Antibody Production and Immunoassay Development for Authenticating Chlorpheniramine Maleate Adulteration in Herbal Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Computational Chemistry Analysis of Haptens
2.3. Preparation of Hapten and Artificial Antigens
2.4. Production of Chlorpheniramine Maleate Polyclonal Antibody
2.5. Development and Optimization of ic-ELISA
2.6. Sample Preparation and Recovery
2.7. Sample Adaptability and Confirmatory Test
3. Results and Discussion
3.1. Hapten Design Strategy and Computational Validation
3.2. Characterization of Antisera and Antibody against Chlorpheniramine Maleate
3.3. Optimization and Development of ic-ELISA
3.4. Recovery Analysis
3.5. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Peng, X. Innovation Strategies of the Herbal Tea Industry in Guangdong. Ph.D. Dissertation, ISCTE—Instituto Universitario de Lisboa (Portugal), Lisboa, Portugal, 2015; p. 108. [Google Scholar]
- Chen, D.D.; Xie, X.F.; Ao, H.; Liu, J.L.; Peng, C. Raman spectroscopy in quality control of Chinese herbal medicine. J. Chin. Med. Assoc. 2017, 80, 288–296. [Google Scholar] [CrossRef]
- Calahan, J.; Howard, D.; Almalki, A.J.; Gupta, M.P.; Calderon, A.I. Chemical adulterants in herbal medicinal products: A review. Planta Med. 2016, 82, 505–515. [Google Scholar] [CrossRef]
- Li, F.F.; Guo, C.C.; Zhang, Y.L.; Wang, N.; Shi, Y.; Wang, S.Q. A screening method based on 1D CSSF-TOCSY for the identification and quantification of 11 illegal adulterants in herbal medicines. Microchem. J. 2020, 153, 104495. [Google Scholar] [CrossRef]
- Liu, F.Y.; Zhang, X.F.; Li, Y.Q.; Gao, H.; Ling, P.X.; Li, X.Y.; Chen, Q.X.; Ma, A.B.; Shao, H.R.; Li, M.; et al. Simultaneous screening and determination of eight tetracycline antibiotics illegally adulterated in herbal preparations using HPLC-DAD combined with LC-MS-MS. Chromatographia 2018, 81, 303–314. [Google Scholar] [CrossRef]
- Jin, P.F.; Liang, X.L.; Wu, X.J.; He, X.R.; Kuang, Y.M.; Hu, X. Screening and quantification of 18 glucocorticoid adulterants from herbal pharmaceuticals and health foods by HPLC and confirmed by LC-Q-TOF-MS/MS. Food Addit. Contam. Part A—Chem. 2018, 35, 10–19. [Google Scholar] [CrossRef]
- Li, L.; Liang, X.; Xu, T.; Xu, F.; Dong, W. Rapid detection of six glucocorticoids added illegally to dietary supplements by combining tlc with spot-concentrated raman scattering. Molecules 2018, 23, 1504. [Google Scholar] [CrossRef]
- Fang, F.; Qi, Y.P.; Lu, F.; Yang, L.B. Highly sensitive on-site detection of drugs adulterated in botanical dietary supplements using thin layer chromatography combined with dynamic surface enhanced Raman spectroscopy. Talanta 2016, 146, 351–357. [Google Scholar] [CrossRef]
- Lu, L.; Gong, X.; Tan, L. Fast screening of 24 sedative hypnotics illegally added in improving sleep health foods by high performance liquid chromatography-ion trap mass spectrometry. Chin. J. Chromatogr. 2015, 33, 256–266. [Google Scholar] [CrossRef]
- Guo, B.; Wang, M.L.; Liu, Y.Y.; Zhou, J.; Dai, H.; Huang, Z.Q.; Shen, L.L.; Zhang, Q.S.; Ghen, B. Wide-scope screening of illegal adulterants in dietary and herbal supplements via rapid polarity-switching and multistage accurate mass confirmation using an LC-IT/TOF hybrid instrument. J. Agric. Food Chem. 2015, 63, 6954–6967. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Q.X.; Chwee, T.S.; Wu, L.; Chai, Y.F.; Lu, F.; Yuan, Y.F. Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy. Anal. Chim. Acta 2015, 883, 22–31. [Google Scholar] [CrossRef]
- Gou, X.L.; Gao, X.; Hu, G.H.; Liu, W.L. Simultaneous determination of nine antidepressants in traditional Chinese medicines and health food by ultra performance liquid chromatography with tandem mass spectrometry. Chin. J. Chromatogr. 2014, 32, 822–826. [Google Scholar] [CrossRef]
- Zhu, Q.X.; Cao, Y.B.; Cao, Y.Y.; Lu, F. Rapid detection of four antipertensive chemicals adulterated in traditional chinese medicine for hypertension using TLC-SERS. Spectrosc. Spectr. Anal. 2014, 34, 990–993. [Google Scholar]
- Popescu, A.M.; Radu, G.L.; Onisei, T.; Raducanu, A.E.; Niculae, C.G. Detection by gas chromatography-mass spectrometry of adulterated food supplements. Rom. Biotech. Lett. 2014, 19, 9485–9492. [Google Scholar]
- Klinsunthorn, N.; Petsom, A.; Nhujak, T. Determination of steroids adulterated in liquid herbal medicines using QuEChERS sample preparation and high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2011, 55, 1175–1178. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, X.; Wang, L.; Guo, L.; Liu, L.; Kuang, H.; Xu, C. A fluorescence based immunochromatographic sensor for monitoring chlorpheniramine and its comparison with a gold nanoparticle-based lateral-flow strip. Analyst 2021, 146, 3589–3598. [Google Scholar] [CrossRef]
- Wen, K.; Bai, Y.; Wei, Y.; Li, C.; Shen, J.; Wang, Z. Influence of small molecular property on antibody response. J. Agric. Food Chem. 2020, 68, 10944–10950. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38, 27–28. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, W.J.; Wang, L.M.; Wang, Q.; Pei, X.Y.; Jiang, H.Y. Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay. Anal. Bioanal. Chem. 2015, 407, 7615–7624. [Google Scholar] [CrossRef]
- Song, J.; Wang, R.; Wang, Y.; Tang, Y.; Deng, A. Hapten design, modification and preparation of artificial antigens. Chin. J. Anal. Chem. 2010, 38, 1211–1218. [Google Scholar] [CrossRef]
- Guo, S.; Cui, Y.; He, L.; Zhang, L.; Cao, Z.; Zhang, W.; Zhang, R.; Tan, G.; Wang, B.; Cui, L. Development of a specific monoclonal antibody-based ELISA to measure the artemether content of antimalarial drugs. PLoS ONE 2013, 8, e79154. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Li, Q.; Zhou, P.; Wen, K.; Shen, J.; Wang, Z. The hapten rigidity improves antibody performances in immunoassay for rifamycins: Immunovalidation and molecular mechanism. J. Hazard. Mater. 2024, 469, 133977. [Google Scholar] [CrossRef]
- Li, X.M.; Wen, K.; Chen, Y.Q.; Wu, X.P.; Pei, X.Y.; Wang, Q.; Liu, A.L.; Shen, J.Z. Multiplex immunogold chromatographic assay for simultaneous determination of macrolide antibiotics in raw milk. Food Anal. Meth. 2015, 8, 2368–2375. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Xian, Y.; Dong, H.; Chen, Q.; Huang, Q. Investigation of 8 exogenous medicines illegally added into Guangdong herbal teas by solid phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 921–929. [Google Scholar] [CrossRef]
- BJS 201713; Determination of 59 Compounds Such as Acetaminophen in Beverages, Tea and Related Products. State Standard: Beijing, China, 2017.
- Mari, G.M.; Li, H.; Dong, B.; Yang, H.; Talpur, A.; Mi, J.; Guo, L.; Yu, X.; Ke, Y.; Han, D.; et al. Hapten synthesis, monoclonal antibody production and immunoassay development for direct detection of 4-hydroxybenzehydrazide in chicken, the metabolite of nifuroxazide. Food Chem. 2021, 355, 129598. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, H.; Xiao, Z.; Fu, H.; Shen, Y.; Luo, L.; Wang, H.; Lei, H.; Hongsibsong, S.; Xu, Z. Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immunochromatographic assays for simultaneous pesticide screening. J. Hazard. Mater. 2021, 412, 125241. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, Y.; Wang, J.; Lei, Y.; Koidis, A.; Li, X.; Shen, X.; Xu, Z.; Lei, H. Broad-specific immunochromatography for simultaneous detection of various sulfonylureas in adulterated multi-herbal tea. Food Chem. 2022, 370, 131055. [Google Scholar] [CrossRef]
Analyte | IC50 (µg/L) | CR (%) |
---|---|---|
Chlorpheniramine maleate | 1.18 | 100.00 |
Loratadine | >2000 | <0.01 |
Oxaprozin | >2000 | <0.01 |
Levocetirizine | >2000 | <0.01 |
Aceclofenac | >2000 | <0.01 |
Diphenhydramine | >2000 | <0.01 |
Phenylbutazone | >2000 | <0.01 |
Ephedrine hydrochloride | >2000 | <0.01 |
Ketoprofen | >2000 | <0.01 |
Pseudoephedrine hydrochloride | >2000 | <0.01 |
Salicylic acid | >2000 | <0.01 |
Aminophenazone | >2000 | <0.01 |
Antipyrine | >2000 | <0.01 |
Sulindac | >2000 | <0.01 |
Indomethacin | >2000 | <0.01 |
Azelastine | >2000 | <0.01 |
Diclofenac sodium | >2000 | <0.01 |
Promethazine | >2000 | <0.01 |
Dexamethasone | >2000 | <0.01 |
Metamizole sodium | >2000 | <0.01 |
Pentoxyverine citrate | >2000 | <0.01 |
Fexofenadine | >2000 | <0.01 |
Samples No. | Spiked Levels (µg/L) | ic-ELISA | LC-MS/MS | ||||
---|---|---|---|---|---|---|---|
Measured (µg/L) (Mean ± SD a) | Recovery c (%) | CV b (%) | Measured (µg/L) | Recovery (%) | CV (%) | ||
Blank | 0 | ND c | NC d | NC | ND | NC | NC |
1 | 2 | 1.88 ± 0.07 | 94.0 | 3.8 | 2.25 ± 0.02 | 112.4 | 0.7 |
2 | 4 | 3.51 ± 0.08 | 87.7 | 2.2 | 4.31 ± 0.02 | 107.8 | 0.3 |
3 | 6 | 6.59 ± 0.62 | 109.9 | 9.4 | 6.41 ± 0.01 | 106.8 | 0.1 |
Samples No. | Spiked Levels (µg/L) | ic-ELISA | LC-MS/MS | ||||
---|---|---|---|---|---|---|---|
Measured (μg/kg) (Mean ± SD a) | Recovery (%) | CV b (%) | Measured (µg/L) | Recovery (%) | CV (%) | ||
1 | 0 | ND c | NC d | NC | ND | NC | NC |
2 | 0 | ND | NC | NC | ND | NC | NC |
3 | 0 | ND | NC | NC | ND | NC | NC |
4 | 0 | ND | NC | NC | ND | NC | NC |
5 | 0 | ND | NC | NC | ND | NC | NC |
6 | 0 | ND | NC | NC | ND | NC | NC |
7 | 0 | ND | NC | NC | ND | NC | NC |
8 | 0 | 128.59 ± 2.38 | NC | 1.85 | 130.00 | NC | NC |
9 | 0 | 111.88 ± 6.09 | NC | 5.44 | 120.00 | NC | NC |
10 | 0 | ND | NC | NC | ND | NC | NC |
11 | 0 | ND | NC | NC | ND | NC | NC |
12 | 0 | ND | NC | NC | ND | NC | NC |
13 | 0 | ND | NC | NC | ND | NC | NC |
14 | 0 | ND | NC | NC | ND | NC | NC |
15 | 0 | ND | NC | NC | ND | NC | NC |
16 | 0 | ND | NC | NC | ND | NC | NC |
17 | 0 | ND | NC | NC | ND | NC | NC |
18 | 0 | ND | NC | NC | ND | NC | NC |
19 | 0 | ND | NC | NC | ND | NC | NC |
20 | 0 | ND | NC | NC | ND | NC | NC |
21 | 0 | 5373 ± 24 | NC | 0.44 | 5020 | NC | NC |
22 | 0 | 110.40 ± 3.56 | NC | 3.22 | 110.00 | NC | NC |
23 | 0 | ND | NC | NC | ND | NC | NC |
24 | 0 | ND | NC | NC | ND | NC | NC |
25 | 0 | ND | NC | NC | ND | NC | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Liu, Z.; Guan, T.; Lei, Y.; Pan, L.; Yu, X.; Zhang, S.; Huang, X.-A.; Lei, H.; Chen, J. Antibody Production and Immunoassay Development for Authenticating Chlorpheniramine Maleate Adulteration in Herbal Tea. Foods 2024, 13, 1609. https://doi.org/10.3390/foods13111609
Lin J, Liu Z, Guan T, Lei Y, Pan L, Yu X, Zhang S, Huang X-A, Lei H, Chen J. Antibody Production and Immunoassay Development for Authenticating Chlorpheniramine Maleate Adulteration in Herbal Tea. Foods. 2024; 13(11):1609. https://doi.org/10.3390/foods13111609
Chicago/Turabian StyleLin, Jianhao, Zhiwei Liu, Tian Guan, Yi Lei, Liangwen Pan, Xiaoqin Yu, Shiwei Zhang, Xin-An Huang, Hongtao Lei, and Jiahong Chen. 2024. "Antibody Production and Immunoassay Development for Authenticating Chlorpheniramine Maleate Adulteration in Herbal Tea" Foods 13, no. 11: 1609. https://doi.org/10.3390/foods13111609
APA StyleLin, J., Liu, Z., Guan, T., Lei, Y., Pan, L., Yu, X., Zhang, S., Huang, X. -A., Lei, H., & Chen, J. (2024). Antibody Production and Immunoassay Development for Authenticating Chlorpheniramine Maleate Adulteration in Herbal Tea. Foods, 13(11), 1609. https://doi.org/10.3390/foods13111609