tunc, E.M.; Shin, C.K.J.; Usoro, E.; Thomas-Smith, S.E.; Migita, R.T.; Trehan, I.; Keilman, A.E. Pediatric croup during the COVID-19 Omicron variant surge. Medrxiv 2022, PPR450250. [Google Scholar] [CrossRef]
- Martin-Neuninger, R.; Ruby, M.B. What does food retail research tell us about the implications of coronavirus (COVID-19) for grocery purchasing habits? Front. Psychol. 2020, 11, 1448. [Google Scholar] [CrossRef]
- Lewis, D. Is the coronavirus airborne? Experts can’t agree. Nature 2020, 580, 175. [Google Scholar] [CrossRef] [PubMed]
- Hadei, M.; Mohebbi, S.R.; Hopke, P.K.; Shahsavani, A.; Bazzazpour, S.; Alipour, M.; Jafari, A.J.; Bandpey, A.M.; Zali, A.; Yarahmadi, M. Presence of SARS-CoV-2 in the air of public places and transportation. Atmos. Pollut. Res. 2021, 12, 302–306. [Google Scholar] [CrossRef]
- Han, S.; Liu, X. Can imported cold food cause COVID-19 recurrent outbreaks? A review. Environ. Chem. Lett. 2022, 20, 119–129. [Google Scholar] [CrossRef]
- Chen, W.; Chen, C.-L.; Cao, Q.; Chiu, C.-H. Time course and epidemiological features of COVID-19 resurgence due to cold-chain food or packaging contamination. Biomed. J. 2022, 45, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Khaskheli, M.B.; Wang, S.; Yan, X.; He, Y. Innovation of the Social Security, Legal Risks, Sustainable Management Practices and Employee Environmental Awareness in The China–Pakistan Economic Corridor. Sustainability 2023, 15, 1021. [Google Scholar] [CrossRef]
- WHO. Infection Prevention and Control during Health Care When Coronavirus Disease (COVID-19) Is Suspected or Confirmed: Interim Guidance, 12 July 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Al-Kandari, D.; Al-abdeen, J.; Sidhu, J. Food safety knowledge, attitudes and practices of food handlers in restaurants in Kuwait. Food Control 2019, 103, 103–110. [Google Scholar] [CrossRef]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, R.H.; Hansson, C.; Fenander, M.; Richard, J.E.; Dickson, S.L.; Nissbrandt, H.; Bergquist, F.; Skibicka, K.P. The stomach-derived hormone ghrelin increases impulsive behavior. Neuropsychopharmacology 2016, 41, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, N. Neurotransmitters in alcoholism: A review of neurobiological and genetic studies. Indian J. Hum. Genet. 2014, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Benton, D.; Haller, J.; Fordy, J. Vitamin supplementation for 1 year improves mood. Neuropsychobiology 1995, 32, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, B.H. Depression as a disease of modernity: Explanations for increasing prevalence. J. Affect. Disord. 2012, 140, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Dietary (n-3) fatty acids and brain development12. J. Nutr. 2007, 137, 855–859. [Google Scholar] [CrossRef]
- Kroes, M.C.; van Wingen, G.A.; Wittwer, J.; Mohajeri, M.H.; Kloek, J.; Fernández, G. Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism. Neuroimage 2014, 84, 825–832. [Google Scholar] [CrossRef]
- Lakhan, S.E.; Vieira, K.F. Nutritional therapies for mental disorders. Nutr. J. 2008, 7, 2. [Google Scholar] [CrossRef]
- Levant, B. N-3 (Omega-3) Polyunsaturated Fatty Acids in the Pathophysiology and Treatment of Depression: Pre-Clinical Evidence. CNS Neurol. Disord.-Drug Targets 2013, 12, 450–459. [Google Scholar] [CrossRef]
- McNamara, R.K. Evaluation of docosahexaenoic acid deficiency as a preventable risk factor for recurrent affective disorders: Current status, future directions, and dietary recommendations. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 223–231. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Delgado-Rodríguez, M.; Alonso, A.; Schlatter, J.; Lahortiga, F.; Majem, L.S.; Martínez-González, M.A. Association of the Mediterranean dietary pattern with the incidence of depression: The Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Arch. Gen. Psychiatry 2009, 66, 1090–1098. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J. Funct. Foods 2020, 75, 104205. [Google Scholar] [CrossRef]
- Constantin, E.-T.; Fonseca, S. The effect of food on mental health. Rev. Int. De Educ. Saúde E Ambiente 2020, 3, 1–17. [Google Scholar] [CrossRef]
- Shepherd, R. The use of the stages of change model with dietary behaviours. In The Psychology of Food Choice; Cabi: Wallingford UK, 2006; pp. 345–356. [Google Scholar]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Hanafy, N.A.N.; Li, B.; Mehanni, A.-H.E.; Taha, E.M.; Chen, W. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit. Rev. Food Sci. Nutr. 2022, 63, 9731–9751. [Google Scholar] [CrossRef]
- Valizadeh, H.; Abdolmohammadi-vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020, 89, 107088. [Google Scholar] [CrossRef]
- Lindgren, E.; Harris, F.; Dangour, A.D.; Gasparatos, A.; Hiramatsu, M.; Javadi, F.; Loken, B.; Murakami, T.; Scheelbeek, P.; Haines, A. Sustainable food systems—A health perspective. Sustain. Sci. 2018, 13, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Attia, Y.A.; Farag, M.R.; Elnesr, S.S.; Nagadi, S.A.; Shafi, M.E.; Khafaga, A.F.; Ohran, H.; Alaqil, A.A.; Abd El-Hack, M.E. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front. Vet. Sci. 2020, 7, 570748. [Google Scholar] [CrossRef] [PubMed]
- Antwi, J.; Appiah, B.; Oluwakuse, B.; Abu, B.A.Z. The Nutrition-COVID-19 Interplay: A Review. Curr. Nutr. Rep. 2021, 10, 364–374. [Google Scholar] [CrossRef]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef]
- Kurowska, K.; Kobylińska, M.; Antosik, K. Folic acid—Importance for human health and its role in COVID-19 therapy. Rocz. Panstw. Zakl. Hig. 2023, 74, 131–141. [Google Scholar] [CrossRef]
- Mehta, N.; Pokharna, P.; Shetty, S.R. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr. Health 2023, 29, 415–433. [Google Scholar] [CrossRef]
- Stafford, A.; White, N.D. Potential Benefit of Vitamin D Supplementation in COVID-19. Am. J. Lifestyle Med. 2023, 17, 202–205. [Google Scholar] [CrossRef]
- Vlieg-Boerstra, B.; de Jong, N.; Meyer, R.; Agostoni, C.; De Cosmi, V.; Grimshaw, K.; Milani, G.P.; Muraro, A.; Oude Elberink, H.; Pali-Schöll, I.; et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy 2022, 77, 1373–1388. [Google Scholar] [CrossRef]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2018, 9, 3160. [Google Scholar] [CrossRef]
- de Faria Coelho-Ravagnani, C.; Corgosinho, F.C.; Sanches, F.F.Z.; Prado, C.M.M.; Laviano, A.; Mota, J.F. Dietary recommendations during the COVID-19 pandemic. Nutr. Rev. 2021, 79, 382–393. [Google Scholar] [CrossRef]
- Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. [Google Scholar] [CrossRef] [PubMed]
- Kaminogawa, S.; Nanno, M. Modulation of Immune Functions by Foods. Evid.-Based Complement. Altern. Med. 2004, 1, 928435. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef]
- Rao, T.S.; Asha, M.; Ramesh, B.; Rao, K.J. Understanding nutrition, depression and mental illnesses. Indian J. Psychiatry 2008, 50, 77. [Google Scholar] [CrossRef]
- van Strien, T.; Cebolla, A.; Etchemendy, E.; Gutiérrez-Maldonado, J.; Ferrer-García, M.; Botella, C.; Baños, R. Emotional eating and food intake after sadness and joy. Appetite 2013, 66, 20–25. [Google Scholar] [CrossRef]
- Gardner, M.P.; Wansink, B.; Kim, J.; Park, S.-B. Better moods for better eating?: How mood influences food choice. J. Consum. Psychol. 2014, 24, 320–335. [Google Scholar] [CrossRef]
- Locher, J.L.; Yoels, W.C.; Maurer, D.; Van Ells, J. Comfort foods: An exploratory journey into the social and emotional significance of food. Food Foodways 2005, 13, 273–297. [Google Scholar] [CrossRef]
- Spence, C. Comfort food: A review. Int. J. Gastron. Food Sci. 2017, 9, 105–109. [Google Scholar] [CrossRef]
- Wansink, B.; Cheney, M.M.; Chan, N. Exploring comfort food preferences across age and gender. Physiol. Behav. 2003, 79, 739–747. [Google Scholar] [CrossRef]
- Stein, K. Contemporary comfort foods: Bringing back old favorites. J. Am. Diet. Assoc. 2008, 108. [Google Scholar] [CrossRef] [PubMed]
- Salehiniya, H.; Hatamian, S.; Abbaszadeh, H. Mental health status of dentists during COVID-19 pandemic: A systematic review and meta-analysis. Health Sci. Rep. 2022, 5, e617. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Glecia, A.; Kent-Wilkinson, A.; Leidl, D.; Kleib, M.; Risling, T. Transition of mental health service delivery to telepsychiatry in response to COVID-19: A literature review. Psychiatr. Q. 2022, 93, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Kalligeros, M.; Shehadeh, F.; Mylona, E.K.; Benitez, G.; Beckwith, C.G.; Chan, P.A.; Mylonakis, E. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity 2020, 28, 1200–1204. [Google Scholar] [CrossRef]
- Wiklund, P. The role of physical activity and exercise in obesity and weight management: Time for critical appraisal. J. Sport Health Sci. 2016, 5, 151–154. [Google Scholar] [CrossRef]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef]
- Rogero, M.M.; Calder, P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Conway, K.P.; Bhardwaj, K.; Michel, E.; Paksarian, D.; Nikolaidis, A.; Kang, M.; Merikangas, K.R.; Milham, M.P. Association between COVID-19 risk-mitigation behaviors and specific mental disorders in youth. Child Adolesc. Psychiatry Ment. Health 2023, 17, 14. [Google Scholar] [CrossRef]
- Jacobs, R.; Lesaffre, E.; Teunis, P.F.; Höhle, M.; van de Kassteele, J. Identifying the source of food-borne disease outbreaks: An application of Bayesian variable selection. Stat. Methods Med. Res. 2019, 28, 1126–1140. [Google Scholar] [CrossRef]
- Treiblmaier, H.; Garaus, M. Using blockchain to signal quality in the food supply chain: The impact on consumer purchase intentions and the moderating effect of brand familiarity. Int. J. Inf. Manag. 2023, 68, 102514. [Google Scholar] [CrossRef]
- Herrman, H.; Patel, V.; Kieling, C.; Berk, M.; Buchweitz, C.; Cuijpers, P.; Furukawa, T.A.; Kessler, R.C.; Kohrt, B.A.; Maj, M. Time for united action on depression: A Lancet–World Psychiatric Association Commission. Lancet 2022, 399, 957–1022. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Voronin, M.V.; Vakhitova, Y.V.; Tsypysheva, I.P.; Tsypyshev, D.O.; Rybina, I.V.; Kurbanov, R.D.; Abramova, E.V.; Seredenin, S.B. Involvement of Chaperone Sigma1R in the Anxiolytic Effect of Fabomotizole. Int. J. Mol. Sci. 2021, 22, 5455. [Google Scholar] [CrossRef]
- Radka, K.; Wyeth, E.H.; Derrett, S. A qualitative study of living through the first New Zealand COVID-19 lockdown: Affordances, positive outcomes, and reflections. Prev. Med. Rep. 2022, 26, 101725. [Google Scholar] [CrossRef]
- Pulido-Landínez, M. Food safety-Salmonella update in broilers. Anim. Feed Sci. Technol. 2019, 250, 53–58. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Procedural Manual, 24th ed.; 2016. Available online: www.fao.org/publications (accessed on 12 March 2023).
- Kovac, J. Precision Food Safety: A Paradigm Shift in Detection and Control of Foodborne Pathogens. mSystems 2019, 4. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Janssen, E.M.; Bouzembrak, Y.; Hendriksen, P.J.M.; Staats, M. Big data in food safety: An overview. Crit. Rev. Food Sci. Nutr. 2017, 57, 2286–2295. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Ridzuan, F.; Wan Zainon, W.M.N. A Review on Data Cleansing Methods for Big Data. Procedia Comput. Sci. 2019, 161, 731–738. [Google Scholar] [CrossRef]
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef]
- Stasiewicz, M.J.; Falade, T.D.; Mutuma, M.; Mutiga, S.K.; Harvey, J.J.; Fox, G.; Pearson, T.C.; Muthomi, J.W.; Nelson, R.J. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize. Food Control 2017, 78, 203–214. [Google Scholar] [CrossRef]
- Cook, P.W.; Nightingale, K.K. Use of omics methods for the advancement of food quality and food safety. Anim. Front. 2018, 8, 33–41. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; den Besten, H.M.W.; Böhnlein, C.; Gareis, M.; Zwietering, M.H.; Fusco, V. Reprint of: Microbial food safety in the 21st century: Emerging challenges and foodborne pathogenic bacteria. Trends Food Sci. Technol. 2019, 84, 34–37. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Arfat, Y.A. Application of high-pressure processing and polylactide/cinnamon oil packaging on chicken sample for inactivation and inhibition of Listeria monocytogenes and Salmonella Typhimurium, and post-processing film properties. Food Control 2017, 78, 160–168. [Google Scholar] [CrossRef]
- Akhtar, S. Food safety challenges—A Pakistan’s perspective. Crit. Rev. Food Sci. Nutr. 2015, 55, 219–226. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- De Swarte, C.; Donker, R. Towards an FSO/ALOP based food safety policy. Food Control 2005, 16, 825–830. [Google Scholar] [CrossRef]
- Qalati, S.A.; Zafar, Z.; Fan, M.; Limón, M.L.S.; Khaskheli, M.B. Employee performance under transformational leadership and organizational citizenship behavior: A mediated model. Heliyon 2022, 8, e11374. [Google Scholar] [CrossRef]
- Jacobson, A.; Lam, L.; Rajendram, M.; Tamburini, F.; Honeycutt, J.; Pham, T.; Van Treuren, W.; Pruss, K.; Stabler, S.R.; Lugo, K. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe 2018, 24, 296–307.e7. [Google Scholar] [CrossRef]
- Boor, K.J.; Wiedmann, M.; Murphy, S.; Alcaine, S. A 100-year review: Microbiology and safety of milk handling. J. Dairy Sci. 2017, 100, 9933–9951. [Google Scholar] [CrossRef]
- Sharma, R.; Gupta, D.; Mehrotra, R.; Mago, P. Psychobiotics: The Next-Generation Probiotics for the Brain. Curr. Microbiol. 2021, 78, 449–463. [Google Scholar] [CrossRef]
- Bundgaard-Nielsen, C.; Knudsen, J.; Leutscher, P.D.C.; Lauritsen, M.B.; Nyegaard, M.; Hagstrøm, S.; Sørensen, S. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review. Gut Microbes 2020, 11, 1172–1187. [Google Scholar] [CrossRef]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; He, W.; Zhuang, F.-J.; Chen, Y. The role of high high-sensitivity C-reactive protein levels at admission on poor prognosis after acute ischemic stroke. Int. J. Neurosci. 2019, 129, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.D.; Batra, R.; Beales, I.; Digby-Bell, J.L.; Irving, P.M.; Kellingray, L.; Narbad, A.; Franslem-Elumogo, N. Comparison of Different Strategies for Providing Fecal Microbiota Transplantation to Treat Patients with Recurrent Clostridium difficile Infection in Two English Hospitals: A Review. Infect. Dis. Ther. 2018, 7, 71–86. [Google Scholar] [CrossRef]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef]
- Shahbaz, U.; Fatima, N.; Basharat, S.; Bibi, A.; Yu, X.; Hussain, M.I.; Nasrullah, M. Role of vitamin C in preventing of COVID-19 infection, progression and severity. AIMS Microbiol. 2022, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D and its potential benefit for the COVID-19 pandemic. Endocr. Pract. 2021, 27, 484–493. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J. Zinc and respiratory tract infections: Perspectives for COVID-19. Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Rogero, M.M.; Leao, M.d.C.; Santana, T.M.; de MB Pimentel, M.V.; Carlini, G.C.; da Silveira, T.F.; Goncalves, R.C.; Castro, I.A. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic. Biol. Med. 2020, 156, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Sedighiyan, M.; Abdollahi, H.; Karimi, E.; Badeli, M.; Erfanian, R.; Raeesi, S.; Hashemi, R.; Vahabi, Z.; Asanjarani, B.; Mansouri, F. Omega-3 polyunsaturated fatty acids supplementation improve clinical symptoms in patients with COVID-19: A randomised clinical trial. Int. J. Clin. Pract. 2021, 75, e14854. [Google Scholar] [CrossRef] [PubMed]
- Weill, P.; Plissonneau, C.; Legrand, P.; Rioux, V.; Thibault, R. May omega-3 fatty acid dietary supplementation help reduce severe complications in COVID-19 patients? Biochimie 2020, 179, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.K.; Agrawal, C.; Blunden, G. Quercetin: Antiviral significance and possible COVID-19 integrative considerations. Nat. Prod. Commun. 2020, 15, 1934578X20976293. [Google Scholar] [CrossRef]
- Imran, M.; Thabet, H.K.; Alaqel, S.I.; Alzahrani, A.R.; Abida, A.; Alshammari, M.K.; Kamal, M.; Diwan, A.; Asdaq, S.M.B.; Alshehri, S. The therapeutic and prophylactic potential of quercetin against COVID-19: An outlook on the clinical studies, inventive compositions, and patent literature. Antioxidants 2022, 11, 876. [Google Scholar] [CrossRef] [PubMed]
- Jorge-Aarón, R.-M.; Rosa-Ester, M.-P. N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol. 2020, 15, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Perl, A.; Smith, D.; Lewis, T.; Kon, Z.; Goldenberg, R.; Yarta, K.; Staniloae, C.; Williams, M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin. Immunol. 2020, 219, 108544. [Google Scholar] [CrossRef] [PubMed]
- Minich, D.M.; Brown, B.I. A review of dietary (phyto) nutrients for glutathione support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, M.K.; Fatima, W.; Alraya, R.A.; Alzahrani, A.K.; Kamal, M.; Alshammari, R.S.; Alshammari, S.A.; Alharbi, L.M.; Alsubaie, N.S.; Alosaimi, R.B. Selenium and COVID-19: A spotlight on the clinical trials, inventive compositions, and patent literature. J. Infect. Public Health 2022, 15, 1225–1233. [Google Scholar] [CrossRef]
- Fakhrolmobasheri, M.; Mazaheri-Tehrani, S.; Kieliszek, M.; Zeinalian, M.; Abbasi, M.; Karimi, F.; Mozafari, A.M. COVID-19 and selenium deficiency: A systematic review. Biol. Trace Elem. Res. 2022, 200, 3945–3956. [Google Scholar] [CrossRef]
- Ross, A.C. Vitamin A and retinoic acid in T cell–related immunity. Am. J. Clin. Nutr. 2012, 96, 1166S–1172S. [Google Scholar] [CrossRef] [PubMed]
- Alzaben, A.S. The potential influence of vitamin A, C, and D and zinc supplements on the severity of COVID-19 symptoms and clinical outcomes: An updated review of literature. Curr. Res. Nutr. Food Sci. J. 2020, 8, 703–714. [Google Scholar] [CrossRef]
- Rohani, M.; Mozaffar, H.; Mesri, M.; Shokri, M.; Delaney, D.; Karimy, M. Evaluation and comparison of vitamin A supplementation with standard therapies in the treatment of patients with COVID-19. East. Mediterr. Health J. 2022, 28, 673–681. [Google Scholar] [CrossRef]
- Hakamifard, A.; Soltani, R.; Maghsoudi, A.; Rismanbaf, A.; Aalinezhad, M.; Tarrahi, M.J.; Mashayekhbakhsh, S.; Dolatshahi, K. The effect of vitamin E and vitamin C in patients with COVID-19 pneumonia; a randomized controlled clinical trial. Immunopathol. Persa 2021, 8, e8. [Google Scholar] [CrossRef]
- Diyya, A.; Thomas, N.V. Multiple micronutrient supplementation: As a supportive therapy in the treatment of COVID-19. BioMed Res. Int. 2022, 2022, 3323825. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Soltani, D. The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: A randomized clinical trial. Trials 2021, 22, 802. [Google Scholar] [CrossRef]
- Tang, C.-F.; Ding, H.; Jiao, R.-Q.; Wu, X.-X.; Kong, L.-D. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur. J. Pharmacol. 2020, 886, 173546. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.N.; Bahoosh, S.R.; Eftekhari, M.; Hosseinzadeh, L. Herbal sources of magnesium as a promising multifaceted intervention for the management of COVID-19. Nat. Prod. Commun. 2022, 17, 1934578X221116235. [Google Scholar] [CrossRef]
- Gay, R.; Meydani, S.N. The effects of vitamin E, vitamin B6, and vitamin B12 on immune function. Nutr. Clin. Care 2001, 4, 188–198. [Google Scholar] [CrossRef]
- Doke, S.; Inagaki, N.; Hayakawa, T.; Tsuge, H. Effect of vitamin B6 deficiency on an antibody production in mice. Biosci. Biotechnol. Biochem. 1997, 61, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, M.; Bedi, O.; Gupta, M.; Kumar, S.; Jaiswal, G.; Rahi, V.; Yedke, N.G.; Bijalwan, A.; Sharma, S. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 2021, 29, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.M.; Linhares, B.S.; Dias Novaes, R.; Freitas, M.B.; Sarandy, M.M.; Gonçalves, R.V. Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS ONE 2020, 15, e0233364. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, C.; Xu, X.-f.; Xu, W.; Liu, S.-w. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Moscatelli, F.; Sessa, F.; Valenzano, A.; Polito, R.; Monda, V.; Cibelli, G.; Villano, I.; Pisanelli, D.; Perrella, M.; Daniele, A. COVID-19: Role of nutrition and supplementation. Nutrients 2021, 13, 976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Ma, Z.; Rashwan, A.K.; Khaskheli, M.B.; Abdelrady, W.A.; Abdelaty, N.S.; Hassan Askri, S.M.; Zhao, P.; Chen, W.; Shamsi, I.H. Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation. Foods 2024, 13, 1610. https://doi.org/10.3390/foods13111610
Zhou F, Ma Z, Rashwan AK, Khaskheli MB, Abdelrady WA, Abdelaty NS, Hassan Askri SM, Zhao P, Chen W, Shamsi IH. Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation. Foods. 2024; 13(11):1610. https://doi.org/10.3390/foods13111610
Chicago/Turabian StyleZhou, Fanrui, Zhengxin Ma, Ahmed K. Rashwan, Muhammad Bilawal Khaskheli, Wessam A. Abdelrady, Nesma S. Abdelaty, Syed Muhammad Hassan Askri, Ping Zhao, Wei Chen, and Imran Haider Shamsi. 2024. "Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation" Foods 13, no. 11: 1610. https://doi.org/10.3390/foods13111610
APA StyleZhou, F., Ma, Z., Rashwan, A. K., Khaskheli, M. B., Abdelrady, W. A., Abdelaty, N. S., Hassan Askri, S. M., Zhao, P., Chen, W., & Shamsi, I. H. (2024). Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation. Foods, 13(11), 1610. https://doi.org/10.3390/foods13111610