How Does Domestic Cooking Affect the Biochemical Properties of Wild Edible Greens of the Asteraceae Family?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Plant Material
2.3. Hydroethanolic Extracts and Decoction Preparations
2.4. Chemical Characterization
2.4.1. Free Sugar and Organic Acid Composition
2.4.2. Fatty Acid Profile and Tocopherol Composition
2.4.3. Phenolic Compounds
2.5. Bioactive Properties
2.5.1. Antioxidant Activity
2.5.2. Antiproliferative Activity
2.5.3. Anti-Inflammatory Activity
2.5.4. Antimicrobial Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Hydrophilic Compounds
3.2. Lipophilic Compounds
3.3. Phenolic Compounds
3.4. Bioactive Properties
3.5. Antimicrobial Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Valorization of Wild Edible Plants as Food Ingredients and Their Economic Value. Foods 2023, 12, 1012. [Google Scholar] [CrossRef]
- Panfili, G.; Niro, S.; Bufano, A.; D’Agostino, A.; Fratianni, A.; Paura, B.; Falasca, L.; Cinquanta, L. Bioactive Compounds in Wild Asteraceae Edible Plants Consumed in the Mediterranean Diet. Plant Foods Hum. Nutr. 2020, 75, 540–546. [Google Scholar] [CrossRef]
- Carrascosa, Á.; Pascual, A.; Ros, M.; Petropoulos, S.; Alguacil, M. The Effect of Fertilization Regime on Growth Parameters of Sonchus oleraceus and Two Genotypes of Portulaca oleracea. Biol. Life Sci. Forum 2022, 16, 7. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Petropoulos, S.A. Physiological and growth responses of several genotypes of common purslane (Portulaca oleracea L.) under mediterranean semi-arid conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 569–575. [Google Scholar] [CrossRef]
- Liava, V.; Karkanis, A.; Tsiropoulos, N. Yield and silymarin content in milk thistle (Silybum marianum (L.) Gaertn.) fruits affected by the nitrogen fertilizers. Ind. Crops Prod. 2021, 171, 113955. [Google Scholar] [CrossRef]
- Liava, V.; Karkanis, A.; Danalatos, N.; Tsiropoulos, N. Effects of Two Varieties and Fertilization Regimes on Growth, Fruit, and Silymarin Yield of Milk Thistle Crop. Agronomy 2022, 12, 105. [Google Scholar] [CrossRef]
- Platis, D.P.; Papoui, E.; Bantis, F.; Katsiotis, A.; Koukounaras, A.; Mamolos, A.P.; Mattas, K. Underutilized Vegetable Crops in the Mediterranean Region: A Literature Review of Their Requirements and the Ecosystem Services Provided. Sustainability 2023, 15, 4921. [Google Scholar] [CrossRef]
- Amirul Alam, M.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef]
- Amoruso, F.; Signore, A.; Gómez, P.A.; Martínez-Ballesta, M.D.C.; Giménez, A.; Franco, J.A.; Fernández, J.A.; Egea-Gilabert, C. Effect of Saline-Nutrient Solution on Yield, Quality, and Shelf-Life of Sea Fennel (Crithmum maritimum L.) Plants. Horticulturae 2022, 8, 127. [Google Scholar] [CrossRef]
- Bueno, M.; Lendínez, M.L.; Aparicio, C.; Cordovilla, M.P. Germination and growth of Atriplex prostrata and Plantago coronopus: Two strategies to survive in saline habitats. Flora Morphol. Distrib. Funct. Ecol. Plants 2017, 227, 56–63. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef]
- Freitas, J.A.; Ccana-Ccapatinta, G.V.; Da Costa, F.B. LC-MS metabolic profiling comparison of domesticated crops and wild edible species from the family Asteraceae growing in a region of São Paulo state, Brazil. Phytochem. Lett. 2021, 42, 45–51. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem. 2006, 99, 813–821. [Google Scholar] [CrossRef]
- Alper, M.; Güneş, H. Determination of anticancer effects of Urospermum picroides against human cancer cell lines. Int. J. Second. Metab. 2019, 6, 28–37. [Google Scholar] [CrossRef]
- Åhlberg, M.K. A profound explanation of why eating green (wild) edible plants promote health and longevity. Food Front. 2021, 2, 240–267. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Psaroudaki, A.; Dimitropoulakis, P.; Constantinidis, T.; Katsiotis, A.; Skaracis, G.N. Ten Indigenous Edible Plants: Contemporary Use in Eastern Crete, Greece. Cult. Agric. Food Environ. 2012, 34, 172–177. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I.C.F.R. Nutritional profile and chemical composition of Cichorium spinosum ecotypes. LWT-Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Papafilippaki, A.; Nikolaidis, N.P. Comparative study of wild and cultivated populations of Cichorium spinosum: The influence of soil and organic matter addition. Sci. Hortic. 2020, 261, 108942. [Google Scholar] [CrossRef]
- Panagouleas, C.; Skaltsa, H.; Lazari, D.; Skaltsounis, A.L.; Sokovic, M. Antifungal activity of secondary metabolites of Centaurea raphanina ssp. mixta, growing wild in Greece. Pharm. Biol. 2003, 41, 266–270. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef]
- Gray, D.J.; Trigiano, R.N. Towards a more sustainable agriculture. CRC. Crit. Rev. Plant Sci. 2011, 30, 1. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Rouphael, Y.; Petropoulos, S.A. Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress. Horticulturae 2023, 9, 65. [Google Scholar] [CrossRef]
- Vidalis, N.; Kourkouvela, M.; Argyris, D.C.; Liakopoulos, G.; Alexopoulos, A.; Petropoulos, S.A.; Karapanos, I. The Impact of Salinity on Growth, Physio-Biochemical Characteristics, and Quality of Urospermum picroides and Reichardia picroides Plants in Varied Cultivation Regimes. Agricagriculture 2023, 13, 1852. [Google Scholar] [CrossRef]
- Biscotti, N.; Pieroni, A.; Luczaj, L. The hidden Mediterranean diet: Wild vegetables traditionally gathered and consumed in the Gargano area, Apulia, SE Italy. Acta Soc. Bot. Pol. 2015, 84, 327–338. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Detopoulou, P.; Nomikos, T.; Pliakis, E.; Panagiotakos, D.B.; Antonopoulou, S. Mediterranean wild plants reduce postprandial platelet aggregation in patients with metabolic syndrome. Metabolism 2012, 61, 325–334. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Tzortzakis, N. Optimising fertigation of hydroponically grown sowthistle (Sonchus oleraceus L.): The impact of the nitrogen source and supply concentration. Agric. Water Manag. 2023, 289, 108528. [Google Scholar] [CrossRef]
- De Paula Filho, G.X.; Barreira, T.F.; Pinheiro-Sant’Ana, H.M. Chemical Composition and Nutritional Value of Three Sonchus Species. Int. J. Food Sci. 2022, 2022, 4181656. [Google Scholar] [CrossRef]
- Turner, N.J.; Luczaj, L.J.; Migliorini, P.; Pieroni, A.; Dreon, A.L.; Sacchetti, L.E.; Paoletti, M.G. Edible and tended wild plants, traditional ecological knowledge and Agroecology. CRC. Crit. Rev. Plant Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Boari, F.; Cefola, M.; Di Gioia, F.; Pace, B.; Serio, F.; Cantore, V. Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants. Int. J. Food Sci. Nutr. 2013, 64, 870–876. [Google Scholar] [CrossRef]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today ‘s society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef]
- Feyisa, K.; Yismaw, M.B.; Yehualaw, A.; Tafere, C.; Demsie, D.G.; Bahiru, B.; Kefale, B. Medicinal plants traditionally used to treat human ailments in Ethiopia: A systematic review. Phytomedicine Plus 2024, 4, 100516. [Google Scholar] [CrossRef]
- Maleš, I.; Pedisić, S.; Zorić, Z.; Elez-Garofulić, I.; Repajić, M.; You, L.; Vladimir-Knežević, S.; Butorac, D.; Dragović-Uzelac, V. The medicinal and aromatic plants as ingredients in functional beverage production. J. Funct. Foods 2022, 96, 105210. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Brieudes, V.; Angelis, A.; Vougogiannopoulos, K.; Pratsinis, H.; Kletsas, D.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L.A. Phytochemical analysis and antioxidant potential of the phytonutrient-rich decoction of Cichorium spinosum and C. intybus. Planta Med. 2016, 82, 1070–1078. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Arampatzis, D.A.; Tsiropoulos, N.G.; Petrović, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT-Food Sci. Technol. 2020, 123, 109099. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; De Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Antoniadis, V.; Barros, L.; Ferreira, I.C.F.R. Nutrient solution composition and growing season affect yield and chemical composition of Cichorium spinosum plants. Sci. Hortic. 2018, 231, 97–107. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. The effect of nitrogen fertigation and harvesting time on plant growth and chemical composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules 2020, 25, 3175. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. Effects of growing substrate and nitrogen fertilization on the chemical composition and bioactive properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy 2021, 11, 576. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chem. 2012, 135, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.; Garrido-Bañuelos, G.; Bergdoll, M.; Vilaplana, F.; Menzel, C.; Mihnea, M.; Lopez-Sanchez, P. Comparison of steaming and boiling of root vegetables for enhancing carbohydrate content and sensory profile. J. Food Eng. 2022, 312, 110754. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef]
- Seal, T.; Chaudhuri, K.; Pillai, B. Nutritional and toxicological aspects of selected wild edible plants and significance for this society. S. Afr. J. Bot. 2023, 159, 219–230. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef]
- Petkova, N.; Ognyanov, M.; Kirchev, M.; Stancheva, M. Bioactive compounds in water extracts prepared from rosehip-containing herbal blends. J. Food Process. Preserv. 2021, 45, e14645. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M. Nutrient composition and antioxidant activity of eight tomato Lycopersicon esculentum) varieties. J. Food Compos. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-García, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Himénez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.; Giménez-Giménez, A.; Rodríguez-García, I.; Torija-Isasa, M. Nutritional composition of Sonchus species (S asper L, S oleraceus L and S tenerrimus L). J. Sci. Food Agric. 1998, 76, 628–632. [Google Scholar] [CrossRef]
- Paschoalinotto, B.H.; Polyzos, N.; Compocholi, M.; Rouphael, Y.; Alexopoulos, A.; Dias, M.I.; Barros, L.; Petropoulos, S.A. Domestication of Wild Edible Species: The Response of Scolymus hispanicus Plants to Different Fertigation Regimes. Horticulturae 2023, 9, 103. [Google Scholar] [CrossRef]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.D.T.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef]
- Kumar, I.; Yadav, P.; Gautam, M.; Panwar, H. Impact of Heat on Naturally Present Digestive Enzymes in Food. Int. J. Food, Nutr. Diet. 2022, 10, 57–63. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT-Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Res. Int. 2014, 56, 266–271. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, J.; Kang, Y.; Kim, D.; Park, J.J.; Kim, H.J. Effect of different cooking method on vitamin E and K content and true retention of legumes and vegetables commonly consumed in Korea. Food Sci. Biotechnol. 2023, 32, 647–658. [Google Scholar] [CrossRef]
- Mikropoulou, E.V.; Vougogiannopoulou, K.; Kalpoutzakis, E.; Sklirou, A.D.; Skaperda, Z.; Houriet, J.; Wolfender, J.L.; Trougakos, I.P.; Kouretas, D.; Halabalaki, M.; et al. Phytochemical composition of the decoctions of Greek edible greens (chórta) and evaluation of antioxidant and cytotoxic properties. Molecules 2018, 23, 1541. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Fernandes, A.; Barros, L.; Ferreira, I. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes. J. Sci. Food Agric. 2017, 98, 183–189. [Google Scholar] [CrossRef]
- Polyzos, N.; Paschoalinotto, B.H.; Compocholi, M.; Pinela, J.; Heleno, S.A.; Calhelha, R.C.; Dias, M.I.; Barros, L.; Petropoulos, S.A. Fertilization of pot-grown Cichorium spinosum L.: How it can affect plant growth, chemical profile, and bioactivities of edible parts? Horticulturae 2022, 8, 890. [Google Scholar] [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Saber, F.R.; Elosaily, A.H.; Mahrous, E.A.; Pecio, Ł.; Pecio, S.; El-Amier, Y.A.; Korczak, M.; Piwowarski, J.P.; Świątek, Ł.; Skalicka-Woźniak, K. Detailed metabolite profiling and in vitro studies of Urospermum picroides as a potential functional food. Food Chem. 2023, 427, 136677. [Google Scholar] [CrossRef]
- Aissani, F.; Grara, N.; Guelmamene, R. Phytochemical screening and toxicity investigation of hydro-methanolic and aqueous extracts from aerial parts of Sonchus oleraceus L. in Swiss albino mice. Comp. Clin. Path. 2022, 31, 509–528. [Google Scholar] [CrossRef]
- Juhaimi, F.A.L.; Mohamed, K.G.I.A.; Babiker, A.E.E. Comparative study of mineral and oxidative status of Sonchus oleraceus, Moringa oleifera and Moringa peregrina leaves. J. Food Meas. Charact. 2017, 11, 1745–1751. [Google Scholar] [CrossRef]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Cascarano, N.A.; Nigro, F.; Vanadia, S.; Di Venere, D. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Stagos, D.; Balabanos, D.; Savva, S.; Skaperda, Z.; Priftis, A.; Kerasioti, E.; Mikropoulou, E.V.; Vougogiannopoulou, K.; Mitakou, S.; Halabalaki, M.; et al. Extracts from the mediterranean food plants Carthamus lanatus, Cichorium intybus, and Cichorium spinosum enhanced GSH levels and increased Nrf2 expression in human endothelial cells. Oxid. Med. Cell. Longev. 2018, 2018, 6594101. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef] [PubMed]
- Petkova, N.; Ivanova, L.; Filova, G.; Ivanov, I.; Denev, P. Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants. J. Appl. Pharm. Sci. 2017, 7, 55–61. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Korgiopoulou, C.; Mavropoulos, K.; Liakopoulos, G.; Karabourniotis, G. Leaf anatomy affects the extraction of photosynthetic pigments by DMSO. Talanta 2008, 76, 1265–1268. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Calhelha, R.C.; Maria, A.; Santos-buelga, C.; João, M.; Queiroz, R.P.; Ferreira, I.C.F.R. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chem. 2013, 136, 947–954. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2014, 170, 378–385. [Google Scholar] [CrossRef]
- Xia, D.Z.; Yu, X.F.; Zhu, Z.Y.; Zou, Z.D. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat. Prod. Res. 2011, 25, 1893–1901. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C.F.R. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef] [PubMed]
- El-Desouky, T.A. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. Heliyon 2021, 7, e06209. [Google Scholar] [CrossRef] [PubMed]
Sample | Fructose | Glucose | Sucrose | Trehalose | Sum |
---|---|---|---|---|---|
Leaves | |||||
Cichorium spinosum | 1.09 ± 0.01 a | 3.10 ± 0.05 a | 3.17 ± 0.02 a | 0.71 ± 0.02 | 8.1 ± 0.1 a |
Centaurea raphanina subsp. mixta | 1.34 ± 0.01 a | 1.23 ± 0.04 a | 1.02 ± 0.01 a | 0.82 ± 0.02 | 4.42 ± 0.01 a |
Picris echioides | 1.95 ± 0.05 a | 3.49 ± 0.07 a | 2.48 ± 0.01 a | 0.70 ± 0.01 | 8.6 ± 0.1 a |
Urospermum picroides | 2.01 ± 0.01 a | 3.07 ± 0.06 a | 3.58 ± 0.03 a | 0.44 ± 0.01 | 9.1 ± 0.1 a |
Sonchus oleraceus | 1.60 ± 0.05 a | 2.60 ± 0.01 a | 3.69 ± 0.03 a | 0.93 ± 0.01 | 8.8 ± 0.1 a |
Sonchus asper | 1.59 ± 0.05 a | 2.47 ± 0.06 a | 2.95 ± 0.01 a | 0.84 ± 0.03 | 7.9 ± 0.1 a |
Leaves after decoction | |||||
Cichorium spinosum | 0.83 ± 0.02 b | 2.48 ± 0.03 b | 2.06 ± 0.01 b | nd | 5.36 ± 0.05 b |
Centaurea raphanina subsp. mixta | 1.14 ± 0.01 b | 0.97 ± 0.01 b | 0.85 ± 0.04 b | nd | 2.96 ± 0.04 b |
Picris echioides | 1.48 ± 0.01 b | 2.88 ± 0.01 b | 1.73 ± 0.01 b | nd | 6.10 ± 0.01 b |
Urospermum picroides | 1.66 ± 0.03 b | 2.51 ± 0.01 b | 2.72 ± 0.01 b | nd | 6.89 ± 0.03 b |
Sonchus oleraceus | 1.18 ± 0.01 b | 2.07 ± 0.02 b | 2.71 ± 0.01 b | nd | 5.95 ± 0.02 b |
Sonchus asper | 1.31 ± 0.01 b | 1.79 ± 0.01 b | 2.45 ± 0.06 b | nd | 5.56 ± 0.06 b |
Sample | Oxalic Acid | Quinic Acid | Malic Acid | Ascorbic Acid | Shikimic Acid | Citric Acid | Fumaric Acid | Sum |
---|---|---|---|---|---|---|---|---|
Leaves | ||||||||
Cichorium spinosum | 6.32 ± 0.03 a | 5.01 ± 0.01 | 3.00 ± 0.02 a | tr | nd | tr | tr | 14.32 ± 0.06 a |
Centaurea raphanina subsp. mixta | 0.977 ± 0.002 a | nd | 2.52 ± 0.01 a | tr | nd | 2.94 ± 0.03 a | tr | 6.43 ± 0.03 a |
Picris echioides | 6.94 ± 0.04 a | nd | 1.86 ± 0.02 a | nd | 1.04 ± 0.01 a | nd | tr | 9.84 ± 0.01 a |
Urospermum picroides | 5.80 ± 0.04 a | nd | 2.96 ± 0.02 a | nd | 0.794 ± 0.006 a | nd | tr | 9.55 ± 0.06 a |
Sonchus oleraceus | 4.84 ± 0.01 a | nd | 3.06 ± 0.02 a | nd | 0.131 ± 0.002 a | nd | tr | 8.04 ± 0.01 a |
Sonchus asper | 5.19 ± 0.06 a | nd | 3.72 ± 0.07 a | nd | 0.124 ± 0.001 a | nd | tr | 9.04 ± 0.01 a |
Leaves after decoction | ||||||||
Cichorium spinosum | 5.19 ± 0.01 b | 4.70 ± 0.02 | 2.00 ± 0.01 b | tr | nd | tr | tr | 11.90 ± 0.01 b |
Centaurea raphanina subsp. mixta | 0.853 ± 0.002 b | nd | 2.02 ± 0.01 b | tr | nd | 2.45 ± 0.01 b | tr | 5.33 ± 0.01 b |
Picris echioides | 5.96 ± 0.02 b | nd | 1.19 ± 0.01 b | nd | 0.824 ± 0.001 b | nd | tr | 7.98 ± 0.02 b |
Urospermum picroides | 5.08 ± 0.01 b | nd | 2.53 ± 0.01 b | nd | 0.597 ± 0.001 b | nd | tr | 8.21 ± 0.01 b |
Sonchus oleraceus | 4.60 ± 0.01 b | nd | 2.89 ± 0.01 b | nd | 0.063 ± 0.001 b | nd | tr | 7.56 ± 0.01 b |
Sonchus asper | 4.49 ± 0.01 b | nd | 3.03 ± 0.01 b | nd | 0.047 ± 0.001 b | nd | tr | 7.57 ± 0.01 b |
Leaves | Leaves after Decoction | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatty Acids (%) | Cichorium spinosum | Centaurea raphanina subsp. mixta | Picris echioides | Urospermum picroides | Sonchus oleraceus | Sonchus asper | Cichorium spinosum | Centaurea raphanina subsp. mixta | Picris echioides | Urospermum picroides | Sonchus oleraceus | Sonchus asper |
C6:0 | 0.24 ± 0.02 a | 0.61 ± 0.04 b | 0.34 ± 0.01 a | nd | 0.63 ± 0.02 b | 0.38 ± 0.01 a | 0.183 ± 0.003 b | 0.633 ± 0.003 a | 0.325 ± 0.006 b | nd | 0.677 ± 0.005 a | 0.360 ± 0.001 b |
C8:0 | 0.057 ± 0.003 b | 0.056 ± 0.001 b | 0.055 ± 0.004 b | nd | 0.110 ± 0.003 b | 0.088 ± 0.002 b | 0.148 ± 0.003 a | 0.085 ± 0.004 a | 0.111 ± 0.002 a | nd | 0.133 ± 0.001 a | 0.957 ± 0.004 a |
C10:0 | 0.055 ± 0.002 b | nd | 0.097 ± 0.001 b | 0.18 ± 0.01 b | 0.066 ± 0.006 b | 0.084 ± 0.001 b | 0.205 ± 0.004 a | nd | 0.13 ± 0.01 a | 0.192 ± 0.001 a | 0.102 ± 0.001 a | 0.967 ± 0.004 a |
C11:0 | 0.149 ± 0.003 a | 0.141 ± 0.004 b | nd | 0.118 ± 0.008 a | nd | nd | 0.036 ± 0.001 b | 0.162 ± 0.002 a | nd | 0.122 ± 0.001 a | nd | nd |
C12:0 | 0.048 ± 0.001 b | 0.102 ± 0.001 b | 0.095 ± 0.004 b | 0.103 ± 0.006 b | 0.21 ± 0.02 b | 0.188 ± 0.002 a | 0.308 ± 0.003 a | 0.134 ± 0.004 a | 0.117 ± 0.003 a | 0.116 ± 0.001 a | 0.224 ± 0.007 a | 0.192 ± 0.004 a |
C14:0 | 1.9 ± 0.1 a | 0.508 ± 0.001 b | 1.30 ± 0.03 b | 0.86 ± 0.01 b | 5.4 ± 0.3 b | 1.4 ± 0.1 a | 0.98 ± 0.01 b | 0.554 ± 0.004 a | 2.71 ± 0.01 a | 0.905 ± 0.002 a | 5.93 ± 0.01 a | 1.45 ± 0.03 a |
C15:0 | 0.26 ± 0.01 b | 0.474 ± 0.008 a | 0.222 ± 0.008 b | 0.258 ± 0.008 b | 0.21 ± 0.01 b | 0.203 ± 0.009 b | 0.695 ± 0.006 a | 0.425 ± 0.007 b | 0.240 ± 0.002 a | 0.290 ± 0.001 a | 0.317 ± 0.007 a | 0.224 ± 0.007 a |
C16:0 | 17.8 ± 0.5 b | 25.5 ± 0.5 b | 14.47 ± 0.01 b | 23.3 ± 0.2 b | 18.9 ± 0.2 b | 17.85 ± 0.03 b | 19.6 ± 0.2 a | 26.32 ± 0.01 a | 15.5 ± 0.1 a | 23.96 ± 0.01 a | 20.31 ± 0.05 a | 17.96 ± 0.03 a |
C16:1 | 2.46 ± 0.06 a | 1.49 ± 0.01 a | 1.4 ± 0.1 a | 0.73 ± 0.07 a | 2.33 ± 0.04 a | 1.88 ± 0.02 a | 1.81 ± 0.01 b | 1.43± 0.01 b | 0.949 ± 0.004 b | 0.63 ± 0.01 b | 2.22 ± 0.02 b | 1.83 ± 0.02 b |
C17:0 | 0.224 ± 0.006 b | 0.47 ± 0.04 a | 0.20 ± 0.01 b | 0.296 ± 0.008 b | 0.22 ± 0.02 b | 0.241 ± 0.004 a | 0.31 ± 0.01 a | 0.453 ± 0.006 b | 0.22 ± 0.004 a | 0.346 ± 0.004 a | 0.254 ± 0.001 a | 0.245 ± 0.005 a |
C18:0 | 1.72 ± 0.06 a | 2.9 ± 0.1 a | 1.83 ± 0.05 b | 11.7 ± 0.2 a | 2.32 ± 0.04 a | 2.8 ± 0.2 a | 1.73 ± 0.01 a | 2.97 ± 0.01 a | 2.23 ± 0.02 a | 11.9 ± 0.1 a | 2.34 ± 0.01 a | 2.91 ± 0.01 a |
C18:1n9c | 2.25 ± 0.02 b | 2.27 ± 0.03 a | 5.2 ± 0.3 a | 3.1 ± 0.1 a | 2.28 ± 0.07 a | 3.3 ± 0.1 a | 2.32 ± 0.02 a | 2.13 ± 0.01 b | 5.14 ± 0.01 a | 2.8 ± 0.1 b | 2.21 ± 0.01 b | 3.23 ± 0.07 a |
C18:2n6c | 17.8 ± 0.3 a | 24.14 ± 0.08 a | 15.3 ± 0.3 a | 9.71 ± 0.05 a | 10.0 ± 0.3 a | 12.92 ± 0.04 a | 17.7 ± 0.3 a | 23.08 ± 0.04 b | 14.12 ± 0.02 b | 9.44 ± 0.02 b | 10.05 ± 0.07 a | 11.71 ± 0.04 b |
C18:3n3 | 48.9 ± 0.4 a | 35.8 ± 0.5 a | 53.8 ± 0.4 a | 44.3 ± 0.3 a | 51.3 ± 0.5 a | 52.5 ± 0.3 a | 47.5 ± 0.1 b | 35.81 ± 0.02 a | 52.1 ± 0.1 b | 43.5 ± 0.1 b | 49.3 ± 0.1 b | 51.8 ± 0.1 b |
C20:0 | 0.52 ± 0.03 b | 0.66 ± 0.04 b | 1.22 ± 0.06 b | 0.77 ± 0.02 b | 1.09 ± 0.04 b | 1.79 ± 0.08 a | 0.57 ± 0.01 a | 1.08 ± 0.06 a | 1.34 ± 0.05 a | 0.88 ± 0.01 a | 1.17 ± 0.01 a | 1.77 ± 0.03 a |
C20:1 | 0.078 ± 0.003 a | 0.207 ± 0.007 a | 0.29 ± 0.02 a | nd | 0.025 ± 0.001 | 0.029 ± 0.002 | 0.072 ± 0.001 b | 0.208 ± 0.004 a | 0.301 ± 0.001 a | nd | nd | nd |
C20:2 | 0.163 ± 0.005 a | 0.14 ± 0.01 a | 0.137 ± 0.001 a | nd | 0.080 ± 0.003 | 0.080 ± 0.004 | 0.107 ± 0.004 b | 0.105 ± 0.001 b | 0.122 ± 0.001 b | nd | nd | nd |
C21:0 | 0.142 ± 0.001 b | 0.211 ± 0.008 b | 0.112 ± 0.004 b | 0.204 ± 0.007 b | 0.181 ± 0.002 a | 0.15 ± 0.01 a | 0.30 ± 0.01 a | 0.22 ± 0.01 a | 0.204 ± 0.001 a | 0.273 ± 0.002 a | 0.19 ± 0.01 a | 0.154 ± 0.001 a |
C22:0 | 1.20 ± 0.05 b | 1.22 ± 0.01 b | 0.81 ± 0.01 b | 1.16 ± 0.01 b | 2.8 ± 0.2 a | 1.833 ± 0.001 b | 1.45 ± 0.02 a | 1.26 ± 0.03 a | 0.914 ± 0.001 a | 1.193 ± 0.001 a | 2.71 ± 0.02 a | 1.942 ± 0.001 a |
C22:1 | 0.98 ± 0.02 a | 0.98 ± 0.06 a | 0.9 ± 0.1 a | 0.98 ± 0.08 a | 0.110 ± 0.002 a | 0.92 ± 0.03 a | 0.88 ± 0.01 b | 0.97 ± 0.02 a | 0.94 ± 0.01 a | 0.91 ± 0.01 a | 0.10 ± 0.01 a | 0.939 ± 0.004 a |
C23:0 | 0.73 ± 0.06 b | 0.379 ± 0.004 b | 0.24 ± 0.01 b | 0.307 ± 0.007 b | 0.29 ± 0.02 b | 0.258 ± 0.002 a | 0.81 ± 0.01 a | 0.45 ± 0.01 a | 0.382 ± 0.004 a | 0.319 ± 0.005 a | 0.325 ± 0.005 a | 0.260 ± 0.001 a |
C24:0 | 2.19 ± 0.09 b | 1.5 ± 0.1 a | 1.82 ± 0.01 b | 1.9 ± 0.2 b | 1.34 ± 0.03 b | 1.16 ± 0.01 a | 2.31 ± 0.01 a | 1.52 ± 0.01 a | 1.91 ± 0.03 a | 2.16 ± 0.02 a | 1.41 ± 0.02 a | 1.08 ± 0.06 b |
SFA | 27.3 ± 0.1 b | 34.8 ± 0.7 b | 22.80 ± 0.05 b | 41.21 ± 0.2 b | 33.8 ± 0.2 b | 28.3 ± 0.2 b | 29.6 ± 0.2 a | 36.27 ± 0.02 a | 26.35 ± 0.07 a | 42.68 ± 0.01 a | 36.10 ± 0.09 a | 30.46 ± 0.02 a |
MUFA | 5.77 ± 0.01 a | 4.9 ± 0.01 a | 7.9 ± 0.1 a | 4.79 ± 0.02 a | 4.75 ± 0.03 a | 6.1 ± 0.2 a | 5.1 ± 0.1 b | 4.73 ± 0.03 b | 7.34 ± 0.01 b | 4.36 ± 0.01 b | 4.54 ± 0.01 b | 6.00 ± 0.08 a |
PUFA | 66.9 ± 0.1 a | 60.3 ± 0.6 a | 69.3 ± 0.1 a | 54.0 ± 0.2 a | 61.5 ± 0.3 a | 65.5 ± 0.2 a | 65.3 ± 0.3 b | 59.00 ± 0.06 b | 66.31 ± 0.05 b | 52.96 ± 0.01 b | 59.36 ± 0.08 b | 63.5 ± 0.1 b |
Tocopherols (µg/100 g dw) | ||||||||||||
α-tocopherol | 679 ± 5 a | 418 ± 5 a | 865 ± 5 a | 201 ± 4 a | 280 ± 4 a | 223 ± 3 a | 216 ± 5 b | 333 ± 4 b | 478 ± 3 b | 112 ± 2 b | 186.2 ± 0.3 b | 117.2 ± 0.6 b |
β-tocopherol | 2712 ± 2 a | 242 ± 2 a | 143 ± 2 | 66.0 ± 0.1 | 177 ± 2 | 95 ± 2 | 1632 ± 8 b | 160 ± 2 b | nd | nd | nd | nd |
Sum | 3391 ± 3 a | 660 ± 3 a | 1008 ± 3 a | 267 ± 4 a | 457 ± 2 a | 318 ± 5 a | 1848 ± 3 b | 493 ± 2 b | 478 ± 3 b | 112 ± 2 b | 186.2 ± 0.3 b | 117.2 ± 0.6 b |
Quantification | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M–H]− (m/z) | MS2 (m/z) | Tentative Identification | Hydroethanolic Extracts | Decoctions | Hydroethanolic Extracts after Decoction |
1 | 4.52 | 328 | 311 | 179 (85), 149 (54), 135 (100) | Caftaric acid | 1.42 ± 0.07 a | 0.190 ± 0.006 b | nd |
2 | 4.85 | 284 | 341 | 179 (100) | Caffeic acid hexoside | 2.20 ± 0.09 a | nd | 0.077 ± 0.002 b |
3 | 5.70 | 316 | 341 | 179 (100) | Caffeic acid hexoside isomer 1 | 1.13 ± 0.07 a | nd | 0.053 ± 0.002 b |
4 | 5.97 | 311 | 377 | 191 (90),173 (5),163 (100),155 (3),137 (5),119 (4) | cis 3-p-Coumarouylquinic acid | 0.972 ± 0.002 a | 0.10 ± 0.01 b | nd |
5 | 6.59 | 324 | 353 | 191 (100),179 (4),161 (5),135 (3) | cis-5-O-Caffeoylquinic acid | 15.2 ± 0.8 a | 0.32 ± 0.02 b | 0.27 ± 0.01 c |
6 | 7.01 | 324 | 353 | 191 (100),179 (4),161 (5),135 (3) | trans-5-O-Caffeoylquinic acid | nd | nd | 1.08 ± 0.05 |
7 | 9.63 | 336 | 593 | 503 (32),473 (100), 383 (12), 353 (22), 325 (11) | Apigenin 6,8-C-diglucoside | 2.6 ± 0.1 a | 0.300 ± 0.001 b | 0.212 ± 0.002 c |
8 | 12.08 | 273 | 321 | 169 (100) | Digallic acid | 3.4 ± 0.2 a | nd | 0.028 ± 0.001 b |
9 | 13.05 | 335 | 473 | 269 (100) | Apigenin-O-acetylhexoside | 35 ± 1 a | nd | 0.577 ± 0.007 b |
10 | 13.42 | 350 | 623 | 461 (100), 285 (26) | Luteolin-O-hexoside-O-glucuronide | 21.0 ± 0.7 a | 0.58 ± 0.02 c | 0.76 ± 0.04 b |
11 | 14.43 | 328 | 473 | 311 (100), 293 (92), 179 (10) | cis-Chicoric acid | nd | 0.070 ± 0.004 | nd |
12 | 15.16 | 334 | 609 | 285 (100) | Kaempferol-O-hexoside-O-hexoside | 1.17 ± 0.05 a | 0.54 ± 0.01 b | 1.13 ± 0.06 a |
13 | 15.41 | 328 | 473 | 311 (95), 293 (100), 179 (8) | trans-Chicoric acid | 0.461 ± 0.009 b | 0.104 ± 0.002 c | 0.511 ± 0.008 a |
14 | 17.97 | 348 | 593 | 285 (100) | Kaempferol-3-O-rutinoside | 0.69 ± 0.02 a | 0.60 ± 0.01 c | 0.659 ± 0.001 b |
15 | 18.08 | 342 | 477 | 301 (100) | Quercetin-3-O-glucuronide | 3.52 ± 0.04 a | nd | 0.572 ± 0.003 b |
16 | 18.57 | 344 | 477 | 301 (100) | Quecetin 3-O-β-D-glucuronide | 2.32 ± 0.04 a | nd | 1.56 ± 0.04 b |
17 | 18.77 | 342 | 477 | 301 (100) | Quercetin 4′-O-β-D-glucuronide | nd | nd | 1.39 ± 0.06 |
18 | 18.84 | 348 | 461 | 285 (100) | Kaempferol-3-O-glucuronide | nd | 0.88 ± 0.04 a | 0.76 ± 0.03 b |
19 | 20.22 | 356 | 505 | 463 (10), 301 (100) | Quercetin-7-O-(6″-O-acetyl)glucoside 2 | 1.04 ± 0.01 a | 0.58 ± 0.01 c | 0.62 ± 0.01 b |
20 | 21.01 | 343 | 593 | 285 (100) | Luteolin 7-O-glucoside | 1.6 ± 0.1 a | nd | 0.94 ± 0.07 b |
21 | 21.91 | 343 | 461 | 285 (100) | Luteolin-glucuronide | 4.7 ± 0.4 a | nd | 2.6 ± 0.1 b |
22 | 22.89 | 290 | 481 | 301 (95), 275 (24) | Mono-HHDP hexoside | 1.89 ± 0.05 | nd | nd |
23 | 23.42 | 291 | 481 | 301 (98), 275 (21) | Mono-HHDP hexoside | 2.24 ± 0.06 a | nd | 1.98 ± 0.02 b |
24 | 24.65 | 290 | 481 | 301 (92), 275 (18) | Mono-HHDP hexoside | 1.53 ± 0.03 a | nd | 1.42 ± 0.02 b |
TPA | 24.8 ± 0.7 a | 0.788 ± 0.01 c | 2.015 ± 0.05 b | |||||
TF | 73 ± 3 a | 3.48 ± 0.02 c | 11.80 ± 0.01 b | |||||
THT | 5.67 ± 0.04 a | - | 3.40 ± 0.01 b | |||||
TPC | 104 ± 2 a | 4.26 ± 0.01 c | 17.21 ± 0.06 b |
Quantification | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M–H]− (m/z) | MS2 (m/z) | Tentative Identification | Hydroethanolic Extracts | Decoctions | Hydroethanolic Extracts after Decoction |
1 | 14.64 | 302 | 475 | 313(100) | Kaempferol dimethylether hexoside | nd | 0.73 ± 0.03 a | 0.676 ± 0.004 b |
2 | 16.75 | 330 | 355 | 193(80), 179(100), 161(17) | Ferulic acid-O-hexoside | 0.264 ± 0.003 a | 0.21 ± 0.01 c | 0.230 ± 0.009 b |
3 | 17.35 | 326 | 581 | 461(100), 299(24) | Diosmetin-C-dihexoside | 0.26 ± 0.02 a | tr | 0.023 ± 0.001 b |
4 | 18.66 | 334 | 461 | 285 (100) | Kaempherol-O-glucuronide | 1.28 ± 0.05 a | 0.596 ± 0.001 c | 0.83 ± 0.01 b |
5 | 20.11 | 334 | 579 | 285 (100) | Kaempherol-O-hexosyl-pentoside | 1.42 ± 0.08 a | 0.57 ± 0.02 c | 0.90 ± 0.03 b |
6 | 21.81 | 334 | 563 | 269 (100) | Apigenin-O-hexosyl-pentoside | 2.0 ± 0.1 a | 0.73 ± 0.02 c | 1.20 ± 0.06 b |
7 | 23.10 | 334 | 445 | 269 (100) | Apigenin-O-glucuronide | nd | 0.603 ± 0.006 b | 0.97 ± 0.06 a |
8 | 25.33 | 332 | 665 | 621 (100), 285 (45) | Kaempherol-O-malonyl-pentoside | 0.707 ± 0.001 a | 0.528 ± 0.001 c | 0.614 ± 0.002 b |
9 | 26.90 | 334 | 605 | 545(33), 431(33), 311(27), 269(100) | Acetylated apigenin-C-hexoside-O-pentoside | 1.14 ± 0.06 a | 0.58 ± 0.01 c | 0.723 ± 0.004 b |
10 | 27.89 | 286/326 | 549 | 429 (12), 297 (14), 279 (5), 255 (41) | Pinocembrin-O-arabirosyl-glucoside | 0.69 ± 0.02 b | 0.530 ± 0.001 c | 1.51 ± 0.04 a |
11 | 29.14 | 286/326 | 563 | 443 (12), 401 (5), 297 (21), 255 (58) | Pinocembrin-O-neohesperidoside | 22.8 ± 0.2 a | 0.78 ± 0.02 c | 11.9 ± 0.3 b |
12 | 31.28 | 286/328 | 591 | 549 (30), 429 (20), 297 (15), 279 (5), 255 (32) | Pinocembrin-O-acetylarabirosyl-glucoside | 5.0 ± 0.3 a | 0.544 ± 0.003 c | 1.40 ± 0.05 b |
13 | 31.75 | 286/326 | 605 | 563 (12), 545 (5), 443 (30), 401 (10), 255 (40) | Pinocembrin-O-acetylneohesperidoside isomer I | 5.4 ± 0.1 a | 0.501 ± 0.006 c | 3.3 ± 0.1 b |
14 | 32.14 | 286/328 | 605 | 563 (10), 545 (5), 443 (28), 401 (9), 255 (39) | Pinocembrin-O-acetylneohesperidoside isomer II | 28.7 ± 0.4 a | 0.618 ± 0.001 c | 9.8 ± 0.6 b |
TPA | 0.264 ± 0.01 a | 0.208 ± 0.01 c | 0.230 ± 0.01 b | |||||
TF | 69.4 ± 0.3 a | 7.09 ± 0.01 c | 33.8 ± 0.4 b | |||||
TPC | 69.7 ± 0.3 a | 7.30 ± 0.01 c | 34.0 ± 0.4 b |
Quantification | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M–H]− (m/z) | MS2 (m/z) | Tentative Identification | Hydroethanolic Extracts | Decoctions | Hydroethanolic Extracts after Decoction |
1 | 4.41 | 328 | 311 | 179 (85), 149 (54), 135 (100) | Caftaric acid | 0.94 ± 0.05 a | 0.67 ± 0.03 c | 0.081 ± 0.004 b |
2 | 5.48 | 316 | 341 | 179 (100) | Caffeic acid hexoside | 0.48 ± 0.02 a | 0.053 ± 0.003 b | 0.014 ± 0.001 c |
3 | 6.59 | 325 | 353 | 191 (100),179 (6),161 (5),135 (4) | cis-5-O-Caffeoylquinic acid | 1.12 ± 0.05 a | 0.56 ± 0.03 b | 0.229 ± 0.008 c |
4 | 6.95 | 324 | 353 | 191 (100),179 (4),161 (5),135 (3) | trans-5-O-Caffeoylquinic acid | 1.18 ± 0.07 a | 0.65 ± 0.04 b | 0.24 ± 0.01 c |
5 | 8.59 | 291 | 343 | 191 (100),169 (13) | Galloylquinic acid | 0.060 ± 0.003 a | 0.006 ± 0.001 b | nd |
6 | 9.52 | 362 | 433 | 301 (100) | Ellagic acid-pentoside | 1.30 ± 0.01 b | nd | 1.42 ± 0.02 a |
7 | 9.98 | 330 | 593 | 473 (6), 429 (51), 284 (80), 285 (40) | Kaempferol 3-O-(O-rhamnosyl)hexoside | 0.74 ± 0.02 a | nd | 0.525 ± 0.008 b |
8 | 11.26 | 311 | 337 | 191 (100), 163 (23), 145 (7), 119 (5) | trans-5-p-Coumaroylquinic acid | 1.06 ± 0.02 b | 1.48 ± 0.09 a | nd |
9 | 12.55 | 300sh328 | 473 | 311 (100), 293 (60), 179 (10) | Caffeoyl hexosylpentoside | 1.00 ± 0.03 | nd | nd |
10 | 14.41 | 328 | 473 | 311 (100), 293 (90), 219 (5), 179 (10), 149 (3), 135 (3) | cis-Chicoric acid | 0.64 ± 0.02 b | 0.69 ± 0.03 a | tr |
11 | 15.48 | 326 | 473 | 311 (100), 293 (90), 219 (5), 179 (10), 149 (3), 135 (3) | trans-Chicoric acid | 0.52 ± 0.03 b | 2.02 ± 0.06 a | tr |
12 | 15.58 | 329 | 609 | 285 (100) | Luteolin-6,8-di-C-hexoside | 2.01 ± 0.07 c | 2.4 ± 0.1 b | 2.49 ± 0.05 a |
13 | 18.11 | 352 | 477 | 301 (100) | Quercetin-3-O-glucuronide | 2.80 ± 0.07 a | 0.97 ± 0.03 c | 1.50 ± 0.05 b |
14 | 19.97 | 350 | 549 | 505 (100), 463 (22), 301 (50) | Quercetin-O-malonylhexoside | 2.35 ± 0.05 a | 0.69 ± 0.02 b | 0.70 ± 0.04 b |
15 | 21.14 | 323 | 487 | 325 (100), 307 (57), 293 (85), 193 (30) | Feruloyl hexosylpentoside | 0.55 ± 0.03 b | nd | 0.130 ± 0.005 a |
16 | 21.68 | 347 | 461 | 285 (100) | Kaempferol-O-glucuronide | nd | 0.830 ± 0.004 | nd |
17 | 23.12 | 350 | 491 | 315 (100) | Isorhamnetin-O-glucuronide | nd | 0.764 ± 0.009 a | 0.560 ± 0.004 b |
18 | 23.23 | 336 | 749 | 557, 541, 367, 353 | Vicenin derivative | 1.50 ± 0.02 | nd | nd |
19 | 24.40 | 347 | 533 | 489 (67), 285 (100) | Kaempferol-O-malonylhexoside | nd | 0.61 ± 0.02 a | 0.485 ± 0.005 b |
20 | 27.67 | 340 | 489 | 285 (100) | Luteolin-7-O-β-D-glucopyranoside | 3.1 ± 0.1 a | nd | 0.75 ± 0.01 b |
21 | 28.52 | 282 | 685 | 493 (100), 337 (21) | Luteolin-7-O-β-D-glucopyranoside | 5.0 ± 0.1 | nd | nd |
22 | 31.56 | 329 | 609 | 563 (100), 285 (42) | Luteolin-6,8-di-C-hexoside | nd | nd | 0.26 ± 0.06 |
23 | 32.57 | 344 | 649 | 607 (6), 431 (42), 285 (31) | Kaempferol (acyl)glucuronide-O-rhamnoside | 1.69 ± 0.01 | nd | nd |
TPA | 7.5 ± 0.1 a | 6.1 ± 0.1 b | 0.669 ± 0.02 c | |||||
TF | 20.6 ± 0.1 a | 6.3 ± 0.2 c | 8.69 ± 0.03 b | |||||
TPC | 28.07 ± 0.04 a | 12.42 ± 0.08 b | 9.36 ± 0.05 c |
Quantification | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 (m/z) | Tentative Identification | Hydroethanolic Extracts | Decoctions | Hydroethanolic Extracts after Decoction |
1 | 6.46 | 325 | 353 | 191 (100), 179 (6), 161 (5), 135 (4) | cis-5-O-Caffeoylquinic acid | 1.02 ± 0.01 b | 5.3 ± 0.1 a | 0.27 ± 0.01 c |
2 | 6.99 | 324 | 353 | 191 (100), 179 (4), 161 (5), 135 (3) | trans-5-O-Caffeoylquinic acid | nd | 4.0 ± 0.1 a | 0.96 ± 0.06 b |
3 | 9.15 | 362 | 433 | 301 (100) | Ellagic acid-pentoside | nd | nd | 1.274 ± 0.002 |
4 | 11.19 | 311 | 337 | 191 (100), 163 (23), 145 (7), 119 (5) | trans-5-p-Coumaroylquinic acid | nd | 0.441 ± 0.002 a | 0.050 ± 0.001 b |
5 | 12.72 | 288 | 705 | 529 (100), 337 (18), 191 (3), 161 (2) | 3,7-O-diferuloyl-4-O-caffeoyl quinic acid | 0.173 ± 0.003 c | 0.79 ± 0.03 a | 0.256 ± 0.005 b |
6 | 14.71 | 335 | 431 | 385, 269 (100) | Apigenin-7-O-glucoside | 1.01 ± 0.01 b | 1.28 ± 0.02 a | 0.62 ± 0.04 c |
7 | 15.04 | 334 | 609 | 285 (100) | Kaempferol-O-hexoside-O-hexoside | nd | nd | 0.544 ± 0.005 a |
8 | 15.54 | 326 | 473 | 311 (100), 293 (90), 219 (5), 179 (10), 149 (3), 135 (3) | trans-Chicoric acid | nd | nd | tr |
9 | 18.06 | 354 | 463 | 301 (100) | Quercetin-3-O-glucoside | 0.579 ± 0.002 b | 0.63 ± 0.03 a | 0.583 ± 0.007 b |
10 | 18.66 | 325 | 461 | 285 (100) | Kaempferol-O-glucuronide isomer 1 | 1.12 ± 0.03 a | 0.72 ± 0.01 c | 0.804 ± 0.006 b |
11 | 20.01 | 350 | 549 | 505 (100), 463 (24), 301 (48) | Quercetin-O-malonylhexoside | 0.580 ± 0.007 b | 0.76 ± 0.03 a | 0.77 ± 0.02 a |
12 | 21.23 | 370 | 549 | 301 (100) | Quercetin 7-O-malonylhexoside | 0.96 ± 0.01 | nd | nd |
13 | 23.00 | 335 | 445 | 269 (100) | Apigenin-O-glucuronide | 0.73 ± 0.01 a | 0.67 ± 0.04 c | 0.712 ± 0.002 b |
14 | 24.71 | 343 | 533 | 489 (100), 285 (100) | Luteolin-O-malonylhexoside | 1.21 ± 0.07 a | 0.733 ± 0.004 b | nd |
15 | 27.67 | 340 | 701 | 539 (23), 377 (100), 307 (40), 275 (32) | Oleuropein glucoside | 1.27 ± 0.04 b | 0.511 ± 0.002 a | 1.16 ± 0.01 c |
16 | 28.51 | 282 | 685 | 493 (100), 337 (21) | Luteolin-7-O-β-D-Glucopyranoside | 0.473 ± 0.006 | nd | nd |
17 | 29.70 | 335 | 609 | 563 (100), 285 (42) | Luteolin-6,8-di-C-hexoside | 1.34 ± 0.05 a | 0.046 ± 0.003 b | 1.3 ± 0.1 a |
TPA | 1.19 ± 0.02 c | 10.5 ± 0.3 a | 1.53 ± 0.08 b | |||||
TF | 9.27 ± 0.05 a | 5.36 ± 0.07 c | 6.5 ± 0.2 b | |||||
THT | - | - | 1.27 ± 0.01 | |||||
TPC | 10.46 ± 0.07 b | 15.8 ± 0.3 a | 9.3 ± 0.1 c |
Quantification | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M–H]− (m/z) | MS2 (m/z) | Tentative Identification | Hydroethanolic Extracts | Decoctions | Hydroethanolic Extracts after Decoction |
1 | 4.52 | 328 | 311 | 179 (85), 149 (54), 135 (100) | Caftaric acid | 0.72 ± 0.02 a | 0.060 ± 0.003 b | tr |
2 | 5.95 | 292sh342 | 465 | 447 (5), 375 (10), 357 (8), 345 (100), 257 (15), 241 (42) | Dihydroquercetin 6-C-hesoxide | 0.68 ± 0.04 a | 0.556 ± 0.001 b | 0.482 ± 0.001 c |
3 | 6.39 | 325 | 353 | 191 (100), 179 (6), 161 (5), 135 (4) | cis-5-O-Caffeoylquinic acid | 1.45 ± 0.06 c | 0.314 ± 0.005 a | 0.215 ± 0.005 b |
4 | 6.95 | 324 | 353 | 191 (100), 179 (4), 161 (5), 135 (3) | trans-5-O-Caffeoylquinic acid | 1.21 ± 0.06 c | 0.277 ± 0.007 a | 0.191 ± 0.006 b |
5 | 8.15 | 320 | 431 | 413 (5), 385 (100), 341 (3), 311 (10) | Apigenin-6-C-glucoside | 0.55 ± 0.04 a | 0.27 ± 0.01 b | 0.031 ± 0.001 c |
6 | 12.80 | 356 | 631 | 479 (5), 317 (6), 271 (25) | Myricetin-O-(O-galloyl)-hexoside | 7.36 ± 0.09 a | 0.509 ± 0.002 b | nd |
7 | 13.24 | 270sh342 | 623 | 447 (20), 285 (100) | Kaempferol-O-glucuronyl-O-hexoside | 6.6 ± 0.3 a | 0.57 ± 0.01 b | 0.509 ± 0.003 c |
8 | 15.55 | 334 | 609 | 285 (100) | Kaempferol-O-hexoside-O-hexoside | 0.78 ± 0.02 a | nd | 0.489 ± 0.001 b |
9 | 15.77 | 285 | 449 | 287 (20), 269 (100), 225 (2), 209 (2), 151 (27) | Eriodictyol-hexoside isomer 1 | tr | tr | tr |
10 | 16.30 | 285 | 449 | 287 (21), 269 (100), 223 (7), 209 (2), 177 (22) | Eriodictyol-hexoside isomer 2 | 0.78 ± 0.03 | tr | tr |
11 | 18.59 | 347 | 461 | 285 (100) | Luteolin-O-glucuronide | 7.2 ± 0.3 a | 2.5 ± 0.1 c | 3.1 ± 0.1 b |
12 | 22.80 | 335 | 445 | 269 (100) | Apigenin-O-glucuronide | 34 ± 2 a | 2.8 ± 0.1 c | 3.92 ± 0.09 b |
13 | 23.87 | 334 | 445 | 269 (100) | Apigenin-O-glucuronide | 10.1 ± 0.5 | nd | nd |
14 | 27.19 | 333 | 445 | 269 (100) | Apigenin-O-glucuronide | 2.1 ± 0.1 | nd | nd |
TPA | 3.376 ± 0.02 a | 0.651 ± 0.01 b | 0.406 ± 0.01 c | |||||
TF | 69.6 ± 0.4 a | 6.8 ± 0.2 c | 7.8 ± 0.2 b | |||||
TPC | 73.0 ± 0.4 a | 7.5 ± 0.2 c | 8.2 ± 0.2 b |
Quantification | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M–H]− (m/z) | MS2 (m/z) | Tentative Identification | Hydroethanolic Extracts | Decoctions | Hydroethanolic Extracts after Decoction |
1 | 4.35 | 328 | 311 | 179 (85), 149 (54), 135 (100) | Caftaric acid | 1.48 ± 0.02 a | 0.580 ± 0.003 b | tr |
2 | 5.98 | 292sh342 | 465 | 447 (5), 375 (10), 357 (8), 345 (100), 257(15), 241 (42) | Dihydroquercetin 6-C-hesoxide | 0.280 ± 0.005 a | 0.175 ± 0.001 b | 0.106 ± 0.001 c |
3 | 6.41 | 325 | 353 | 191 (100), 179 (6), 161 (5), 135 (4) | cis-5-O-Caffeoylquinic acid | 2.13 ± 0.02 a | 1.16 ± 0.06 c | 0.139 ± 0.005 b |
4 | 7.01 | 324 | 353 | 191 (100), 179 (4), 161 (5), 135 (3) | trans-5-O-Caffeoylquinic acid | 3.4 ± 0.1 a | 0.79 ± 0.03 b | 0.167 ± 0.006 c |
5 | 8.30 | 320 | 431 | 413 (5), 385 (100), 341 (3), 311 (10) | Apigenin-6-C-glucoside | 0.80 ± 0.05 b | 1.00 ± 0.01 a | 0.55 ± 0.03 c |
6 | 12.02 | 328 | 473 | 311 (90), 293 (90) | Caffeoyl hexosylpentoside | 0.23 ± 0.01 a | 0.038 ± 0.002 b | nd |
7 | 12.76 | 278 | 451 | 241 (20), 307 (5), 289 (6) | (Epi)catechin-O-glucoside | 13.8 ± 0.6 a | 0.241 ± 0.007 b | nd |
8 | 13.40 | 277 | 451 | 241 (20), 307 (5), 289 (6) | (Epi)catechin-O-glucoside | 10.6 ± 0.2 a | 1.20 ± 0.03 b | 0.178 ± 0.007 c |
9 | 14.29 | 328 | 473 | 311 (100), 293 (90), 219 (5), 179 (10), 149 (3), 135 (3) | cis-Chicoric acid | 0.038 ± 0.002 b | 0.18 ± 0.01 a | 0.016 ± 0.001 c |
10 | 15.37 | 328 | 473 | 311 (100), 293 (90), 219 (5), 179 (10), 149 (3), 135 (3) | trans-Chicoric acid | 0.017 ± 0.001 | nd | tr |
11 | 18.59 | 347 | 461 | 285 (100) | Luteolin-O-glucuronide | 1.35 ± 0.06 a | 0.32 ± 0.02 c | 0.36 ± 0.01 b |
12 | 22.88 | 335 | 445 | 269 (100) | Apigenin-O-glucuronide | 34.6 ± 0.7 a | 3.7 ± 0.2 c | 4.9 ± 0.1 b |
13 | 29.09 | 348 | 609 | 357 (100), 327 (98) | Luteolin-6-C-(6-O-hexosyl)hexoside | 0.217 ± 0.001 a | 0.114 ± 0.003 b | 0.103 ± 0.002 c |
TPA | 7.3 ± 0.1 a | 2.75 ± 0.02 b | 0.270 ± 0.01 c | |||||
TF | 62 ± 1 a | 6.7 ± 0.2 b | 6.2 ± 0.1 c | |||||
TPC | 69 ± 2 a | 9.5 ± 0.2 b | 6.4 ± 0.1 c |
Antioxidant Activity | S1 * | S2 | S3 | S4 | S5 | S6 | Trolox | |
---|---|---|---|---|---|---|---|---|
TBARS (EC50; µg/mL) a | Hydroethanolic extracts | 147 ± 2 c | 147 ± 4 c | 142 ± 4 c | 131 ± 3 c | 120 ± 4 c | 144 ± 1 c | |
Decoctions | 304 ± 2 a | 298 ± 5 b | 295 ± 9 b | 287 ± 9 b | 286 ± 6 b | 281 ± 4 b | 5.4 ± 0.3 | |
Hydroethanolic extracts after decoctions | 323 ± 5 b | 341 ± 1 a | 330 ± 6 a | 327 ± 3 a | 309 ± 3 a | 318 ± 6 a | ||
OxHLIA (IC50; µg/mL) a Δt = 60 min | Hydroethanolic extracts | 42 ± 1 c | 42 ± 1 b | 22 ± 1 b | 22 ± 1 b | 19 ± 1 c | 35 ± 3 c | 19.6 ± 0.7 |
Decoctions | 55 ± 2 b | 143 ± 6 a | 161 ± 2 a | 141 ± 4 a | 51 ± 2 b | 49 ± 4 b | ||
Hydroethanolic extracts after decoctions | 89 ± 9 a | na | 166 ± 8 a | 143 ± 3 a | 70 ± 3 a | 62 ± 2 a | ||
Δt = 120 min | Hydroethanolic extracts | 69 ± 2 c | 63 ± 2 b | 63 ± 2 c | 63 ± 2 b | 52 ± 1 c | 112 ± 9 b | 41 ± 1 |
Decoctions | 99 ± 6 b | 255 ± 13 a | 243 ± 2 b | 214 ± 6 a | 98 ± 6 b | 116 ± 9 b | ||
Hydroethanolic extracts after decoctions | 253 ± 19 a | na | 258 ± 14 a | 209 ± 7 a | 126 ± 4 a | 130 ± 6 a | ||
Cytotoxicity to tumor cell lines (GI50 μg/mL) b | Ellipticine | |||||||
CaCo2 | Hydroethanolic extracts | 229 ± 4 b | 251 ± 3 b | 379 ± 6 b | 308 ± 22 b | >400 a | 257 ± 1 b | 0.20 ± 0.02 |
Decoctions | >400 a | >400 a | >400 a | >400 a | >400 a | >400 a | ||
Hydroethanolic extracts after decoctions | 237 ± 17 b | 87 ± 3 c | 135 ± 2 c | 150 ± 14 c | 198 ± 2 b | 186 ± 10 c | ||
NCI-H460 | Hydroethanolic extracts | 66 ± 7 c | 197 ± 16 b | 192 ± 2 c | 206 ± 17 a | 168 ± 18 c | 164 ± 17 c | 0.249 ± 0.002 |
Decoctions | >400 a | >400 a | >400 a | 183 ± 2 b | 308 ± 27 a | >400 a | ||
Hydroethanolic extracts after decoctions | 344 ± 11 b | 210 ± 13 b | 205 ± 4 b | 132 ± 10 c | 236 ± 12 b | 257 ± 23 b | ||
MCF-7 | Hydroethanolic extracts | 267 ± 26 b | 249 ± 24 b | 259 ± 24 b | 246 ± 3 b | >400 a | 268 ± 12 b | 0.251 ± 0.001 |
Decoctions | >400 a | >400 a | >400 a | >400 a | 362 ± 43 b | >400 a | ||
Hydroethanolic extracts after decoctions | 226 ± 17 c | 226 ± 2 b | 223 ± 2 c | 237 ± 5 c | 246 ± 15 c | 235 ± 4 c | ||
Cytotoxicity to non-tumor cell lines (GI50 µg/mL) b | Ellipticine | |||||||
PLP2 | Hydroethanolic extracts | 155 ± 13 b | 182 ± 7 c | 232 ± 13 c | 231 ± 12 b | >400 a | 231 ± 6 a | 6.3 ± 0.4 |
Decoctions | >400 a | >400 a | >400 a | 260 ± 13 a | 206 ± 15 b | 178 ± 15 b | ||
Hydroethanolic extracts after decoctions | 62 ± 2 c | 230 ± 5 b | 270 ± 16 b | 178 ± 19 c | 221 ± 6 b | 227 ± 6 a | ||
Anti-inflammatory activity (EC50 μg/mL) c | Dexamethasone | |||||||
RAW 264.7 | Hydroethanolic extracts | 21 ± 1 c | 195 ± 7 a | 232 ± 3 c | 84 ± 6 a | 21 ± 2 c | 187 ± 17 a | 16 ± 1 |
Decoctions | 42 ± 2 b | 130 ± 4 b | 90 ± 9 b | 64 ± 2 b | 110 ± 5 a | 48 ± 3 b | ||
Hydroethanolic extracts after decoctions | 93 ± 5 a | 33 ± 2 c | 79 ± 4 c | 90 ± 4 a | 78 ± 5 b | 31 ± 1 b |
Antibacterial Activity | S1 * | S2 | S3 | S4 | S5 | S6 | E211 | E224 | |
---|---|---|---|---|---|---|---|---|---|
MIC/MBC | MIC/MBC | MIC/MBC | MIC/MBC | MIC/MBC | MIC/MBC | MIC/MBC | MIC/MBC | ||
S. aureus | Hydroethanolic extracts | 0.50/1.00 | 1.00/2.00 | 0.25/0.50 | 0.50/1.00 | 2.00/2.00 | 0.50/1.00 | 4.00/4.00 | 1.00/1.00 |
Decoctions | 2.00/2.00 | 2.00/2.00 | 2.00/2.00 | 2.00/2.00 | 2.00/2.00 | 2.00/2.00 | |||
Hydroethanolic extracts after decoctions | 0.50/1.00 | 0.25/0.50 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | |||
B. cereus | Hydroethanolic extracts | 1.00/2.00 | 0.50/1.00 | 0.50/1.00 | 1.00/2.00 | 0.50/1.00 | 1.00/2.00 | 0.50/0.50 | 2.00/4.00 |
Decoctions | 0.50/2.00 | 0.50/2.00 | 0.50/2.00 | 0.50/2.00 | 0.50/2.00 | 0.50/2.00 | |||
Hydroethanolic extracts after decoctions | 1.00/2.00 | 1.00/2.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | |||
L. monicytogenes | Hydroethanolic extracts | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 0.50/1.00 |
Decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
Hydroethanolic extracts after decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
E. coli | Hydroethanolic extracts | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 0.50/1.00 |
Decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
Hydroethanolic extracts after decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
S.typhimurium | Hydroethanolic extracts | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/1.00 |
Decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
Hydroethanolic extracts after decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
En. cloacae | Hydroethanolic extracts | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 2.00/4.00 | 0.50/0.50 |
Decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
Hydroethanolic extracts after decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
Antifungal activity | E211 | E224 | |||||||
MIC/MFC | MIC/MFC | MIC/MFC | MIC/MFC | MIC/MFC | MIC/MFC | MIC/MFC | MIC/MFC | ||
A. ochraceus | Hydroethanolic extracts | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 1.00/2.00 | 1.00/1.00 |
Decoctions | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | |||
Hydroethanolic extracts after decoctions | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | |||
A. niger | Hydroethanolic extracts | 2.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/1.00 |
Decoctions | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 2.00/2.00 | |||
Hydroethanolic extracts after decoctions | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | |||
A. versicolor | Hydroethanolic extracts | 0.50/1.00 | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 | 2.00/2.00 | 1.00/1.00 |
Decoctions | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.25/0.50 | 0.50/1.00 | 0.50/1.00 | |||
Hydroethanolic extracts after decoctions | 0.50/1.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | 1.00/2.00 | |||
P. funiculosum | Hydroethanolic extracts | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 1.00/2.00 | 0.50/0.50 |
Decoctions | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | |||
Hydroethanolic extracts after decoctions | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | 0.25/1.00 | |||
P. aurantiogriseum | Hydroethanolic extracts | 1.00/2.00 | 1.00/2.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | 2.00/4.00 | 1.00/1.00 |
Decoctions | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | |||
Hydroethanolic extracts after decoctions | 0.50/1.00 | 1.00/1.00 | 1.00/2.00 | 0.50/1.00 | 0.50/1.00 | 0.50/1.00 | |||
T. viride | Hydroethanolic extracts | 0.50/1.00 | 0.50/1.00 | 0.50/0.50 | 0.50/0.50 | 0.50/0.50 | 0.50/0.50 | 1.00/2.00 | 0.50/0.50 |
Decoctions | 0.50/0.50 | 0.50/0.50 | 0.50/0.50 | 0.50/0.50 | 0.50/0.50 | 0.50/1.00 | |||
Hydroethanolic extracts after decoctions | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 | 0.25/0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liava, V.; Fernandes, Â.; Reis, F.; Finimundy, T.; Mandim, F.; Pinela, J.; Stojković, D.; Ferreira, I.C.F.R.; Barros, L.; Petropoulos, S.A. How Does Domestic Cooking Affect the Biochemical Properties of Wild Edible Greens of the Asteraceae Family? Foods 2024, 13, 2677. https://doi.org/10.3390/foods13172677
Liava V, Fernandes Â, Reis F, Finimundy T, Mandim F, Pinela J, Stojković D, Ferreira ICFR, Barros L, Petropoulos SA. How Does Domestic Cooking Affect the Biochemical Properties of Wild Edible Greens of the Asteraceae Family? Foods. 2024; 13(17):2677. https://doi.org/10.3390/foods13172677
Chicago/Turabian StyleLiava, Vasiliki, Ângela Fernandes, Filipa Reis, Tiane Finimundy, Filipa Mandim, José Pinela, Dejan Stojković, Isabel C. F. R. Ferreira, Lillian Barros, and Spyridon A. Petropoulos. 2024. "How Does Domestic Cooking Affect the Biochemical Properties of Wild Edible Greens of the Asteraceae Family?" Foods 13, no. 17: 2677. https://doi.org/10.3390/foods13172677
APA StyleLiava, V., Fernandes, Â., Reis, F., Finimundy, T., Mandim, F., Pinela, J., Stojković, D., Ferreira, I. C. F. R., Barros, L., & Petropoulos, S. A. (2024). How Does Domestic Cooking Affect the Biochemical Properties of Wild Edible Greens of the Asteraceae Family? Foods, 13(17), 2677. https://doi.org/10.3390/foods13172677