Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments
2.3. Synthesis of the SWCNHs/T-PEDOT Composites
2.4. Construction of the MB@SWCNHs/T-PEDOT/GCE
2.5. Electrochemical Behavior of the MB@SWCNHs/T-PEDOT Sensing Interface
2.6. Electrochemical Detection of TBHQ
2.7. Real Sample Analysis
3. Results and Discussion
3.1. Characterization of T-PEDOT, SWCNHs, and SWCNHs/T-PEDOT
3.2. Electrochemical Behavior of the MB@SWCNHs/T-PEDOT/GCE
3.3. Electrochemical Redox Mechanism of TBHQ
3.4. Experimental Parameter Optimizations
3.5. Analytical Performance of the Ratiometric Electrochemical Sensing Platform
3.6. Real Sample Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskandani, M.; Hamishehkar, H.; Ezzati Nazhad Dolatabadi, J. Cytotoxicity and DNA damage properties of tert-butylhydroquinone (TBHQ) food additive. Food Chem. 2014, 153, 315–320. [Google Scholar] [CrossRef] [PubMed]
- GB 2760-2014; Standards for the Use of Food Additives. National Food Safety Standard of the People’s Republic of China: Beijing, China, 2014.
- Sun, J.J.; Li, J.; Li, H.; Yang, H.F.; Chen, J.L.; Yang, B.; Huo, F.J.; Guo, W.H.; Tian, W.D. T-BHQ suppresses osteoclastic resorption in xenogeneic-treated dentin matrix-based scaffolds. Adv. Healthc. Mater. 2017, 6, 1700127. [Google Scholar] [CrossRef]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; Sant’Ana, A.D. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Tech. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Wang, P.; Han, C.; Zhou, F.; Lu, J.; Han, X.; Wang, Z. Electrochemical determination of tert-butylhydroquinone and butylated hydroxyanisole at choline functionalized film supported graphene interface. Sensor Actuat. B-Chem. 2016, 224, 885–891. [Google Scholar] [CrossRef]
- Li, J.; Bi, Y.; Liu, W.; Sun, S. Simultaneous analysis of tertiary butylhydroquinone and 2-tert-Butyl-1,4-benzoquinone in edible oils by normal-phase high-performance liquid chromatography. J. Agric. Food Chem. 2015, 63, 8584–8591. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, J.Y.; Sun, J.Q.; Liu, K.X.; Xie, X.Q.; Hong, L.P.; Wang, S.; Pan, M.F. Nanomaterial-based magnetic surface molecularly imprinted polymers for specific extraction and efficient recognition of dibutyl phthalate. Food Chem. 2023, 426, 136621. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Hu, X.; Han, R.; Wang, S.; Pan, M. Portable smartphone-assisted fluorescence-colorimetric multidimensional immunosensing microarray based on NH2-UiO-66@PtNPs multifunctional composite for efficient and visual detection of amantadine. Chem. Eng. J. 2023, 473, 145401. [Google Scholar] [CrossRef]
- Pan, M.; Wang, Y.; Yang, J.; Li, H.; Han, X.; Wang, S. Carbon dots-based fluorescent molecularly imprinted photonic crystal hydrogel strip: Portable and efficient strategy for selective detection of tetracycline in foods of animal origin. Food Chem. 2024, 433, 137407. [Google Scholar] [CrossRef]
- Hou, X.; Xu, H.; Zhen, T.; Wu, W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci. Tech. 2020, 105, 76–92. [Google Scholar] [CrossRef]
- Li, X.; Ping, J.; Ying, Y. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TRAC-Trend Anal. Chem. 2019, 113, 1–12. [Google Scholar] [CrossRef]
- He, Y.Q.; Wang, S.; Wen, J.P.; Feng, N.; Ma, R.X.; Zhang, H.T.; Chen, X.C.; Chen, Y.P. Redesigned clostridium butyricum argonaute activity for application-free and multiplexed detection of pathogens. Nano Lett. 2024, 24, 9750–9759. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, W.L.; Tan, Y.T.; Liu, Y.; Kong, L.B.; Kang, L.; Ran, F. Electrolyte-philic electrode material with a functional polymer brush. ACS Appl. Mater. Interfaces 2019, 11, 16087–16095. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Gao, P.; Ebert, T.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Fichtner, M. New organic electrode materials for ultrafast electrochemical energy storage. Adv. Mater. 2019, 31, 1806599. [Google Scholar] [CrossRef]
- Bigdeli, A.; Ghasemi, F.; Abbasi-Moayed, S.; Shahrajabian, M.; Fahimi-Kashani, N.; Jafarinejad, S.; Farahmand Nejad, M.A.; Hormozi-Nezhad, M.R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances—A review. Anal. Chim. Acta 2019, 1079, 30–58. [Google Scholar] [CrossRef]
- Jin, H.; Gui, R.J.; Yu, J.B.; Lv, W.; Wang, Z.H. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosens. Bioelectron. 2017, 91, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.F.; Zhang, D.; Xie, M.J.; Liu, X.; Wang, Y.X.; Hu, X.C.; Wang, S. Electrochemical sensor for effective detection of methyl parathion applying multidimensional MXene/CNHs/PPy nanocomposite to synergistically immobilize acetylcholinesterase. Food Chem. 2024, 7, 140432. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.T.; Yan, S.Z.; Hou, S.S.; Fan, X.H. Novel fluorescence biosensor custom-made for protein tyrosine phosphatase 1B detection based on titanium dioxide-decorated single-walled carbon nanohorn nanocomposite. Spectrochim. Acta A 2022, 280, 121548. [Google Scholar] [CrossRef]
- Wang, H.X.; Feng, X.G.; Bo, X.J.; Zhou, M.; Guo, L.P. Nickel-based metal-organic framework/crosslinked tubular poly(3,4-ethylenedioxythiophene) composite as an electrocatalyst for the detection of gallic acid and tinidazole. ChemElectroChem 2020, 7, 4031–4037. [Google Scholar] [CrossRef]
- Popov, A.; Brasiunas, B.; Mikoliunaite, L.; Bagdziunas, G.; Ramanavicius, A.; Ramanaviciene, A. Comparative study of polyaniline (PANI), poly(3,4-ethylenedioxythiophene) (PEDOT) and PANI-PEDOT films electrodeposited on transparent indium thin oxide based electrodes. Polymer 2019, 172, 133–141. [Google Scholar] [CrossRef]
- Popov, A.; Brasiunas, B.; Damaskaite, A.; Plikusiene, I.; Ramanavicius, A.; Ramanaviciene, A. Electrodeposited gold nanostructures for the enhancement of electrochromic properties of PANI–PEDOT film deposited on transparent electrode. Polymers 2020, 12, 2778. [Google Scholar] [CrossRef]
- Kayser, L.V.; Lipomi, D.J. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, R.; Xu, L.M.; Jiang, F.X.; Liang, A.Q.; Duan, X.M.; Xu, J.K.; Zhou, W.Q.; Xu, Q.; Lu, X.Y. Self-assembly of reverse micelles to engineer PEDOT nanoribbons, nanotubes, nanorods and their high capacitance performances. J. Electrochem Soc. 2020, 167, 080538. [Google Scholar] [CrossRef]
- GB/T 21512-2008; Determination of tert-Butylhydroquinone (TBHQ) in Edible Vegetable Oil. General Administration of Quality Supervision. Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008.
- Hu, Y.L.; Shi, J.G.; Wang, Z.F.; Wang, X.P.; Lai, Y.J.; Chen, Y.K.; Wei, Z.Q.; Yang, H. High-performance electrocatalysts based core-shell SWCNHs@ZIF-67 heterostructure for ultrasensitive H2O2 sensing. Int. J. Electrochem. Sci. 2024, 19, 100689. [Google Scholar] [CrossRef]
- Muralter, F.; Coclite, A.M.; Lau, K.K.S. Oxidative chemical vapor deposition of conducting polymer films on nanostructured surfaces for piezoresistive sensor applications. Adv. Electron. Mater. 2021, 7, 2000871. [Google Scholar] [CrossRef]
- Gulzar, U.; Li, T.; Bai, X.; Colombo, M.; Ansaldo, A.; Marras, S.; Prato, M.; Goriparti, S.; Capiglia, C.; Zaccaria, R.P. Nitrogen-doped single-walled carbon nanohorns as a cost-effective carbon host toward high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5551–5559. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, D.W.; Shim, S.E. Electrospun PEDOT: PSS/carbon nanotubes/PVP nanofibers as chemiresistors for aromatic volatile organic compounds. Synth. Met. 2012, 162, 1513–1518. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.Y.; Sebastian, N.; Rasana, N. Ultrasensitive detection of cytotoxic food preservative tert-butylhydroquinone using 3D cupric oxide nanoflowers embedded functionalized carbon nanotubes. J. Hazard. Mater. 2021, 406, 124792. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y.; Zhuang, Q.F.; Wang, L.Y.; Ni, Y.N. Developing an electrochemical sensor for the detection of tert-butylhydroquinone. Sensor Actuat. B-Chem. 2019, 293, 321–328. [Google Scholar] [CrossRef]
- Yue, X.Y.; Luo, X.Y.; Zhou, Z.J.; Bai, Y.H. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Food Chem. 2019, 289, 84–94. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, C.L.; Zhao, Y.L.; Yu, Z.; Yang, F.C.; Zhang, X. Core-shell structured Co3O4@PPy composite for electrochemical determination of terbutylhydroquinone. RSC Adv. 2022, 12, 29845–29851. [Google Scholar] [CrossRef]
- Sebastian, N.; Yu, W.C.; Balram, D.; Al-Mubaddel, F.S.; Noman, M.T. Nanomolar detection of food additive tert-butylhydroquinone in edible oils based on novel ternary metal oxide embedded β-cyclodextrin functionalized carbon black. Food Chem. 2022, 377, 131867. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, J.Y.; Wang, L.S. Porous carbon derived from ZIF-8 modified molecularly imprinted electrochemical sensor for the detection of tert-butyl hydroquinone (TBHQ) in edible oil. Food Chem. 2021, 365, 130462. [Google Scholar] [CrossRef] [PubMed]
Modified Electrode | Method | Linear Range (μg mL−1) | LOD (μg mL−1) | Refs |
---|---|---|---|---|
MIP/PdAuNPs/ERGO/GCE 1 | DPV | 0.5–60 | 0.046 | [31] |
Co3O4@PPy/GCE 2 | DPV | 0.03–100 | 0.008 | [32] |
ZnCuMg TMO/β-CD-CB/SPCE 3 | DPV | 2.0–20.0 | 0.0001 | [33] |
MIP/ZC/GCE 4 | DPV | 0.02–12.5 | 0.07 | [34] |
MB@SWCNHs/T-PEDOT/GCE | DPV | 0.01–0.1 0.1–200.0 | 0.005 | This work |
Samples | Spiked (μg mL−1) | Found (μg mL−1) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|
Wafer biscuits | 0 | 0.29 | - | 4.1 |
10 | 10.06 | 103.0 | 1.5 | |
50 | 49.63 | 98.7 | 1.0 | |
Peanut oil | 0 | Not detected | - | - |
10 | 9.29 | 92.3 | 1.3 | |
50 | 46.11 | 92.2 | 2.5 | |
Instant noodles | 0 | 0.85 | - | 2.9 |
10 | 10.28 | 102.8 | 1.8 | |
50 | 50.77 | 101.5 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, H.; Wang, Z.; Pan, M.; Wang, S. Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs. Foods 2024, 13, 2996. https://doi.org/10.3390/foods13182996
Wu J, Li H, Wang Z, Pan M, Wang S. Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs. Foods. 2024; 13(18):2996. https://doi.org/10.3390/foods13182996
Chicago/Turabian StyleWu, Jing, Huilin Li, Zhijuan Wang, Mingfei Pan, and Shuo Wang. 2024. "Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs" Foods 13, no. 18: 2996. https://doi.org/10.3390/foods13182996
APA StyleWu, J., Li, H., Wang, Z., Pan, M., & Wang, S. (2024). Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs. Foods, 13(18), 2996. https://doi.org/10.3390/foods13182996