Boosting Fructosyl Transferase’s Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzyme and Chemicals
2.2. Enzyme Activity Assay
2.3. Thermal Denaturation Measurements by Fluorescence-Based Thermal Shift Assays (F-TSA)
2.4. Thermal Denaturation Measurements by Circular Dichroism (CD) Spectroscopy
2.5. Determination of Water Activity
2.6. Estimation of Relative Contribution of Water Activity on Enzyme Conformational Stability
2.7. FOS Preparation
2.8. Estimation of Enzymatic Kinetic Synthesis of FOS
2.9. The Sugar Profiles by HPLC Analysis
2.10. The Statistical Methodology
3. Results and Discussion
3.1. Effect of Temperature on Solubility and Viscosity of Sucrose Solution
3.2. FTase Tested Is Moderately Heat-Resistant but Sensitive to High Temperatures
3.3. Thermal Denaturation Characteristics of FTase in Real Sucrose Solution
3.4. Enhanced Enzymatic Reaction Efficiency in Higher Concentration of Sucrose Solution at Elevated Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arcus, V.L.; van der Kamp, M.W.; Pudney, C.R.; Mulholland, A.J. Enzyme evolution and the temperature dependence of enzyme catalysis. Curr. Opin. Struct. Biol. 2020, 65, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, X.; Ge, J. Enzyme catalyst engineering toward the integration of biocatalysis and chemocatalysis. Trends Biotechnol. 2021, 39, 1173–1183. [Google Scholar] [CrossRef]
- Elleuche, S.; Schröder, C.; Sahm, K.; Antranikian, G. Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 2014, 29, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Sheng, L.; Mu, W.; Shi, Y.; Wu, J. Enzymatic preparation of gentiooligosaccharides by a thermophilic and thermostable β-glucosidase at a high substrate concentration. Foods 2022, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, C.; Yan, Q.; Li, X.; Jiang, Z. Nondigestible functional oligosaccharides: Enzymatic production and food applications for intestinal health. Annu. Rev. Food Sci. Technol. 2023, 14, 297–322. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; He, K.; Collins, G.; Vrieze, J.D.; Wu, G. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean Water 2024, 7, 52. [Google Scholar] [CrossRef]
- Fredes, Y.; Chamorro, L.; Cabrera, Z. Increased selectivity of Novozym435 in the asymmetric hydrolysis of a substrate with high hydrophobicity through the use of deep eutectic solvents and high substrate concentrations. Molecules 2019, 24, 792. [Google Scholar] [CrossRef]
- Baydin, T.; Dille, M.J.; Aarstad, O.A.; Hattrem, M.N.; Draget, K.I. The impact of sugar alcohols and sucrose on the physical properties, long-term storage stability, and processability of fish gelatin gels. J. Food Eng. 2022, 341, 111334. [Google Scholar] [CrossRef]
- Farias, D.d.P.; de Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol. 2019, 93, 23–35. [Google Scholar] [CrossRef]
- Bommarius, A.S.; Paye, M.F. Stabilizing biocatalysts. Chem. Soc. Rev. 2013, 42, 6534–6565. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Y.; Yong, X.; Jia, H.; Wei, P.; Zhou, J. Effects of granular activated carbon and temperature on the viscosity and methane yield of anaerobically digested of corn straw with different dry matter concentrations. Bioresour. Technol. 2021, 332, 125109. [Google Scholar] [CrossRef] [PubMed]
- Bruins, M.E.; Janssen, A.E.; Boom, R.M. Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 2001, 90, 155–186. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.; Shahzad, T.; Andanson, L.; Bahn, M.; Wallenstein, M.D.; Fontaine, S. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Chang. Biol. 2018, 24, 4238–4250. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Ranaweera, S.; Zou, D.; Cameron, A.P.; Chen, X.; Song, H.; Zhao, C.-X. Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocoll. 2023, 137, 108385. [Google Scholar] [CrossRef]
- Miao, H.; Xiang, X.; Han, N.; Wu, Q.; Huang, Z. Improving the thermostability of serine protease PB92 from Bacillus alcalophilus via site-directed mutagenesis based on semi-rational design. Foods 2023, 12, 3081. [Google Scholar] [CrossRef]
- Barzkar, N.; Homaei, A.; Hemmati, R.; Patel, S. Thermostable marine microbial proteases for industrial applications: Scopes and risks. Extremophiles 2018, 22, 335–346. [Google Scholar] [CrossRef]
- Li, G.; Maria-Solano, M.A.; Romero-Rivera, A.; Osuna, S.; Reetz, M.T. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem. Commun. 2017, 53, 9454–9457. [Google Scholar] [CrossRef]
- Plou, F.J.; Segura, A.G.d.; Ballesteros, A. Application of glycosidases and transglycosidases in the synthesis of oligosaccharides. In Industrial Enzymes; Springer: Berlin/Heidelberg, Germany, 2007; pp. 141–157. [Google Scholar] [CrossRef]
- Iyer, P.V.; Ananthanarayan, L. Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem. 2008, 43, 1019–1032. [Google Scholar] [CrossRef]
- Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 2013, 3, 2823–2836. [Google Scholar] [CrossRef]
- Mejri, M.; Mathlouthi, M. Effect of small carbohydrates on the catalytic activity of a protease and two glycohydrolases. Carbohydr. Polym. 2001, 45, 161–167. [Google Scholar] [CrossRef]
- Perugino, G.; Trincone, A.; Rossi, M.; Moracci, M. Oligosaccharide synthesis by glycosynthases. Trends Biotechnol. 2004, 22, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zappaterra, F.; Presini, F.; Venturi, V.; Lerin, L.A.; Giovannini, P.P.; Costa, S. Biocatalytic insights for the synthesis of new potential prodrugs: Design of two ibuprofen derivatives. Appl. Sci. 2023, 13, 9852. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, P.; Wei, H.; Sun, X.; Zeng, Y.; Zhao, X.; Cai, Y.; Cui, M.; Ma, H.; Liu, W.; et al. Protein engineering of glucosylglycerol phosphorylase facilitating efficient and highly regio- and stereoselective glycosylation of polyols in a synthetic system. ACS Catal. 2022, 12, 15715–15727. [Google Scholar] [CrossRef]
- Ohtake, S.; Kita, Y.; Arakawa, T. Interactions of formulation excipients with proteins in solution and in the dried state. Adv. Drug Deliv. Rev. 2011, 63, 1053–1073. [Google Scholar] [CrossRef] [PubMed]
- Ravelo, M.; Fuente, E.; Blanco, Á.; Ladero, M.; García-Ochoa, F. Esterification of glycerol and ibuprofen in solventless media catalyzed by free CALB: Kinetic modelling. Biochem. Eng. J. 2015, 101, 228–236. [Google Scholar] [CrossRef]
- Tong, L.; Zheng, J.; Wang, X.; Wang, X.; Huang, H.; Yang, H.; Tu, T.; Wang, Y.; Bai, Y.; Yao, B.; et al. Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. Biotechnol. Biofuels 2021, 14, 202. [Google Scholar] [CrossRef]
- Minteer, S.D. Enzyme stabilization and immobilization: Methods and protocols. Methods Mol. Biol. 2017, 4504, 1064–3745. [Google Scholar] [CrossRef]
- Che Hussian, C.H.A.; Leong, W.Y. Thermostable enzyme research advances: A bibliometric analysis. J. Genet. Eng. Biotechnol. 2023, 21, 37. [Google Scholar] [CrossRef]
- Trollope, K.M.; Görgens, J.F.; Volschenk, H. Semirational directed evolution of loop regions in Aspergillus japonicus β-fructofuranosidase for improved fructooligosaccharide production. Appl. Environ. Microbiol. 2015, 81, 7319–7329. [Google Scholar] [CrossRef]
- Lo, M.-C.; Aulabaugh, A.; Jin, G.; Cowling, R.; Bard, J.; Malamas, M.; Ellestad, G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 2004, 332, 153–159. [Google Scholar] [CrossRef]
- Andreotti, G.; Monticelli, M.; Cubellis, M.V. Looking for protein stabilizing drugs with thermal shift assay. Drug Test. Anal. 2015, 7, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Niesen, F.H.; Berglund, H.; Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007, 2, 2212–2221. [Google Scholar] [CrossRef] [PubMed]
- Kozak, J.J.; Knight, W.S.; Kauzmann, W. Solute-solute interactions in aqueous solutions. J. Chem. Phys. 1968, 48, 675–690. [Google Scholar] [CrossRef]
- Miyawaki, O.; Saito, A.; Matsuo, T.; Nakamura, K. Activity and activity coefficient of water in aqueous solutions and their relationships with solution structure parameters. Biosci. Biotechnol. Biochem. 1997, 61, 466–469. [Google Scholar] [CrossRef]
- Miracco, J.L.; Alzamora, S.M.; Chirife, J.; Fontan, C.F. On the water activity of lactose solutions. J. Food Sci. 1981, 46, 1612–1613. [Google Scholar] [CrossRef]
- Leiras, M.C.; Alzamora, S.M.; Chirife, J. Water activity of galactose solutions. J. Food Sci. 1990, 55, 1174. [Google Scholar] [CrossRef]
- Domenico, R.D.; Lavecchia, R.; Ottavi, A. Theoretic information approach to protein stabilization by solvent engineering. AIChE J. 2000, 46, 1478–1489. [Google Scholar] [CrossRef]
- Miyawaki, O. Hydration state change of proteins upon unfolding in sugar solutions. Biochim. Biophys. Acta Proteins Proteom. 2007, 1774, 928–935. [Google Scholar] [CrossRef]
- Miyawaki, O.; Dozen, M.; Nomura, K. Thermodynamic analysis of osmolyte effect on thermal stability of ribonuclease A in terms of water activity. Biophys. Chem. 2014, 185, 19–24. [Google Scholar] [CrossRef]
- Miyawaki, O. Thermodynamic analysis of protein unfolding in aqueous solutions as a multisite reaction of protein with water and solute molecules. Biophys. Chem. 2009, 144, 46–52. [Google Scholar] [CrossRef]
- Niu, D.; Tian, X.; Mchunu, N.P.; Jia, C.; Singh, S.; Liu, X.-G.; Prior, B.A.; Lu, F. Biochemical characterization of three Aspergillus niger β-galactosidases. Electron. J. Biotechnol. 2017, 27, 37–43. [Google Scholar] [CrossRef]
- Vega, R.; Zúñiga-Hansen, M.E. A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochem. Eng. J. 2014, 82, 158–165. [Google Scholar] [CrossRef]
- Ullmann, D.A.; Hinks, M.L.; Maclean, A.M.; Butenhoff, C.L.; Grayson, J.W.; Barsanti, K.; Jimenez, J.L.; Nizkorodov, S.A.; Kamal, S.; Bertram, A.K. Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmos. Chem. Phys. 2019, 19, 3. [Google Scholar] [CrossRef]
- Hirschmüller, H. Physical Properties of Sucrose. In Principles of Sugar Technology; Honig, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 18–74. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Telis-Romero, J.; Mazzotti, H.B.; Gabas, A.L. Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop. 2007, 10, 185–195. [Google Scholar] [CrossRef]
- Jiang, B.; Jain, A.; Lu, Y.; Hoag, S.W. Probing thermal stability of proteins with temperature scanning viscometer. Mol. Pharm. 2019, 16, 3687–3693. [Google Scholar] [CrossRef]
- Timasheff, S.N. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 2002, 99, 9721–9726. [Google Scholar] [CrossRef]
- Schirò, G.; Weik, M. Role of hydration water in the onset of protein structural dynamics. J. Phys. Condens. Matter. 2019, 31, 463002. [Google Scholar] [CrossRef]
- Miyawaki, O.; Dozen, M.; Hirota, K. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions. J. Biosci. Bioeng. 2016, 122, 203–207. [Google Scholar] [CrossRef]
- Messnaoui, B.; Mounir, A.; Dinane, A.; Samaouali, A.; Mounir, B. Determination of water activity, osmotic coefficients, activity coefficients, solubility and excess Gibbs free energies of NaCl-sucrose-H2O mixture at 298.15 K. J. Mol. Liq. 2019, 284, 492–501. [Google Scholar] [CrossRef]
- Seelig, J.; Seelig, A. Protein unfolding-Thermodynamic perspectives and unfolding models. Int. J. Mol. Sci. 2023, 24, 5457. [Google Scholar] [CrossRef]
- Zappaterra, F.; Costa, S.; Summa, D.; Semeraro, B.; Cristofori, V.; Trapella, C.; Tamburini, E. Glyceric prodrug of ursodeoxycholic acid (UDCA): Novozym 435-catalyzed synthesis of UDCA-monoglyceride. Molecules 2021, 26, 5966. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Lederer, V.; Bardhi, A.; Zou, Z.; Hoffmann, T.D.; Sun, G.; Song, C.; Hoffmann, T.; Schwab, W. Acceptors and effectors alter substrate inhibition kinetics of a plant glucosyltransferase NbUGT72AY1 and its mutants. Int. J. Mol. Sci. 2023, 24, 9542. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, A.; Slade, K. Effect of pH dependent substrate inhibition on glutamate dehydrogenase kinetics. FASEB J. 2022, 36, S1. [Google Scholar] [CrossRef]
T (°C) | Vmax [g/(L·h)] | Km (g/L) | Ksi (g/L) |
---|---|---|---|
45 | 147.1 ± 10.3 | 632.4 ± 41.5 | 340.1 ± 19.3 |
50 | 156.3 ± 14.6 | 567.2 ± 25.0 | 426.7 ± 34.7 |
55 | 158.7 ± 31.8 | 507.9 ± 36.1 | 525.1 ± 55.3 |
60 | 175.4 ± 26.3 | 447.4 ± 34.7 | 712.5 ± 68.6 |
Process | Incubation Time (h) | Concentration (g/L) and Percentage (%) of FOS Profiles * | |||
---|---|---|---|---|---|
GF2 | GF3 | GF4 | Total FOS | ||
With 45 °C, 500 g/L | 8 | 170.28 (34.06) | 112.06 (22.41) | 8.51 (1.70) | 290.86 (58.17) |
10 | 152.09 (30.42) | 127.80 (25.56) | 10.91 (2.18) | 290.80 (58.16) | |
12 | 142.58 (28.52) | 134.46 (26.89) | 12.39 (2.48) | 289.44 (57.89) | |
With 65 °C, 800 g/L | 8 | 261.20 (32.65) | 181.40 (22.68) | 17.89 (2.24) | 460.49 (57.56) |
10 | 236.52 (29.57) | 194.99 (24.37) | 22.61 (2.83) | 454.12 (56.77) | |
12 | 218.64 (27.33) | 202.94 (25.37) | 27.10 (3.39) | 448.68 (56.09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, D.; Zhao, N.; Wang, J.; Mchunu, N.P.; Permaul, K.; Singh, S.; Wang, Z. Boosting Fructosyl Transferase’s Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production. Foods 2024, 13, 2997. https://doi.org/10.3390/foods13182997
Niu D, Zhao N, Wang J, Mchunu NP, Permaul K, Singh S, Wang Z. Boosting Fructosyl Transferase’s Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production. Foods. 2024; 13(18):2997. https://doi.org/10.3390/foods13182997
Chicago/Turabian StyleNiu, Dandan, Nan Zhao, Jun Wang, Nokuthula Peace Mchunu, Kugen Permaul, Suren Singh, and Zhengxiang Wang. 2024. "Boosting Fructosyl Transferase’s Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production" Foods 13, no. 18: 2997. https://doi.org/10.3390/foods13182997
APA StyleNiu, D., Zhao, N., Wang, J., Mchunu, N. P., Permaul, K., Singh, S., & Wang, Z. (2024). Boosting Fructosyl Transferase’s Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production. Foods, 13(18), 2997. https://doi.org/10.3390/foods13182997