Nutritional Properties of Wild Edible Plants with Traditional Use in the Catalan Linguistic Area: A First Step for Their Relevance in Food Security
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Databasing and Data Selection
2.3. Nutritional Databasing and Data Selection
3. Results and Discussion
3.1. Nutritional Properties and Requirements
3.2. Plants Involved in Traditional Food Preparations
- Starter: Portulaca oleracea salad;
- Main: rice with Silene vulgaris and other vegetables;
- Dessert: Arbutus unedo pie.
3.3. Nutritional Comparison between Wild and Crop Plants
3.4. WFPs as Folk Functional Foods
3.5. Food Securtiy and Safety Precaution
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/en (accessed on 28 November 2023).
- Antonelli, A.; Fry, C.; Smith, R.; Simmonds, M.; Kersey, P.; Pritchard, H.; Abbo, M.; Acedo, C.; Adams, J.; Ainsworth, A.; et al. State of the World’s Plants and Fungi 2020; Royal Botanic Gardens, Kew: Richmond, UK, 2020. [Google Scholar]
- Bharucha, Z.; Pretty, J. The Roles and Values of Wild Foods in Agricultural Systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2913–2926. [Google Scholar] [CrossRef] [PubMed]
- Asprilla-Perea, J.; Díaz-Puente, J.M. Importance of Wild Foods to Household Food Security in Tropical Forest Areas. Food Sec. 2019, 11, 15–22. [Google Scholar] [CrossRef]
- Rowland, D.; Ickowitz, A.; Powell, B.; Nasi, R.; Sunderland, T. Forest Foods and Healthy Diets: Quantifying the Contributions. Environ. Conserv. 2016, 44, 102–114. [Google Scholar] [CrossRef]
- Turner, N.; Łuczaj, Ł.; Migliorini, P.; Pieroni, A.; Dreon, A.; Sacchetti, L.; Paoletti, M. Edible and Tended Wild Plants, Traditional Ecological Knowledge and Agroecology. Crit. Rev. Plant Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Sõukand, R.; Kalle, R. Change in Medical Plant Use in Estonian Ethnomedicine: A Historical Comparison between 1888 and 1994. J. Ethnopharmacol. 2011, 135, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Gras, A.; Garnatje, T.; Marín, J.; Parada, M.; Sala, E.; Talavera, M.; Vallès, J. The Power of Wild Plants in Feeding Humanity: A Meta-Analytic Ethnobotanical Approach in the Catalan Linguistic Area. Foods 2020, 10, 61. [Google Scholar] [CrossRef]
- Barrau, J. L’Ethnobotanique au Carrefour Des Sciences Naturelles et Des Sciences Humaines. Bull. Société Bot. Fr. 2014, 118, 237–247. [Google Scholar] [CrossRef]
- Grewe, R. Llibre de Sent Soví. Llibre de Totes Maneres de Potatges de Menjar. Llibre de Totes Maneres de Confits; Barcino: Barcelona, Spain, 1979. [Google Scholar]
- Thibaut, E. La Cuina dels Països Catalans. Reflex D’una Societat.; Pòrtic: Barcelona, Spain, 2001; ISBN 978-84-7306-716-4. [Google Scholar]
- Pieroni, A.; Price, L. Eating and Healing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-1-4822-9361-6. [Google Scholar]
- Vallès, J.; D’Ambrosio, U.; Gras, A.; Parada, M.; Rigat, M.; Serrasolses, G.; Garnatje, T. Medicinal and Food Plants in Ethnobotany and Ethnopharmacology: Folk Functional Foods in Catalonia (Iberian Peninsula). In Recent Advances in Pharmaceutical Sciences; Muñoz-Torrero, D., Riu, M., Feliu, C., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Volume 7, pp. 1–17. ISBN 978-81-308-0573-3. [Google Scholar]
- Valussi, M.; Scirè, A. Quantitative Ethnobotany and Traditional Functional Foods. Nutrafoods 2012, 11, 85–93. [Google Scholar] [CrossRef]
- Cantwell-Jones, A.; Ball, J.; Collar, D.; Diazgranados, M.; Douglas, R.; Forest, F.; Hawkins, J.; Howes, M.-J.; Ulian, T.; Vaitla, B.; et al. Global Plant Diversity as a Reservoir of Micronutrients for Humanity. Nat. Plants 2022, 8, 225–232. [Google Scholar] [CrossRef]
- Deffontaines, P. Geografia dels Països Catalans; Editorial Ariel: Barcelona, Spain, 1980; ISBN 978-84-344-7438-3. [Google Scholar]
- de Bolòs, O.; Vigo, J.; Masalles, R.M.; Ninot, J.M. Flora Manual dels Països Catalans, 3rd ed.; Pòrtic: Barcelona, Spain, 2005; ISBN 978-84-7306-400-2. [Google Scholar]
- de Bolòs, O.; Riba, O.; Panareda, J.M.; Nuet, J.; Gosàlbez, J. Geografia Física dels Països Catalans; Ketres-Editora: Barcelona, Spain, 1976; ISBN 978-84-85256-01-3. [Google Scholar]
- de Bolòs, O.; Vigo, J. Flora dels Països Catalans, 4th ed.; Editorial Barcino: Barcelona, Spain, 1984–2001. [Google Scholar]
- Folch, R. La Vegetació dels Països Catalans; Ketres: Barcelona, Spain, 1981; ISBN 978-84-85256-20-4. [Google Scholar]
- Badia, A.M. Llengua i Cultura als Països Catalans; Edicions 62: Barcelona, Spain, 1966. [Google Scholar]
- Fàbrega, J. La Cultura del Gust als Països Catalans: Espais Geogràfics, Socials i Històrics del Patrimoni Culinari Català; Edicions El Mèdol: Berlin, Germany, 2000; ISBN 978-84-89936-89-8. [Google Scholar]
- Saéz, L. (Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain). Personal communication, 2019.
- Johns, T.; Kokwaro, J.O.; Kimanani, E.K. Herbal Remedies of the Luo of Siaya District, Kenya: Establishing Quantitative Criteria for Consensus. Econ. Bot. 1990, 44, 369–381. [Google Scholar] [CrossRef]
- le Grand, A.; Wondergem, P.A. Les Phytothérapies Anti-Infectieuses de la Forêt-savane, Sénégal (Afrique Occidentale) I. Un Inventaire. J. Ethnopharmacol. 1987, 21, 109–125. [Google Scholar] [CrossRef]
- de Cortes Sánchez-Mata, M.; Tardío, J. Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-1-4939-3327-3. [Google Scholar]
- Ota, A.; Višnjevec, A.; Vidrih, R.; Prgomet, Ž.; Necemer, M.; Hribar, J.; Gunde-cimerman, N.; Smole Možina, S.; Bučar-Miklavčič, M.; Ulrih, N. Nutritional, Antioxidative, and Antimicrobial Analysis of the Mediterranean Hackberry (Celtis australis L.). Food Sci. Nutr. 2016, 5, 160–170. [Google Scholar] [CrossRef]
- Food Data Central. Available online: https://fdc.nal.usda.gov (accessed on 28 November 2023).
- Couplan, F. Guide Nutritionnel des Plantes Sauvages et Cultivées; Delachaux: Paris, France, 2020; ISBN 978-2-603-02775-2. [Google Scholar]
- Khantouche, L.; Fatma, G.; Motri, S.; Mejri, M.; Abderrabba, M. Nutritional Composition, Analysis of Secondary Metabolites and Antioxidative Effects of the Leaves of Globularia alypum L. Indian J. Pharm. Sci. 2018, 80, 274–281. [Google Scholar] [CrossRef]
- Andreu, V.; Amiot, A.; Safont, M.; Levert, A.; Bertrand, C. First Phytochemical Characterization and Essential Oil Analysis of the Traditional Catalan Wild Salad: Coscoll (Molopospermum peloponnesiacum (L.) Koch). Med. Aromat. Plants 2015, 4, 4. [Google Scholar] [CrossRef]
- Uddin, M.; Juraimi, A.; Hossain, M.; Nahar, A.; Ali, M.; Rahman, M. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes. Sci. World J. 2014, 2014, 951019. [Google Scholar] [CrossRef]
- Enrique Martines, L.; Leonel Lira, C. Análisis y Aplicación de Las Expresiones Del Contenido de Humedad En Sólidos; Simposio de Metrología: Querétaro, Mexico, 2010. [Google Scholar]
- Tablas de Composición de Alimentos del CESNID+CD-ROM; McGraw-Hill Interamericana de España S.L.: Madrid, Spain, 2003; ISBN 978-84-486-0590-2.
- Shatalov, A.A.; Pereira, H. Carbohydrate Behaviour of Arundo donax L. in Ethanol–Alkali Medium of Variable Composition during Organosolv Delignification. Carbohydr. Polym. 2002, 49, 331–336. [Google Scholar] [CrossRef]
- Cianfaglione, K.; Longo, L.; Kalle, R.; Sõukand, R.; Gras, A.; Vallès, J.; Svanberg, I.; Nedelcheva, A.; Łuczaj, Ł.; Pieroni, A. Archaic Food Uses of Large Graminoids in Agro Peligno Wetlands (Abruzzo, Central Italy) Compared with the European Ethnobotanical and Archaeological Literature. Wetlands 2022, 42, 88. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Nutrient Recommendations and Databases. Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx (accessed on 25 March 2024).
- Bhat, S.; Kaushal, P.; Kaur, M.; Sharma, H.K. Coriander (Coriandrum sativum L.): Processing, Nutritional and Functional Aspects. Afr. J. Plant Sci. 2014, 8, 25–33. [Google Scholar] [CrossRef]
- Al-Masri, M.R. Nutritive Evaluation of Some Native Range Plants and Their Nutritional and Anti-Nutritional Components. J. Appl. Anim. Res. 2013, 41, 427–431. [Google Scholar] [CrossRef]
- Darwish, A.; Hamad, G.; El-Sohaimy, S. Nutrients and Constituents Relevant to Antioxidant, Antimicrobial and Anti-Breast Cancer Properties of Salvia officinalis L. Int. J Biochem. Res. Rev. 2018, 23, 1–13. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 613 25 October 2011 on the Provision of Food Information to Consumers; Annex XIII; Official Journal of the European Union: Strasbourg, France, 2011; L304; pp. 18–63. [Google Scholar]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Magnesium. Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional (accessed on 28 November 2023).
- Khomdram, S.; Salam, J.; Singh, P. Estimation of Nutritive Indices in Eight Lamiaceae Plants of Manipur. Am. J. Food Techno. 2011, 6, 924–931. [Google Scholar] [CrossRef]
- Narasaki, Y.; You, A.S.; Malik, S.; Moore, L.W.; Bross, R.; Cervantes, M.K.; Daza, A.; Kovesdy, C.P.; Nguyen, D.V.; Kalantar-Zadeh, K.; et al. Dietary Potassium Intake, Kidney Function, and Survival in a Nationally Representative Cohort. Am. J. Clin. Nutr. 2022, 116, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J.; Michels, A.J.; Frei, B. Vitamin C1. Adv. Nutr. 2014, 5, 16–18. [Google Scholar] [CrossRef]
- Farquhar, W.B.; Edwards, D.G.; Jurkovitz, C.T.; Weintraub, W.S. Dietary Sodium and Health: More Than Just Blood Pressure. J. Am. Coll. Cardiol. 2015, 65, 1042–1050. [Google Scholar] [CrossRef]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [PubMed]
- Shlisky, J.; Mandlik, R.; Askari, S.; Abrams, S.; Belizan, J.M.; Bourassa, M.W.; Cormick, G.; Driller-Colangelo, A.; Gomes, F.; Khadilkar, A.; et al. Calcium Deficiency Worldwide: Prevalence of Inadequate Intakes and Associated Health Outcomes. Ann. N. Y. Acad. Sci. 2022, 1512, 10–28. [Google Scholar] [CrossRef]
- Aschner, M.; Erikson, K. Manganese12. Adv. Nutr. 2017, 8, 520–521. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, F.; Samman, S. Vitamin B12 in Health and Disease. Nutrients 2010, 2, 299–316. [Google Scholar] [CrossRef]
- Calvo, M.S.; Lamberg-Allardt, C.J. Phosphorus1. Adv. Nutr. 2015, 6, 860–862. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Gilbert, C. What Is Vitamin A and Why Do We Need It? Comm. Eye Health 2013, 26, 65. [Google Scholar]
- Mrowicka, M.; Mrowicki, J.; Dragan, G.; Majsterek, I. The Importance of Thiamine (Vitamin B1) in Humans. Biosci. Rep. 2023, 43, BSR20230374. [Google Scholar] [CrossRef]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and Its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. The Health Benefits of Vitamin K. Open Heart 2015, 2, e000300. [Google Scholar] [CrossRef]
- Mitra, S.; Rauf, A.; Tareq, A.M.; Jahan, S.; Emran, T.B.; Shahriar, T.G.; Dhama, K.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rebezov, M.; et al. Potential Health Benefits of Carotenoid Lutein: An Updated Review. Food Chem. Toxicol. 2021, 154, 112328. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.-M.; Shi, J.; Tomás-Barberán, F.; Datta, N.; Singanusong, R.; Chen, S. Flavonoids in Food and Their Health Benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Weitzberg, E.; Lundberg, J.O. Novel Aspects of Dietary Nitrate and Human Health. Annu. Rev. Nutr. 2013, 33, 129–159. [Google Scholar] [CrossRef]
- Eixarcolant. Available online: https://eixarcolant.cat (accessed on 2 April 2024).
- Maurizi, A.; Michele, A.; Ranfa, A.; Ricci, A.; Roscini, V.; Coli, R.; Bodesmo, M.; Burini, G. Bioactive Compounds and Antioxidant Characterization of Three Edible Wild Plants Traditionally Consumed in the Umbria Region (Central Italy): Bunias erucago L. (Corn Rocket), Lactuca perennis L. (Mountain Lettuce) and Papaver rhoeas L. (Poppy). J. Appl. Bot. Food Qual. 2015, 88, 109–114. [Google Scholar] [CrossRef]
- Rivera, D.; De Castro, C.O.; Heinrich, M.; Inocencio, C.; Verde, A.; Fajardo, J. Gathered Mediterranean Food Plants-Ethnobotanical Investigations and Historical Development. In Forum of Nutrition; Heinrich, M., Müller, W.E., Galli, C., Eds.; Forum of Nutrition Karger: Basel, Switzerland, 2006; Volume 59, pp. 18–74. [Google Scholar]
- Eskin, N.A.M.; Tamir, S. Dictionary of Nutraceutical and Functional Foods; CRC Press and Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Åhlberg, M.K. A profound explanation of why eating green (wild) edible plants promotes health and longevity. Food Front. 2021, 2, 240–267. [Google Scholar] [CrossRef]
- Åhlberg, M.K. An update of Åhlberg (2021a): A profound explanation of why eating green (wild) edible plants promotes health and longevity. Food Front. 2022, 3, 366–379. [Google Scholar] [CrossRef]
- Fantasma, F.; Samukha, V.; Saviano, G.; Chini, M.G.; Iorizzi, M.; Caprari, C. Nutraceutical Aspects of Selected Wild Edible Plants of the Italian Central Apennines. Nutraceuticals 2024, 4, 190–231. [Google Scholar] [CrossRef]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food Chem. Tox. 2017, 110, 165–188. [Google Scholar] [CrossRef]
- European Food Safety Authority; Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. EFSA J. 2012, 10, 2663. [CrossRef]
- European Parliament. Directive 2004/24/EC of the European Parliament and of the Council of 31 March 2004 Amending, as Regards Traditional Herbal Medicinal Products, Directive 2001/83/EC on the Community Code Relating to Medicinal Products for Human Use; Official Journal of the European Union: Strasbourg, France, 2004; L136; pp. 85–90. [Google Scholar]
- Hanen, N.; Fattouch, S.; Ammar, E.; Neffati, M. Allium Species, Ancient Health Food for the Future? Sci. Health Soc. Asp. Food Ind. 2012, 17, 343–356. [Google Scholar] [CrossRef]
- Fang, J. Nutritional Composition of Saskatoon Berries: A Review. Botany 2020, 99, 175–184. [Google Scholar] [CrossRef]
- Viano, J.; Masotti, V.; Gaydou, E.M.; Giraud, M.; Bourreil, P.J.L.; Ghiglione, C. Composition of Liliifloreae from Mediterranean Pastures. J. Agric. Food Chem. 1996, 44, 3126–3129. [Google Scholar] [CrossRef]
- Iqbal, S.; Younas, U.; Chan, K.W.; Zia-Ul-Haq, M.; Ismail, M. Chemical Composition of Artemisia annua L. Leaf and Antioxidant Potential of Extracts as a Function of Extraction Solvents. Molecules 2012, 17, 6020. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.L.; Schirmer, M.A.; Maeda, R.N.; Barcelos, C.A.; Pereira, N. Potential of Giant Reed (Arundo donax L.) for Second Generation Ethanol Production. Electron. J. Biotechnol. 2015, 18, 10–15. [Google Scholar] [CrossRef]
- Couplan, F. Guide Nutritionnel des Plantes Sauvages et Cultivées; Delachaux et Niestlé: Paris, French, 2011. [Google Scholar]
- Barreira, J.C.M.; Casal, S.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Nutritional, Fatty Acid and Triacylglycerol Profiles of Castanea sativa Mill. Cultivars: A Compositional and Chemometric Approach. J. Agric. Food Chem. 2009, 57, 2836–2842. [Google Scholar] [CrossRef]
- Bouhafsoun, A.; Boukeloua, A.; Yener, I.; Lamine, M. Chemical composition and mineral contents of leaflets, rachis and fruit of Chamaerops humilis L. Ann. Food Sci. Technol. 2020, 20, 142–149. [Google Scholar]
- Farrán, A.; Zamora, R.; Cervera, P. Tablas de Composición de Alimentos del CESNID; de Barcelona, U., Ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Pedreiro, S.; da Ressurreição, S.; Lopes, M.; Cruz, M.T.; Batista, T.; Figueirinha, A.; Ramos, F. Crepis vesicaria L. subsp. taraxacifolia vesicaria Leaf: Nutritional Profile, Phenolic Composition and Biological Properties. Int. J. Environ. Res. Public Health 2020, 18, 151. [Google Scholar] [CrossRef]
- Silva, A.R.; Fernandes, Â.; García, P.A.; Barros, L.; Ferreira, I.C.F.R. Cytinus hypocistis (L.) subsp. macranthus Wettst.: Nutritional Characterization. Molecules 2019, 24, 1111. [Google Scholar] [CrossRef]
- Khan, M.N.; Sarwar, A.; Adeel, M.; Wahab, M.F. Nutritional Evaluation of Ficus carica Indigenous to Pakistan. Afr. J. Food Agric. Nutr. Dev. 2011, 11, 5187–5202. [Google Scholar] [CrossRef]
- Raja, G.; Shaker, I.A.; Inampudi, M. Nutritional Analysis of Nuts Extract of Juglans regia L. Int. J. Bioassays 2012, 1, 68. [Google Scholar] [CrossRef]
- Aziz, E.E.; Rezk, A.I.; Omer, E.A.; Nofal, O.A.; Salama, Z.A.; Fouad, H.; Fouad, R. Chemical Composition of Mentha pulegium L. (Pennyroyal) Plant as Influenced by Foliar Application of Different Sources of Zinc. Egypt. Pharm. J. 2019, 18, 53. [Google Scholar] [CrossRef]
- Isaac, A.A. Overview of Cactus (Opuntia ficus-indica (L): A Myriad of Alternatives. Stud. Ethno-Med. 2016, 10, 195–205. [Google Scholar] [CrossRef]
- Viano, J.; Masotti, V.; Gaydou, E.M. Nutritional Value of Mediterranean Sheep’s Burnet (Sanguisorba minor ssp. muricata). J. Agric. Food Chem. 1999, 47, 4645–4648. [Google Scholar] [CrossRef] [PubMed]
- Erden, Y.; Kırbağ, S.; Yılmaz, Ö. Phytochemical Composition and Antioxidant Activity of Some Scorzonera Species. Proc. Natl. Acad. Sci. India Sect. B-Biol. Sci. 2013, 83, 271–276. [Google Scholar] [CrossRef]
- Alghazeer, R.; Elgahmasi, S.; Abdullah, E.; Ahtiwesh, O.; Althaluti, E.; Shamlan, G.; Alansari, W.S.; Eskandrani, A.A. Elucidation of Nutritional, Phytochemical and Pharmacological Activities of Teucrium polium L. Grown in Libya. J. Anim. Plant Sci. 2021, 31, 1439–1452. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive Compounds Content and Antimicrobial Activities of Wild Edible Asteraceae Species of the Mediterranean Flora under Commercial Cultivation Conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef]
- HMPC. Assessment Report on Urtica dioica L., and Urtica urens L., herba; European Medicines Agency: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ercisli, S. Chemical Composition of Fruit in Some Rose (Rosa spp.) Species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
Nutrient | Taxa | Nutritional Value per 100 g (% of Dietary Reference Intake) [41] |
---|---|---|
Dietary fiber | Satureja hortensis L. | 45.7 g (182.8%) |
K | Allium roseum L. | 1530 mg (43.8%) * |
Na | Capparis spinosa L. | 2960 mg (197.3%) |
Ca | Urtica urens L. | 4421 mg (442.1%) * |
Fe | Salvia officinalis L. | 84 mg (600%) |
Mg | Satureja hortensis L. | 377 mg (100.5%) |
Mn | Urtica urens L. | 10,400 μg (63,466.6%) * |
Cu | Chondrilla juncea L. | 430 μg (430%) |
P | Pinus pinea L. | 650 mg (92.8%) |
Zn | Corylus avellana L. | 2500 μg (16,666.6%) |
Vitamin A | Anethum graveolens L. | 7720 IU (28.5%) |
Vitamin B1 | Coriandrum sativum L. | 239 μg (21.7%) |
Vitamin B2 | Plantago major L. | 300 μg (21.4%) |
Vitamin B3 | Coriandrum sativum L. | 2130 μg (13.3%) |
Vitamin B6 | Carum carvi L. | 360 μg (25.7%) |
Vitamin B9 | Allium ampeloprasum L. | 327 μg (81.8%) |
Vitamin C | Allium roseum L. | 1523 mg (1904%) * |
Vitamin E (tocopherol equivalents) | Artemisa absinthium L. | 2740 mg (18,267%) * |
Vitamin K | Rorippa nasturtium-aquaticum L. | 250 μg (333.3%) |
Traditional Preparation | Synthetic Recipe Explanation | Researched Plants Involved |
---|---|---|
Cake | Basic preparation of the cake with flour, butter or olive oil and water (and sugar or salt depending on the kind of cake), and addition of the plant inside or on the surface | Fragaria vesca L., Papaver rhoeas L., Silene vulgaris L. |
Condiment | Used to season a salad, a fritter, a pizza or a meat or fish roast or stew | Laurus nobilis L., Origanum vulgare L. |
Fritter | Put in batter and fried in olive oil, with salt or sugar depending on the use as meat dishes’ complement or as a dessert | Sambucus nigra L. |
Omelette | Slightly fried in olive oil or sauté, mixed with eggs, and fried in olive oil | Borago officinalis L. |
Preserve | Cooked in sugar, preserved in brine or preserved in vinegar | Arbutus unedo L., Foeniculum vulgare Mill., Rubus ulmifolius Schott. |
Salad | Cleaned and seasoned with olive oil and sometimes salt and/or condiments | Molospermum peloponnesiacum L., Portulaca oleracea L. |
Soup | Boiled with water, in some cases with bread and an egg added at the end of the preparation | Mentha spicata L. |
Stew | Stewed with meat | Capparis spinosa L., Borago officinalis L. |
Sweet delicacy | Cleaned and directly consumed, often in the field just after collection | Arbutus unedo L., Celtis australis L., Fragaria vesca L., Rubus idaeus L., Rubus ulmifolius Schott. |
Vegetable | Boiled in water | Silene vulgaris L. |
Energy (kcal) | 2036.1 | |
Available carbohydrates (g) | 339.6 | |
Proteins (g) | 31.1 | |
Lipids (g) | 25.5 | |
Dietary fiber (g) | 117.9 | |
Main minerals | ||
K (mg) | 5285.1 | |
Na (mg) | 352.0 | |
Ca (mg) | 1165.8 | |
Fe (mg) | 14.4 | |
Mg (mg) | 434.9 | |
Main vitamins | ||
Vitamin B9 (μg) | 3700 | |
Vitamin C (mg) | 1585.2 | |
Vitamin E (tocopherol equivalents) (mg) | 28.9 | |
Vitamin K (μg) | 221.3 |
Taxon | Energy (kcal) | Available Carbohydrates (g) | Proteins (g) | Lipids (g) | Dietary Fiber (g) | K (mg) | Na (mg) | Ca (mg) | Fe (mg) | Mg (mg) | Vitamin A (IU) | Vit. B9 (μ g) | Vit. C (mg) | Vit. E (Tocopherol Equivalents) (mg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allium ampeloprasum L. (wild) | 85 | 16.6 | 1.7 | 0.3 | 4.2 | 455 | 32.7 | 75.6 | 0.5 | 17.1 | - | 145 | 6.7 | 0.0 * |
Allium sativum L. (crop) | 119 | 23.4 | 5.7 | 0.4 | 2.1 | 446 | 53 | 25 | 1.3 | 23 | - | 3 | 22 | 0.1 |
Apium nodiflorum Koch (wild) | 21 | 1.2 | 1.6 | 0.4 | 2.7 | 165 | 244 | 152 | 1.8 | 28 | - | 125 | - | 2.6 |
Apium graveolens L. (crop) | 10 | 1.5 | 0.9 | 0.1 | 2 | 305 | 110 | 52 | 0.5 | 14 | 0.0 * | 36 | 8 | 0.2 |
Asparagus acutifolius L. (wild) | 40 | 3.5 | 2.4 | 0.6 | 4.8 | 585 | 18.5 | 54.1 | 0.7 | 36.6 | - | 217 | 37.8 | 83 |
Asparagus officinalis L. (crop) | 21 | 2.7 | 2.9 | 0.2 | 0.6 | 269 | 3 | 28 | 1.3 | 11 | - | 52 | 1.4 | 1.7 |
Beta vulgaris L. subsp. maritima (L.) Arcang. (wild) | 31 | 1.7 | 3.1 | 0.3 | 4.4 | 988 | 201 | 67.1 | 2.9 | 66.9 | - | 300 | 36.4 | 0.5 |
Beta vulgaris L. subsp. vulgaris (crop) | 21 | 2.7 | 2.1 | 0.2 | 1 | 378 | 170 | 80 | 2.3 | 81 | 0.2 | 14 | 35 | 0.0 * |
Cichorium intybus L. (wild) | 33 | 3.5 | 1.8 | 0.5 | 3.6 | 299 | 70.8 | 153 | 1.3 | 19.8 | - | 3253 | 19.7 | - |
Cihorium endivia L. (crop) | 12 | 1 | 1.6 | 0.2 | 2.6 | 327 | 14 | 55 | 1 | 12 | - | 0.2 | 10 | - |
Eruca vesicaria L. (wild) | 28 | 2.1 | 2.6 | 0.7 | 1.6 | 413 | 14.1 | 250 | 1.8 | 33.7 | - | - | 125 | - |
Eruca sativa Mill. (crop) | 25 | 3.6 | 2.6 | 0.6 | 1.6 | 369 | 27 | 160 | 1.5 | 47 | - | - | 15 | - |
Fragaria vesca L. (wild) | 32 | 7.7 | 0.6 | 0.3 | 2 | 153 | - | 16 | 0.4 | - | 3.3 | 240 | 58.8 | - |
Fragaria chiloensis L. (crop) | 27 | 5.5 | 0.6 | 0.3 | 1.6 | 152 | - | 21 | 0.4 | - | 2 | 0.1 | 57 | - |
Lactuca perennis L. (wild) | 32.4 | 4.4 | 2.7 | 0.4 | 6.5 | 440.8 | 47.4 | 331.1 | 3.3 | 31.6 | - | - | - | - |
Lactuca sativa L. (crop) | 16 | 1.7 | 1.4 | 0.4 | 1.5 | 234 | 22 | 40 | 0.6 | 10 | - | - | - | - |
Vaccinium myrtillus L. (wild) | 33 | 6.1 | 0.6 | 0.6 | 4.9 | 78 | 1 | 10 | 0.7 | 2.4 | 19 | - | 22 | 1.9 |
Vaccinium macrocarpon Aiton (crop) | 48 | 11.3 | 0.6 | - | 3 | 68 | 2 | 9 | 0.5 | 4 | 0.0 * | 1 | 20 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas, M.; Vallès, J.; Gras, A. Nutritional Properties of Wild Edible Plants with Traditional Use in the Catalan Linguistic Area: A First Step for Their Relevance in Food Security. Foods 2024, 13, 2785. https://doi.org/10.3390/foods13172785
Casas M, Vallès J, Gras A. Nutritional Properties of Wild Edible Plants with Traditional Use in the Catalan Linguistic Area: A First Step for Their Relevance in Food Security. Foods. 2024; 13(17):2785. https://doi.org/10.3390/foods13172785
Chicago/Turabian StyleCasas, Mar, Joan Vallès, and Airy Gras. 2024. "Nutritional Properties of Wild Edible Plants with Traditional Use in the Catalan Linguistic Area: A First Step for Their Relevance in Food Security" Foods 13, no. 17: 2785. https://doi.org/10.3390/foods13172785
APA StyleCasas, M., Vallès, J., & Gras, A. (2024). Nutritional Properties of Wild Edible Plants with Traditional Use in the Catalan Linguistic Area: A First Step for Their Relevance in Food Security. Foods, 13(17), 2785. https://doi.org/10.3390/foods13172785