Increased Levels of Phosphorylated-P38α Induce WNT/β-Catenin and NGF/P75NTR/TrkA Pathways Disruption and SN56 Cell Death following Single and Repeated Chlorpyrifos Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Procedure
2.2. Analysis of Cell Viability and Caspases Activation
2.3. GSK-3β Activity Analysis
2.4. Gene Expression and Protein Content Analysis
2.5. Gene Knockdown
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Rohlman, D.S.; Anger, W.K.; Lein, P.J. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology 2011, 32, 268–276. [Google Scholar] [CrossRef]
- López-Granero, C.; Canadas, F.; Cardona, D.; Yu, Y.; Gimenez, E.; Lozano, R.; Avila, D.S.; Aschner, M.; Sanchez-Santed, F. Chlorpyrifos, diisopropylphosphorofluoridate, and parathion-induced behavioral and oxidative stress effects: Are they mediated by analogous mechanisms of action? Toxicol. Sci. 2013, 131, 206–216. [Google Scholar] [CrossRef]
- López-Granero, C.; Ruiz-Muñoz, A.M.; Nieto-Escámez, F.A.; Colomina, M.T.; Aschner, M.; Sánchez-Santed, F. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior. Neurotoxicology 2016, 53, 85–92. [Google Scholar] [CrossRef]
- Del Pino, J.; Moyano, P.; Anadon, M.J.; García, J.M.; Díaz, M.J.; García, J.; Frejo, M.T. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration. Toxicology 2015, 336, 1–9. [Google Scholar] [CrossRef]
- Berry, A.S.; Harrison, T.M. New perspectives on the basal forebrain cholinergic system in Alzheimer’s disease. Neurosci. Biobehav. Rev. 2023, 150, 105192. [Google Scholar] [CrossRef]
- Del Pino, J.; Moyano, P.; Anadon, M.J.; García, J.M.; Díaz, M.J.; Gómez, G.; García, J.; Frejo, M.T. SN56 basal forebrain cholinergic neuronal loss after acute and long-term chlorpyrifos exposure through oxidative stress generation; P75(NTR) and α7-nAChRs alterations mediated partially by AChE variants disruption. Toxicology 2016, 353–354, 48–57. [Google Scholar]
- Moyano, P.; García, J.M.; García, J.; Pelayo, A.; Muñoz-Calero, P.; Frejo, M.T.; Anadon, M.J.; Naval, M.V.; Flores, A.; Mirat, V.A.; et al. Chlorpyrifos induces cell proliferation in MCF-7 and MDA-MB-231 cells, through cholinergic and Wnt/beta-catenin signaling disruption, AChE-R upregulation and oxidative stress generation after single and repeated treatment. Food Chem. Toxicol. 2021, 152, 112241. [Google Scholar] [CrossRef]
- Narvaes, R.F.; Furini, C.R.G. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol. Learn. Mem. 2022, 187, 107558. [Google Scholar] [CrossRef]
- Kostes, W.W.; Brafman, D.A. The Multifaceted Role of WNT Signaling in Alzheimer’s Disease Onset and Age-Related Progression. Cells 2023, 12, 1204. [Google Scholar] [CrossRef]
- Fahnestock, M.; Shekari, A. ProNGF and Neurodegeneration in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Moyano, P.; Flores, A.; García, J.; García, J.M.; Anadon, M.J.; Frejo, M.T.; Sola, E.; Pelayo, A.; Del Pino, J. Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75NTR signaling disruption. Food Chem. Toxicol. 2021, 157, 112614. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, R.A.; Pundavela, J.; Biarc, J.; Chalkley, R.J.; Burlin-game, A.L.; Hondermarck, H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv. Biol. Regul. 2015, 58, 16–27. [Google Scholar] [CrossRef]
- Ki, Y.W.; Park, J.H.; Lee, J.E.; Shin, I.C.; Koh, H.C. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 2013, 218, 235–245. [Google Scholar] [CrossRef]
- Alam, J.J.; Nixon, R.A. Drug development targeting degeneration of the basal forebrain cholinergic system: Its time has come. Mol. Neurodegener. 2023, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Lepore Signorile, M.; Fasano, C.; Forte, G.; De Marco, K.; Sanese, P.; Disciglio, V.; Di Nicola, E.; Pantaleo, A.; Simone, C.; Grossi, V. Uncoupling p38α nuclear and cytoplasmic functions and identification of two p38α phosphorylation sites on β-catenin: Implications for the Wnt signaling pathway in CRC models. Cell Biosci. 2023, 13, 223. [Google Scholar] [CrossRef]
- Gravina, G.L.; Marampon, F.; Sanità, P.; Mancini, A.; Colapietro, A.; Scarsella, L.; Jitariuc, A.; Biordi, L.; Ficorella, C.; Festuccia, C. Increased expression and activity of p75NTR are crucial events in azacitidine-induced cell death in prostate cancer. Oncol. Rep. 2016, 36, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ohta, M.; Chosa, N.; Kyakumoto, S.; Yokota, S.; Okubo, N.; Nemoto, A.; Kamo, M.; Joh, S.; Satoh, K.; Ishisaki, A. IL-1beta and TNF-alpha suppress TGF-beta-promoted NGF expression in periodontal ligament-derived fibroblasts through inactivation of TGF-beta-induced Smad2/3- and p38 MAPK-mediated signals. Int. J. Mol. Med. 2018, 42, 1484–1494. [Google Scholar]
- Moyano, P.; Frejo, M.T.; Anadon, M.J.; García, J.M.; Díaz, M.J.; Lobo, M.; Sola, E.; García, J.; Del Pino, J. SN56 neuronal cell death after 24 h and 14 days chlorpyrifos exposure through glutamate transmission dysfunction, increase of GSK-3beta enzyme, beta-amyloid and tau protein levels. Toxicology 2018, 402–403, 17–27. [Google Scholar] [CrossRef]
- Khokhar, J.Y.; Tyndale, R.F. Intracerebroventricularly and systemically delivered inhibitor of brain CYP2B (C8-Xanthate), even following chlorpyrifos exposure, reduces chlorpyrifos activation and toxicity in male rats. Toxicol. Sci. 2014, 140, 49–60. [Google Scholar] [CrossRef]
- Nandi, N.K.; Vyas, A.; Akhtar, M.J.; Kumar, B. The growing concern of chlorpyrifos exposures on human and environmental health. Pestic. Biochem. Physiol. 2022, 185, 105138. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, L.; McGrew, S.; Fenske, R.A. Flawed analysis of an intentional human dosing study and its impact on chlorpyrifos risk assessments. Environ. Int. 2020, 143, 105905. [Google Scholar] [CrossRef] [PubMed]
- Terry, A.V., Jr.; Gearhart, D.A.; Beck, W.D., Jr.; Truan, J.N.; Middlemore, M.L.; Williamson, L.N.; Bartlett, M.G.; Prendergast, M.A.; Sickles, D.W.; Buccafusco, J.J. Chronic, intermittent exposure to chlorpyrifos in rats: Protracted effects on axonal transport, neurotrophin receptors, cholinergic markers, and information processing. J. Pharmacol. Exp. Ther. 2007, 322, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef]
- Betancourt, A.M.; Carr, R.L. The effect of chlorpyrifos and chlorpyrifos-oxon on brain cholinesterase, muscarinic receptor binding, and neurotrophin levels in rats following early post-natal exposure. Toxicol. Sci. 2004, 77, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Veverova, K.; Katonová, A.; Vyhnalek, M.; Hort, J. Serum PAI-1/BDNF Ratio Is Increased in Alzheimer’s Disease and Correlates with Disease Severity. ACS Omega 2023, 8, 36025–36031. [Google Scholar] [CrossRef] [PubMed]
- Panahi, G.; Pasalar, P.; Zare, M.; Rizzuto, R.; Meshkani, R. High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells. Arch. Physiol. Biochem. 2018, 124, 468–474. [Google Scholar] [CrossRef]
- Flores, A.; Moyano, P.; Sola, E.; García, J.M.; García, J.; Frejo, M.T.; Guerra-Menéndez, L.; Labajo, E.; Lobo, I.; Abascal, L.; et al. Bisphenol-A Neurotoxic Effects on Basal Forebrain Cholinergic Neurons In Vitro and In Vivo. Biology 2023, 12, 782. [Google Scholar] [CrossRef]
- Jia, X.X.; Zhu, T.T.; Huang, Y.; Zeng, X.X.; Zhang, H.; Zhang, W.X. Wnt/β-catenin signaling pathway regulates asthma airway remodeling by influencing the expression of c-Myc and cyclin D1 via the p38 MAPK-dependent pathway. Exp. Ther. Med. 2019, 18, 3431–3438. [Google Scholar] [CrossRef]
- Tan, Z.; Kang, T.; Zhang, X.; Tong, Y.; Chen, S. Nerve growth factor prevents arsenic-induced toxicity in PC12 cells through the AKT/GSK-3β/NFAT pathway. J. Cell Physiol. 2019, 234, 4726–4738. [Google Scholar] [CrossRef] [PubMed]
- Mok, S.A.; Lund, K.; Campenot, R.B. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res. 2009, 19, 546–560. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyano, P.; Flores, A.; Fernández, M.d.l.C.; García, J.; Sanjuan, J.; Plaza, J.C.; Del Pino, J. Increased Levels of Phosphorylated-P38α Induce WNT/β-Catenin and NGF/P75NTR/TrkA Pathways Disruption and SN56 Cell Death following Single and Repeated Chlorpyrifos Treatment. Foods 2024, 13, 2427. https://doi.org/10.3390/foods13152427
Moyano P, Flores A, Fernández MdlC, García J, Sanjuan J, Plaza JC, Del Pino J. Increased Levels of Phosphorylated-P38α Induce WNT/β-Catenin and NGF/P75NTR/TrkA Pathways Disruption and SN56 Cell Death following Single and Repeated Chlorpyrifos Treatment. Foods. 2024; 13(15):2427. https://doi.org/10.3390/foods13152427
Chicago/Turabian StyleMoyano, Paula, Andrea Flores, María de la Cabeza Fernández, Jimena García, Javier Sanjuan, José Carlos Plaza, and Javier Del Pino. 2024. "Increased Levels of Phosphorylated-P38α Induce WNT/β-Catenin and NGF/P75NTR/TrkA Pathways Disruption and SN56 Cell Death following Single and Repeated Chlorpyrifos Treatment" Foods 13, no. 15: 2427. https://doi.org/10.3390/foods13152427
APA StyleMoyano, P., Flores, A., Fernández, M. d. l. C., García, J., Sanjuan, J., Plaza, J. C., & Del Pino, J. (2024). Increased Levels of Phosphorylated-P38α Induce WNT/β-Catenin and NGF/P75NTR/TrkA Pathways Disruption and SN56 Cell Death following Single and Repeated Chlorpyrifos Treatment. Foods, 13(15), 2427. https://doi.org/10.3390/foods13152427